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Introduction

In addition to surgery, cancer treatment is based on 
radiotherapy and targeted/non-targeted chemotherapy or 
both. Radiotherapy as well as most of the non-targeted 
drugs provoke the formation of DNA damage including 
oxidized or alkylated nucleotides, single-strand breaks 
(SSBs) and double-strand breaks (DSBs). Amongst DNA 
damage, DSBs are considered as a highly toxic lesion that, if 
improperly repaired, can induce genomic rearrangement (1). 
Consequently the repair of DSBs has been subject to a lot 
of investigations. In mammalian cells, DSBs trigger the 
DNA damage response (DDR), an interconnected network 
that tends to maintain cell viability and genomic stability 
(2,3). The DDR acts through checkpoint signaling and 
DNA damage repair (4). In mammalian cells the MRE11/
RAD50/NBS1 (MRN) complex binds to DSBs and 
facilitates the activation of Ataxia Telangiectasia Mutated 

(ATM), the key phosphatidylinositol 3-kinase protein 
kinase-like (PI3KK) in the DDR (5) (Table 1). At the break 
site ATM autophosphorylation allows its activation to 
subsequently phosphorylate a large number of substrates 
in the chromatin surrounding (6). In addition to ATM, two 
other members of the PI3KK family, ataxia telangiectasia 
and Rad3 related protein (ATR) and DNA-dependent 
protein kinase (DNA-PK) play prominent roles in the DDR 
through the detection of DNA replication fork collapse and 
DSBs repair, respectively. 

DSBs repair  is  mainly dependent on the Non-
homologous end joining (NHEJ) pathway that operates 
throughout the cell cycle (2,4,7-9). In contrast, the minor 
pathway, homologous recombination (HR), is active only 
during the S and G2 phases in which the sister chromatids 
are available to allow recombination processing. The 
balance between NHEJ and HR pathways is a prerequisite 
for efficient DSBs repair and relies on at least three factors: 
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temporal control of proteins recruitment and modifications 
(10,11), chemical complexity of the breaks and chromatin 
conformation (12-14). Moreover a cross-talk between 
DNA-PKcs and ATM leads to a coordinated regulation of 
DSBs repair by NHEJ and HR (15).

Thus, the inhibition of DDR at the level of signaling 
and/or DNA damage repair by chemical compounds 
represents an area of research with the ultimate goal of 
sensitizing tumor cells to the treatment (16-19). Since 
the NHEJ pathway is under the control of DNA-PK, 
various compounds were selected to inhibit its activity. 
Interestingly, pharmaceutical companies did not take an 
interest in the research for DNA repair inhibitors since they 
favor the search for drugs that directly affect tumor cells 
or microenvironment. Recently, a renewed interest about 
DNA repair inhibitors was based on the killing effect of 
PARP inhibitors of BRCA1- and BRCA2-defective tumors 
(20-23). This example of an efficient monochemotherapy 
against solid tumors partially defective in DNA repair is 
reminiscent of the synthetic lethality mechanism (24-26). 

Although DNA repair inhibitors are now in phase I/
II trial, few of them being in phase III, one should keep 
in mind that tumor cells partly grow under hypoxia. The 
abnormal vasculature of tumors is considered as the most 
important contributor to the development of both chronic 
and acute hypoxia in the majority of solid tumors. Chronic 
hypoxia, or even anoxia in solid tumors is the consequence 
of abnormally long intravascular erythrocyte transit times. 
It is interesting to note that clinical evidence suggest that 
intra-tumoral hypoxia correlates with cell resistance to 
therapy as well as an aggressive behavior of the tumor 
leading to poor patient prognoses (27,28). A key regulator 
of the cellular response to hypoxia is the accumulation of 
the transcription factor hypoxia-inducible factor (HIF) 
which induces the expression of numerous target genes 
leading to cellular adaptation (29-31). Recent studies 
have reported diminished DNA repair capacities and 
increased mutagenesis in mammalian cells under hypoxic 
conditions (32-34). The NHEJ repair activity is affected in 
hypoxic cells and this short review summarizes the cross-

