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In the era of precision medicine, rearrangement of the 
anaplastic lymphoma kinase (ALK) gene has been proven 
to be a targetable oncogenic driver in 3–7% of patients 
with advanced non-small cell lung cancer (NSCLC) (1). 
Multiple clinical trials have demonstrated the superiority of 
ALK inhibitors compared with chemotherapy for treating 
patients with ALK-rearranged NSCLC; however, the 
responses to ALK inhibitors have varied in each study (2-7). 
Fluorescence in situ hybridization (FISH) or VENTANA 
anti-ALK (D5F3) immunohistochemistry, which are widely 
used as standard tests for ALK detection for enrollment in 
clinical trials, are unable to distinguish between the different 
variants or fusion partners of the ALK gene. The impact of 
ALK variants on the heterogeneity of the response to ALK 
inhibitors has not been fully elucidated.

One major mechanism may be that various portions 
of the echinoderm microtubule-associated protein-like 
4 (EML4) are fused to ALK in different variants, which 
may be identified by real time-polymerase chain reaction  
(RT-PCR) or next-generation sequencing (NGS). More 
than a dozen different variants of EML4-ALK variants 
and non-EML4 fusion genes have been detected in  
NSCLC (8-12). Among the variants known thus far, three 
of the EML4-ALK variants identified in NSCLCs are most 
commonly reported, including variant 1(V1), variant 2 (V2), 
and variant 3a/3b (V3a/b) (13-15). 

The biological basis for the differential activity of EML4-
ALK has been typically correlated with the distinct stability 

of the EML4-ALK protein. The primary sequence of the 
EML4 portion comprises different domains, including a 
hydrophobic EMAP-like protein (HELP) domain that is 
linked to a variable number of tryptophan-aspartic acid 
(WD) repeats separated from an N-terminal coiled coil 
by a basic region consisting of serine, threonine, and basic 
residues. The tertiary structure of the HELP-WD region 
creates a tandem atypical propeller EML (TAPE) domain in 
which the HELP motif is part of the hydrophobic core and 
is crucial for maintaining the folding of the TAPE region. 
The TAPE domain influences protein stability. Variants 1 
and 2 in which the break point occurs within the N-terminal 
and the C-terminal β-propeller, respectively, include 
only a partial TAPE domain. This domain determines 
the exposure of the hydrophobic core, thus rendering the 
protein unstable and requiring binding with a chaperone 
to avoid the protein misfolding. By contrast, variants  
3a/b and 5 lack the TAPE domain and are more stable (16). 
The protein stability of the EML4-ALK variants influence 
the overall fusion protein stability, inhibitor-induced protein 
degradation, and drug sensitivity (17).

One highlight of the recent study by Woo et al. published 
in Annals of Oncology was categorization of EML4-
ALK variants based of differential protein stability rather 
than clinical frequency (15). A total of 51 patients with 
advanced NSCLC harboring an EML4-ALK fusion were 
subdivided into two groups: variants 1/2/others (27, 52.9%) 
and variants 3a/b (24, 47.1%). Among the patients treated 
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with crizotinib, the 2-year progression-free survival rate 
(PFSR) was 76.0% (95% CI: 56.8–100) for the EML4-ALK  
variants 1/2/others group, and this was significantly higher 
than the 26.4% (95% CI: 10.5–66.6) for the variants  
3a/b group (P=0.034). Of note, this report also established 
specific EML4-ALK variant-expressing cell lines for 
evaluating the response of various ALK inhibitors. In 
line with the clinical findings, the in vitro results have 
demonstrated that all three ALK inhibitors suppressed the 
growth of V1- or V2-expressing Ba/F3 cells, but had weak 
inhibition in V3a- or V5a-expressing cells. Contrary to 
the abovementioned results, another retrospective study 
in which patients were categorized based on the frequency 
of ALK variants, no statistically significant correlation 
between the ALK variants and median PFS of crizotinib 
was demonstrated by two types of categorization (EML4-
ALK V1 vs. EML4-ALK V3a/b vs. other uncommon ALK 
variants or common EML4-ALK variants including V1 and 
V3a/b vs. other rare ALK variants) (18). Recently, Yoshida 
et al. retrospectively analyzed the efficacy of crizotinib in 
35 patients with ALK-positive NSCLC categorized by 
the presence of EML4-ALK V1 versus non-V1 variants. 
Although there was a statistically significant difference 
in the disease control rate (95% vs. 63%, respectively; 
P=0.0318), and median PFS (11 vs. 4.2 months, respectively; 
P<0.05) (14), the biological rationale for categorizing 
patients based on the presence of EML4-ALK V1 is 
somewhat artificial (19). According to an in vitro study 
using the EML4-ALK variant-expressing Ba/F3 cell line, 
variants 1 and 3b exhibited intermediate sensitivity, V3a 
was least sensitive, and V2 was most sensitive to ALK 
inhibitors (17). To take it a step further, Hrustanovic et al. 
also discovered differential sensitivity to EML4-ALK V1 
and V3b in cell lines. Compared with H3122 (harboring 
V1), crizotinib failed to suppress RAS-GTP, p-ERK, or cell 
viability in H2228 cells harboring V3b), and thus the half-
maximal growth inhibitory concentration for crizotinib 
was higher in H2228 than in H3122 cells (20). This 
difference was caused by the lack of a HELP domain in  
EML4 variant 3, which enhances activation of the  
RAS-MAPK signaling pathway. These findings suggested 
that EML4-ALK  V1 and EML4-ALK  variant 3a/b 
might represent two distinct diseases, and patients with  
EML4-ALK V1 achieved a longer PFS from crizotinib than 
that found with the EML4-ALK variant 3a/b; thus, the type 
of ALK fusion may partially determine the initial sensitivity 
to ALK inhibition. 

