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Cancer is a genomic disorder that often involves the 
accumulation of various types of genomic alterations that 
play roles in disease development and progression (1,2). In 
solid tumors, somatic mutations (herein, point mutations 
and short indels) and SCNAs (somatic copy number 
alterations as chromosomal amplifications/deletions) 
comprise the majority of the genomic alterations in cancer 
genomes in terms of abundance and genomic fraction, 
respectively; several to tens of thousands of somatic 
mutations and SCNAs occupying >50% of the genome 
have been observed in solid tumor genomes. Aneuploidy 
is defined as the presence of an abnormal number of 
chromosomes, and this chromosome-level SCNA has 
long been recognized as a hallmark of cancer genomes (3). 
Unlike somatic mutations that can be identified only by 
sequencing or base pair-resolution genotyping, aneuploidy 
or chromosome-level SCNAs can been identified by 
microscopic examination (i.e., karyotyping), which has been 
refined with high-resolution genotyping techniques such as 
comparative genomic hybridization (CGH) and microarray-
based CGH (array-CGH) to identify subchromosomal 
or focal SCNAs. Despite many years of research into 
SCNAs and aneuploidy in cancer, novel features associated 
with structural variations including SCNAs, such as 
chromothripsis (4) and chromoplexy (5), have only recently 
been identified in cancer genomes, suggesting that the 
biological relevance of SCNAs is not yet completely 
understood. 

SCNAs can be as large as an entire chromosome and 
may include several hundreds to thousands of genes. Unlike 
somatic mutations for which the affected genes can be 
readily identified, the large size of SCNAs and the ‘one-to-
many’ relationship between SCNAs and their related genes 
has hampered proper biological interpretation of SNCAs. 
SCNAs can be divided into two categories in terms of their 
size, i.e., arm-level and focal SCNAs (6). Canonical cancer-
related genes such as oncogenes and tumor suppressor genes 
are enriched in focal SCNAs. Moreover, SCNAs with high 
copy number changes (e.g., high-level amplifications and 
homozygous deletions) that are more likely to be functional 
than single copy number changes are more commonly 
found in focal SCNAs than in arm-level SCNAs. Thus, it 
is challenging to uncover which genes in large, arm-level 
SCNAs are functionally relevant as cancer drivers since it 
is reasonable to assume that the majority of genes affected 
by large SCNAs are functionally neutral passengers. It has 
been proposed that the recurrent SCNAs in a given cohort 
(i.e., the genomic loci supported by recurrent SCNAs in a 
population) are likely to be the functional cancer drivers (7).  
The algorithm “GISTIC” (Genomic Identification of 
Significant Targets in Cancer) has been used to identify 
recurrent SCNAs and was employed in a landmark cancer 
genome analysis project, the Cancer Genome Atlas (TCGA). 
This frequency-based and data-driven strategy has a 
number of limitations, such that cancer drivers are often 
low- or moderate-frequency aberrations (8) and frequent 
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genomic alterations are often found in fragile regions of 
the genome that lack apparent biological significance (9). 
It is of note that the incorporation of knowledge-based 
information such as network topology (10,11) and other 
mutational features (12,13) may improve the identification 
of cancer drivers and thus perform better than data-driven 
methods, including frequency-based approaches. 