Table 1 Major factors involved in DNA strand breaks repair and damage signaling

Signaling Sensors MRE11-RAD50-NBS1(MRN)

Transducers RPA (+RFC-like, PCNA-like checkpoint clamp)

Mediators ATM , ATR-ATRIP 

ATM signaling 53BP1, MDC1, BRCA1, MCPH1 , PTIP

ATR signaling TopBP1, Claspin 

Effectors CHK1, CHK2

Repair

Non homologous recombination

C-NHEJ

End binding MRN, Ku70-Ku80, DNA-PKcs

End processing PNK, TDP1, MRE11, EXO1, APTX, WRN, Artemis, polm, poll

Ligation XRCC4-LigIV-XLF

Alt-NHEJ

End binding MRN, PARP-1

End processing PNK, polβ

Ligation XRCC1-LigIII

Homologous recombination (HR)

Resection MRN, CtIP, EXO1, BLM, DNA2 

Homologous pairing and 

strand exchange

RPA, RAD51, RAD52, RAD54, RAD51 paralogs, FANCD1–FANCN

DNA synthesis PCNA, POL DELTA 

HR resolvases, MUS81-EME1, GEN1, SLX1–SLX4, XPF-ERCC1 

Dissolution of HR intermediates BLM, TOPOII, RMI1-RMI2, RTEL1 
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talk between NHEJ and HIF pathways in the light of 
pharmacological inhibition of NHEJ in cancer therapy. 

Hypoxic stress response and its impact on DNA 
repair

States of chronic hypoxia and transient hypoxia occur 
within solid tumors. Cells under chronic hypoxia are located 
beyond the diffusion limit of oxygen from a blood vessel 
(about 100 μm) whereas transient hypoxia corresponds 
to local oxygen depletion. Tumor adaptation to hypoxic 
stress occurs through modifications of its metabolism and 
induction of neovascularization. Oxygen concentrations of 
less than 0.02% (0.15 mmHg) render cells more resistant 
to killing by ionizing radiation by a factor of 2-3 (35). 
This stress response is controlled by HIF that binds 
to the cis-acting highly conserved consensus sequence 
5'-G/ACGTG-3' referred as hypoxia response elements 
(HRE). The binding of HIF on HRE leads to increased 
expression of target genes involved in different pathways 
such as survival, glucose transport, glycolysis, angiogenesis, 
motility, basement membrane integrity and other functions 
(29,30,36). HIF is comprised of α- and β-subunits (37) 
with three HIFα isoforms reported to date, HIF-1α and 
HIF-2α being the best characterized. HIF-1α, the most 
ubiquitously expressed isoform, and HIF-2α regulate the 
expression of overlapping but non-identical genes (38,39). 
HIFα subunits are mainly targeted for normoxia-dependent 
degradation by the proteasomal system, whereas HIFβ 
subunits are constitutively expressed in most cells, HIF-
1β/ARNT being the best characterized (29-31). Therefore, 
HIF activity is exquisitely dependent on the limiting 
expression of α subunit. Under normoxia HIFα subunits 
are hydroxylated by a family of prolyl hydroxylases (PHDs) 
(40-43) facilitating interaction with the von Hippel-Lindau 
(VHL) E3 ubiquitin ligase complex (44). Then, Hifα is 
targeted for ubiquitin-dependent degradation leading to 
a low level of protein content. Under hypoxic stress, the 
PHDs are inhibited leading to the stabilization of HIFα that 
translocates to the nucleus allowing its heterodimerization 
with HIF-1β/ARNT. The HIF heterodimer bound to HRE 
in an association with transcriptional coactivators as CBP/
p300 activates a variety of hypoxia-responsive genes. HIF 
dependent transcriptional regulation contributes to the 
adaptive response to hypoxic conditions by upregulating 
more than 100 genes (45).

