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The CRISPR/Cas9 technology has revolutionized gene-
editing approaches, by favoring rapid and efficient 
modifications of gene function, from knock-out to knock-in, 
and even to silencing or activation of target genes (1,2). In the 
October 25th issue of Cell Reports, Gundry et al. (3) describe 
a novel and efficient method to engineer hematopoietic 
stem/progenitor cells (HSPCs), of both human and murine 
origin. In this study, highly efficient disruption of critical 
genes for myeloid cell development and function, including 
Dnmt3a, Eed and Suz12 (4), was achieved through virus-
free systems. The authors achieve efficient delivery of small 
guide RNAs (sgRNAs) to murine Cas9-expressing HSPCs 
by electroporation, with subsequent knock-out of target 
genes, while maintaining cell viability and colony-forming 
properties of the edited cells. Targeting of Eed and Suz12 
increased proliferation of the edited cells, and their capacity 
to serially replate, confirming the oncogenic properties of 
the gene targets. Importantly, the authors report complete 
virus-free delivery of both Cas9 and sgRNA in human 
primary T cells and in cord-blood derived HSPCs. By 
optimizing culture and transfection protocols they could 
achieve targeting efficiencies of over 80% in these cells. 
Off-target effects of the sgRNAs were detectable at a very 
low rate, while multilineage reconstitution capacity of stem 
cells was maintained. 

One of the main advantages of the proposed method is 
the successful gene-editing of human HSPCs, not only by 

disruption, but through homology-directed repair (HDR), 
which allows introduction of point mutations at target 
loci, through co-transfection of a homologous “corrected” 
template (Figure 1). Strategies to increase HDR frequencies 
are widely studied (5,6) to improve current gene-editing 
strategies, which generally operate by inducing insertions 
or deletions (indels) through error-prone non-homologous 
end joining (NHEJ) of the target allele. To this end, 
introduction of precise genetic alterations through HDR 
in mammalian cells has the potential to be exploited for 
studies of cancer-associated point mutations or correction 
of disease-associated alterations in the clinical setting, 
extended, but not limited to, a large number of primary 
immunodeficiencies (7). 

From a clinical standpoint, the virus-free nature of 
Gundry’s strategy represents a major advantage over 
a number of virus-based, generally retro or lentiviral 
based strategies (8), and their associated concerns, mainly 
related to insertional mutagenesis (9), and emergence 
of replication-competent viruses. Another important 
advantage of this technique is efficient co-transduction of 
combinations of Cas9 with multiple sgRNAs and repair 
templates to combine NHEJ- and HDR-mediated editing 
strategies. This particularly enables studies of loss-of-
function and gain-of-function alterations together, which 
is highly relevant for cancer research but limited in systems 
based on constitutive Cas9 expression. It is easy to envision 
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large applicability of this technology to studies of normal 
and malignant hematopoiesis, and to foresee applications 
in mouse modeling of myeloid and lymphoid malignancies, 
in line with previously reported CRISPR-based in vivo 
modeling of myeloid leukemias (10). 

Overall, this technology represents a valuable and 
cost-effective resource, with large-scale applicability and 
accessibility, and an important tool to model genetic 
alterations in a wide variety of in vitro and in vivo settings.
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Figure 1 CRISPR/Cas9 gene editing of hematopoietic stem/precursor cells. Gundry et al. propose a virus-free strategy through which 
sgRNA are introduced into HSPC either alone or pre-complexed with Cas9. The sgRNA binds to the corresponding target sequence on the 
genomic DNA, displacing one strand of the double-stranded DNA target sequence. Such structure is then recognized by the Cas9 enzyme, 
which operates by cutting the DNA-RNA duplex, causing non-specific insertion/deletions (indels) on the target sequence by NHEJ. 
Introduction of specific point mutations in the target sequence can also be achieved in this system, through HDR. Such strategy requires co-
transduction of a homologous template, containing the desired mutations. Human or murine gene-edited cells maintain engraftment and 
multilineage differentiation capacity in this system. CLP, common lymphoid progenitor; CMP, common myeloid progenitor; sgRNAs, small 
guide RNAs; HSPC, hematopoietic stem/precursor cells; NHEJ, non-homologous end joining; HDR, homology-directed repair.
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