Among the various types of solid tumors, high-grade 
serous ovarian carcinoma (OV) genomes are unique in 
that SCNAs predominate over somatic mutations and thus 
are expected to comprise the major cancer drivers (14). In 
a recent article by Delaney et al. (15), the SCNA profiles 
of hundreds of OV genomes were obtained from TCGA 
consortium (16) and analyzed to reveal SCNA-driven 
functional disturbances and the molecular pathways that 
are affected in OV genomes. The authors employed a novel 
method called HAPTRIG (haploinsufficient/triplosensitive 
gene) to identify recurrent aneuploidy or SCNA patterns 
with functional significance in OV genomes. In brief, 
187 gene sets were obtained from the KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathway database. 
To identify possible pairs of genes in each gene set, protein-
protein interactions were examined using the BioGRID 
database (17). Each interaction was weighted according 
to type (either chromosomal amplification or deletion) 
and SCNA copy number (single copy number changes or 
high-level amplifications/homozygous deletions) as well as 
whether the interacting genes were known to be dosage-
sensitive (e.g., haploinsufficient or haploproficient genes). 
The sum of the weighted edge scores was calculated and 
normalized for each pathway. An average normalized 
edge score was calculated across OV samples and further 
transformed into the permutation-based significance with 
adjustment for multiple testing. With this method, the 
authors identified a number of KEGG pathways with 
significantly higher HAPTRIG scores toward amplification 
or deletion in OV genomes. Among them, autophagy 
was ranked at the top for chromosomal deletions, along 
with other proteostasis pathways such as endoplasmic 
reticulum (ER) stress-, ubiquitin-mediated proteolysis-, and 
lysosome-related pathways. To functionally interpret the 
SCNA profiles of OV genomes with extensive aneuploidy, 
HAPTRIG exploits several data- or knowledge-level types 
of information: (I) protein-protein interactions from the 
BioGRID database; (II) curated functional gene sets in 
KEGG pathways; (III) SCNAs of individual OV genomes 
as a GISTIC output; and (IV) annotated dosage-sensitive 
genes. Below, we will briefly discuss the issues and concerns 

related to these points. 
The accumulation of a large quantity of genomics data 

has led to the emergence of systems biology in an effort 
to understand the basic principles that underlie a living 
organism by focusing on the interactions and relationships 
between various biological elements. Several such system- 
or network-based analysis methods have been proposed to 
identify cancer driver mutations. For example, Torkamani 
and Schork investigated rare but biologically relevant cancer 
driver mutations by identifying mutations that are co-
expressed with frequent mutations within co-occurring gene 
modules (11). Instead of co-expression data, interaction 
data can be obtained from public databases containing 
various resources and types of interaction-based data (18). 
Methods that make use of such network-based mutation 
data perform better in identifying cancer driver genes than 
did those based on simple mutational frequencies (10). 
In addition, SCNAs and somatic mutations can be both 
employed to identify rare, but potential cancer drivers 
that are enriched in certain sub-networks (19). In contrast 
to these network-based models, HAPTRIG uses the 
sum of edge scores that are available in a protein-protein 
interaction database (BioGRID) to weight genes according 
to the degree or number of connections in a network of 
interest. In addition, HAPTRIG uses KEGG pathways as 
functional gene sets, including those involved in autophagy. 
Similar to gene set enrichment analysis (GSEA) (20) or 
other types of enrichment analysis, several hundred genes 
that perform a specific molecular function are collected and 
used for analysis without considering genetic hierarchies 
or pathway topology. If the topology of pathways and the 
hierarchy of genes in the functional gene set is provided, 
such information can be exploited, as previously shown (21).  
This analysis exploits pathway topology by examining 
perturbed genes as differentially expressed genes or those 
on SCNAs, which are given differential weights whether or 
not they are located in important positions in the pathway 
topology. Thus, it can capture actual perturbations in a 
given pathway, which is not feasible with conventional 
methods of enrichment analysis that treat all individual 
members of a set of genes equally. We assume that network 
or pathway topology may contain important attributes that 
can be exploited by genome analysis methods including 
HAPTRIG. 

In the article by Delaney et al., the authors performed 
GSEA analysis and compared the results with those of 
HAPTRIG. It is of note that autophagy-related genes 
showed a certain level of enrichment in the GSEA analysis, 
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but at lower levels than were shown by HAPTRIG. They 
reasoned that this discrepancy may have arisen because 
GSEA does not consider the interaction between genes 
or haploinsufficiency data, which are important attributes 
of HAPTRIG. However, a more detailed analysis or 
a comparison with the results of the other algorithms 
mentioned above may be required to clarify the discrepancy 
between the GSEA and HAPTRIG results. It is also of 
note that autophagy is only annotated in a limited number 
of subsets in KEGG and GO among the thousands of 
MSigDB gene sets (20) that are currently used as standards 
for functional gene set analysis, such as GSEA, suggesting 
that the current annotation of functional gene sets may be 
biased to well-studied molecular functions and can also lead 
to a biased functional interpretation of genomics data. 