HIF-1 is overexpressed in many human cancers and 
correlates with poor prognosis outcome (29). This is 

consistent with studies demonstrating that tumor cells 
containing constitutively high levels of Hif1α were more 
resistant to both chemotherapy and radiotherapy (46-49). 
In most of these cases, overexpression is the consequence 
of a constitutive stabilization of the protein by hypoxia. 
However, there is increasing evidence demonstrating that a 
number of non-hypoxic stimuli such as genetic alterations 
that activate oncogenes and inactivate tumor suppressor 
genes or growth factors signaling are also highly capable 
of turning this transcription factor on (36). Accordingly, 
HIF-1 represents an attractive target for the development 
of pharmacological inhibitors (28,50,51).

The impact of hypoxic stress has also been tested on 
DNA repair genes expression. After UVB irradiation, 
HIF-1 modulates the expression of XPC and XPD, 
two proteins of the nucleotide excision repair complex, 
with an increase of repair during the late phase of UV 
photoproduct removal (52). However, using an host-cell 
reactivation assay for repair of UV-damaged plasmid DNA, 
contradictory results of the effect of hypoxia on nucleotide 
excision repair were reported (53,54). Mismatch repair 
(MMR) which maintains genomic integrity by correcting 
replication errors is down-regulated under hypoxia through 
an epigenetic control (55-57). The consequence of this 
inhibitory effect is reminiscent to genomic instability in 
tumor cells grown under hypoxia. The recombination 
pathways are also affected by HIF-1 expression. HR 
repair proteins such as RAD51, BRCA2, and BRCA1 
are compromised under hypoxic conditions (58-63). 
Contradictory results were reported on the expression of 
NHEJ proteins under hypoxia. Gene expression studies 
showed downregulation of mRNA encoding NHEJ 
proteins following chronic hypoxia but without change 
in protein content (62). In contrast under acute hypoxia 
an up-regulation of Ku70 expression and DNA-PKcs was 
reported as well as a direct interaction between DNA-PKcs 
and HIF1α (64,65). Very recently, an overexpresssion of 
Ku70/Ku80 proteins under the control of HIF-1 induction 
was reported (66). Then almost all of the DNA damage 
repair functions are repressed under hypoxia leading to 
cell sensitivity to therapy in contrast to the NHEJ pathway 
which is up-regulated (Figure 1). Under hypoxia, not only the 
expression of DNA-PK is enhanced but also its activity (67). 
DNA-PK is activated by mild hypoxia conditions (1% O2) 
while more severe hypoxia (0.1% O2) also activates ATM 
and ATR, two essential building blocks of the DNA DSBs 
signaling pathway. Hypoxia activates DNA-PK in the 
absence of DSBs in accordance with a study showing that 
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activation of ATM in hypoxic cells arises independently of 
the MRN complex (68). Activation of DNA-PK or ATM 
could be triggered by stable association of single repair 
factors with chromatin in the absence of DNA lesions per se 
(69,70). Indeed, the DNA-PKcs autophosphorylation on 
S2056 was initiated by histone acetylation in response to 
hypoxia (67). These results illustrate the possibility of a non 
canonical DNA-PKcs activation which may be reminiscent 
to its activation under low salt conditions in the absence of 
Ku70/Ku80 (71).

NHEJ pathway and its pharmacological 
inhibition

Hypoxia can regulate DSBs repair through HR and 
NHEJ. In mammalian cells, NHEJ is the predominant 
repair pathway for DSBs which ligates the two DNA ends 
together with minimal end processing (72,73). NHEJ 
consists of at least two genetically and biochemically distinct 
sub-pathways: (I) a main canonical DNA-PK end-joining 
pathway named classical NHEJ (C-NHEJ) (7-9) and (II) 
an alternative or backup NHEJ end-joining pathway (Alt-
NHEJ) (74-76).