In addition to the abovementioned progress in 

determining the correlation between EML4-ALK variants 
and response to ALK inhibitors, some limitations of this 
study need to be addressed. First, the small enrollment 
size might not reflect the true landscape of EML4-ALK 
variants. With more than ten different EML4-ALK variants 
identified, the genetic landscape of EML4-ALK variants 
could be characterized by distinct mountains and hills. 
Data from earlier studies have demonstrated that EML4-
ALK V1 and V3a/3b are the most frequent variants, and 
they have been detected in 33% and 29% of NSCLCs 
respectively (13), suggesting that both are mountains in 
the heterogeneous landscape of ALK variants, while other 
ALK variants, such as V2 and V7, account for 9% and 
3%, respectively, and might be categorized as hills. Such a 
complicated landscape for ALK variants has posed a tough 
challenge for discriminating various variants in retrospective 
analysis of small sample sizes. 

In addition to the analysis by Woo et al. (15), there 
were three other retrospective studies analyzing the 
correlation between ALK variants and the efficacy of ALK  
inhibitors (14,18,21). It was intriguing to find that distinct 
ALK variants demonstrated heterogeneous landscapes 
across these studies, particularly for the common EML4-
ALK variants 1 and 3a/b. In addition to the EML4-ALK 
variants, the percentage of non-EML4 variants also remains 
controversial, ranging from 3.3% to 36.5% across these 
four studies. Due to the small sample size of each study, 
whether patients enrolled with a specific subtype of ALK 
variants could represent the true genetic landscape of this 
subpopulation deserves further investigation. 

Consequently, results from these retrospective analyses have 
to be carefully interpreted. With regards to the complexity of 
ALK variant subtypes and small sample sizes of enrollment, 
whether such controversial results could be simply attributed 
to the different categorizations in each study and/or the small 
sample sizes, which might not represent the true genetic 
landscape of ALK variants, is largely unsettled. A multi-center, 
prospective study with a larger cohort is warranted to provide 
answers to this question.

Second, whether EML4-ALK V3a/3b is truly important 
for the resistance to ALK inhibitors deserves further 
investigation. The study by Woo et al. draws the conclusion 
that EML4-ALK V3a/3b might be a major source of 
resistance to ALK inhibitors, which was supported by 
clinical efficacy analyses and viability tests using established 
in vitro cell lines (15). It appears that this is the first report 
on clinical data that recognizes the impact of ALK variants 
in generating resistance to ALK inhibitors. Previous 
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retrospective analyses have mostly demonstrated the 
differential or similar role of ALK variants in predicting 
response to crizotinib or ALK inhibitors (14,18,21). 
Whether such a conclusion could be directly drawn is still 
worth discussing. 

Multiple acquired resistance mechanisms to ALK 
inhibitors have been identified, including ALK gene 
alterations, such as ALK point mutations and copy number 
gain (22,23) and the bypass activation of other oncogenic 
genes (24,25). In this study, we noticed that only a small 
percentage of patients (7/23) underwent rebiopsies at 
disease progression, and there were none with ALK 
mutations. Thus, without comprehensive data on the ALK 
mutations that have been considered as a major resistance 
mechanism to ALK inhibitors, it still needs to validate the 
role of EML4-ALK V3a/3b in modulating resistance to 
ALK inhibitors despite evidence from in vitro tests. The 
emergence of next-generation sequencing techniques will 
possibly allow for the detection of various ALK variants 
and mutation screening in a single test in the near future. 
Further studies employing NGS-based tests might help 
determine a more precise correlation between specific ALK 
variants and the efficacy of ALK inhibitors.
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