C-NHEJ proceeds via at least three steps: (I) break 
recognition; (II) processing of the damaged DNA ends 
to remove non-ligatable groups; and (III) ligation to 
restore strand continuity. The prerequisite event for all 
the subsequent steps is the binding of the Ku70/Ku80 
heterodimer to DNA ends (77). Live cell imaging studies 
following laser micro-irradiation indicate that core NHEJ 
components are independently recruited to Ku-bound 
DSBs (78), including the DNA-dependent protein kinase 
catalytic subunit (DNA-PKcs), XLF and the preassembled 
XRCC4/DNA Ligase IV complex (79). The DNA-
PK holoenzyme is formed when DNA-PKcs binds to 
Ku at DSB ends and provides DNA ends recognition 
and protection activities followed by bridging the ends, 

associated with serine/threonine protein kinase activity (80). 
The kinase activity of DNA-PK is required for DSBs repair. 
In addition, DNA-PK conformational change mediated 
by autophosphorylation is necessary for the dissociation 
of the DNA-PKcs subunit from DNA ends and also for 
the activation of end-processing enzymes, such as the 
Artemis nuclease (81-83). Ligation requires the concerted 
action of LIG4, XRCC4 and XLF, the latter promoting re-
adenylation of LIG4 (84,85). At a later stage in the C-NHEJ 
process, this molecular machinery is released from the re-
ligated DNA.

A l t - N H E J ,  d e t e c t e d  o n l y  w h e n  C - N H E J  i s 
compromised, exhibits a slower process (86) and produces 
deletions often accompanied by microhomology at the 
repair junction (76,87,88). This pathway relies on factors 
different from those involved in the C-NHEJ, such as 
poly (ADP-ribose) polymerase-1 (PARP-1), X-ray cross 
complementing factor 1 (XRCC1), DNA ligase III, 
polynucleotide kinase (PNK), or Flap endonuclease 1 
(75,86,89-92). PARP-1 is a major sensor of DNA SSBs and 
participates to the core repair complex involving XRCC1-
ligase III but also recognizes DSBs with very high affinity. 
Recently, the MRN complex has been implicated in the Alt-
NEHJ mechanism (93-98). Alt-NHEJ is repressed under 
normal growing conditions by the Ku70/Ku80 heterodimer 
(86,99-104). This alternative NHEJ pathway may be 
particularly relevant to genomic instability associated with 
tumor development (105-108).

Since DDR defects are a common feature of tumor cells, 
the development of pharmacological inhibitors of DNA-PK, 
ATM and ATR, highlighted opportunities and challenges 
in cancer therapy (19,109). The core C-NHEJ complex 
was investigated as a target in relation with its involvement 
in radio- and chemoresistance of tumor cells (110,111). 
As soon as DNA-PK was described as the central partner 
of C-NHEJ (112-116), the search for specific inhibitors 
was undertaken (117). In addition, DNA-PK has been 

Figure 1 Hypoxia regulates DNA repair genes expression and reciprocally
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implicated in the repair of chlorambucil-induced cross-
links, because increased DNA-PK activity in CLL cells 
correlates with clinical resistance to chlorambucil (118,119). 
Indeed, inhibitors of DNA-PKcs kinase activity have been 
shown to have efficacy in human cells (120,121) in line 
with the development of new compounds (109,122-124). In 
addition to these small chemical compounds, basically ATP-
competitive inhibitors, antibody based inhibitors could also 
be effective as DNA-PK inhibitors. Recently, a DNA-PK 
specific antibody modified fragment ScFv18-2 was reported 
to decrease DNA-PK phosphorylation which correlates to 
radiosensitization (125). However, the therapeutic efficacy 
of targeting DNA-PK will depend in part on DNA-PK 
expression in tumor versus normal cells. 

Among the different possibilities to inhibit NHEJ, the 
Ligase IV may be a better pharmacological target than 
DNA-PK itself, since the inhibition of the ligation step 
will not allow the Alt-NHEJ pathway to proceed due to 
the remaining Ku binding to DNA. Thus, the ligation 
complex was also investigated as an alternative strategy 
and inhibitors have been selected (126,127). However, the 
inhibitory effect should be complete since low levels of 
DNA ligases III and IV were sufficient for effective NHEJ 
which limits the potency of such alternative strategy (128). 
A different strategy is illustrated by the use of non specific 
kinase inhibitors such as KU-0060648 which is a potent 
dual inhibitor of DNA-PK and PI-3K. In relation with 
the role of the kinases in DSBs repair and the promotion 
of cell proliferation, KU-0060648 exhibits a direct effect 
but the toxicity is enhanced in cells treated with topoII 
inhibitors (120). At last, indirect approaches such as the 
use of short double-stranded DNA, Dbaits, have been 
shown to sensitize xenografted tumors to radiotherapy, 
not by inhibiting the kinase activity of DNA-PK, but by 
acting through the induction of “false” DNA damage 
signaling (129-131). 

Whatever the NHEJ component selected as target, the 
inhibitors are mainly used as radio- or chemosensitizers 
in order to block DNA repair resulting in increased cell 
death. Such approaches enhance sensitivity to treatment, 
although they do not provide selectivity against cancer cells 
as they increase the radiosensitivity or chemosensitivity 
of normal cells as well. However, this drawback is related 
to chemotherapy since radiotherapy targets a defined 
tissue volume. Moreover, DDR defects are commonly 
associated to tumor cells with the loss of DNA repair 
processes resulting in genomic instability. Consequently 
such deficiency allows to potentially achieve selective 

antitumour activity through the inhibition of an essential 
DNA repair pathway such as NHEJ. The toxic activity of 
DDR inhibitors used in monochemotherapy was illustrated 
by the synthetic lethality obtained with PARP-1 inhibitors 
in BRCA1/BRCA2 deficient tumours which has raised the 
recent interest in the DDR modulation field. Despite a high 
level of expression of Ku and DNA-PKCS, an up-regulation 
of DNA-PKCS was reported in tumors or IR-resistant 
cell lines, suggesting a role in tumor growth and survival 
(132-135). Indeed, up-regulation of DNA-PK activity was 
shown to impair apoptosis in B-cell chronic lymphocytic 
leukemia (136). Moreover, in colorectal mismatch repair-
deficient tumor cells, mutations in genes involved in DDR and 
DNA repair, including DNA-PKCS, have been reported (137). 
Taken together, all these alterations in DNA-PK expression 
or activity suggest that the consequences of its inhibition 
should be useful against tumors in line with a mechanism of 
toxicity based on the synthetic lethality process. However, 
in tumor tissues, the expression of DNA-PK shows 
intratumor heterogeneity, suggesting difficulty in predicting 
the radio- or chemo-sensitivity of the tumor as well as when 
a DNA-PK inhibitor might be beneficial (138).

HIF regulation by PI3KK recruited at DNA 
damage sites

HIF activity is regulated in two major ways. The first relies 
on hydroxylation-dependent degradation/inactivation 
of HIFα while the second involves oxygen-independent 
factors in a cell type-specific manner such as epidermal 
growth factor receptor (EGFR), heat-shock protein 
90, phosphatidylinositol 3-kinase/AKT and MAPK, 
cyclooxygenase-2 activity (31,139-141). Interestingly, HIF-1α 
is also regulated by members of the PI3KK family, ATM, 
ATR and DNA-PK (Figure 1). 

ATM protein deficiency correlates with an increased 
expression and activity of HIF-1α protein (142,143). 
Similarly, the inhibition of ATM in a mouse model 
suppressed the induction of senescence and leads to 
increased tumor size and invasiveness (144). Under hypoxia 
ATM phosphorylates HIF-1α at Ser696 site, which is 
required for its stability through putative posttranslational 
modifications such as sumoylation (143). Hereafter, ATM 
participates in conjunction with several other factors to the 
maintenance of an elevated mTORC1 activity in hypoxic 
tumors. 

Hypoxia is known to induce a replication-associated 
damage response. For example, severe hypoxia induces 
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S-phase arrest resulting in regions of single-stranded DNA 
at stalled replication forks and the activation of ATR (145). 
Loss of ATR results in a further loss of viability in S-phase 
cells under hypoxic conditions (146). Inhibition of ATR 
expression and activity inhibited cell survival upon hypoxic 
conditions (147). Under severe hypoxic conditions 
(0.1% O2), ATR is activated at early time points and this 
cellular stress response favors hypoxia adaptation by up-
regulating the expression of both HIF-1α and HIF-1β/
ARNT subunits, therefore contributing to cell adaptation 
to hypoxia (147). The mechanism of ATR dependent 
regulation of HIF-1α accumulation during hypoxia is at the 
stage of HIF-1α translation. 

DNA-PK also participates to HIF regulation since the 
level of HIF-1α accumulation upon hypoxia is decreased in 
DNA-PK deficient cells (67). Similarly, the DNA-PK kinase 
activity, NU7026, provokes a decreased in HIF-1α content. 
Moreover, activated DNA-PK which is strictly dependent 
on Ku70/80 is able to regulate HIF-1α accumulation by 
interfering with the mechanisms protecting HIF-1α from 
nuclear degradation and subsequent increased expression of 
HIF-1 target genes (67).

Thus, the hypoxic accumulation of HIF-1 is positively 
regulated by ATM, ATR and DNA-PK that initiate cellular 
stress responses when either genome integrity, mRNA 
translation, or nutrient availability is compromised. 

Conclusions and perspectives

The DDR (DNA damage response) induced during hypoxic 
stress has recently emerged as an important signaling 
pathway that allows cells to withstand modifications in 
environmental conditions. In contrast to other DNA-
repair pathways, which were downregulated, leading to 
genetic instability (33), ATR, ATM and DNA-PK remained 
expressed and activated. Interestingly, the mechanism 
of hypoxia-induced activation of both DNA-PK and 
ATM is distinct from that of the DNA DSBs and stems 
on chromatin modifications. Taken together, activation 
of these three PI3KK during hypoxic stress allows HIF-
1α accumulation in the nucleus. This regulation by 
non-hypoxic effectors influence HIF function, directly 
or indirectly, at different stages of its activation.Thus, 
the correlated regulation of PI3KKs with HIF-1 could 
contribute to therapy resistance in hypoxic tumor cells, and 
provides new evidence for developing therapeutic strategies 
enhancing the efficacy of cancer therapy in hypoxic tumor 
cells. In addition, hypoxia results in ATM-dependent 

phosphorylation of HIF-1α and mediates downregulation 
of mTORC1 signalling (143). Hereafter, inhibition of 
DNA-PK and ATM not only radiosensitize tumor cells but 
also interfere with HIF dependent regulation. Moreover, 
the use of NHEJ inhibitors alone could induce cell death 
through synthetic lethality, since DNA repair pathways and 
signaling are altered in tumors, most of them resulting of a 
mutated MMR pathway.

However,  targeting the NHEJ pathway may be 
therapeutically inefficient or lead to unexpected results 
based, at least, on the following points:

(I) the dual effect on NHEJ and HIF activities 
presupposes drug delivery to the hypoxic region; (II) the 
expression of DNA-PK shows intratumor heterogeneity; 
(III) inhibition of DNA-PK may increase HR activity 
but also the Alt-NHEJ pathway; (IV) inhibition of DNA-PK 
is not expected to be specific towards tumor cells; (V) 
inhibition of DNA-PK may affect its function in regulatory 
mechanisms out of the canonical DSBs repair process (148). 
For instance DNA-PK plays a role in the USF-1-mediated 
transcriptional regulation of lipogenic genes during fasting/
feeding (149). DNA-PK and Ku play other roles outside the 
nucleus (150) and may phosphorylate cytoplasmic targets 
involved in cellular signaling pathways (151). In addition, 
Ku has been reported as a moonlighting protein, displaying 
new functions in the cytoplasm or at the membrane level 
(152,153). Consequently, the potential effect of DNA-PK  
inhibitors with high or low specificity deserve to be 
investigated in vivo with tumor xenografts in order to take 
into account the complexity of these regulatory networks.
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