The SCNA prof i les  are  genera l ly  provided as 
segmentation data in which individual chromosomes are 
divided into a number of segments, each of which has an 
identical copy number. Since segmentation data usually 
provide log2 ratios as estimates of the copy number of 
given segments, it should be determined whether the 
log2 values of segments or further processed absolute 
copy numbers are assigned to individual genes for gene-
level analyses such as HAPTRIG. HAPTRIG uses the 
absolute copy number calls from GISTIC, such as −2, −1, 
0, 1, and 2, representing homozygous deletions, single 
copy losses, neutral copy numbers, single copy gains, and 
high-level amplifications, respectively. Using the absolute 
copy numbers has several advantages, including that 
outlier values as well as noisy profiles can be effectively 
ignored or handled. To this end, the GISTIC algorithm 
that uses log2 segment values as input have capped values 
(+1.5 and −1.5 for maximum log2 ratios for amplifications 
and deletions, respectively) and threshold values (+0.1 
and −0.1 for minimum log2 ratios for amplifications and 
deletions, respectively) by default. However, it is also 
reasonable to expect that the processing of log2 ratios into 
absolute copy numbers may accompany a certain level 
of information loss and potential errors. Recently, it was 
proposed that absolute copy numbers can be accurately 
estimated by considering the tumor purity and ploidy 
levels that are also estimated from SCNA profiles (22).  
The refined absolute copy numbers may be also exploited by 
SCNA analysis methods such as HAPTRIG as alternatives 
to GISTIC output. To deal with recently highlighted 
tumor heterogeneity or clonality issues, the SCNAs can 
be distinguished into clonal vs. subclonal alterations (22) 
and separately used by HAPTRIG to facilitate evolution-

associated functional interpretation of SCNAs. 
One important resource used in HAPTRIG analysis is 

annotation of dosage-sensitive genes. Delaney et al. obtained 
a list of dosage-sensitive genes (e.g., haploinsufficient and 
haploproficient genes) from the yeast and mouse gene 
databases and used their human orthologs for the analysis. 
An additional resource, such as a list of haploinsufficient 
human genes curated by extensive text mining (23), can 
be also used or combined with the current list since the 
functional annotation of dosage-sensitive genes may be 
incomplete. 

The role of autophagy in tumorigenesis is controversial 
and is thought to be context-dependent (24). The major 
finding of the study by Delaney et al. is that autophagy 
represents one of the major functions associated with 
chromosomal deletions in OV genomes. High HAPTRIG 
scores of autophagy-related pathways toward chromosomal 
deletions further indicate that genes annotated as 
haploinsufficient and the products of which frequently 
interact with other gene products are commonly observed 
in chromosomal deletions, including loci with single 
copy losses. It was previously shown that the number of 
dosage-sensitive genes associated with ubiquitination or 
proteasomal processes in yeast is high (25), but strong 
evidence for a relationship between autophagy and somatic 
SCNA was first demonstrated by Delaney et al. Those 
authors also revealed that SCNA-medicated disruption of 
proteostasis may be tumor type-specific by extending their 
analyses using a TCGA-PanCancer database encompassing 
>20 tumor types. The identification of key driver pathways 
such as autophagy can be turned into the development 
of therapeutic strategies with potential clinical relevance. 
The authors assumed that cancer cells that exhibit 
disruptions in autophagy may be sensitive to proteotoxic 
or autophagy-stressing drugs. To validate this assumption, 
they treated an OV cell line with chloroquine and nelfinavir 
to inhibit autophagy and induce ER stress, respectively. 
Interestingly, treatment of the cells with targeted agents 
such as rapamycin and dasatinib augmented the sensitivity 
of the cells to chloroquine and nelfinavir, highlighting 
the effect of synergistic drug combinations. Knockdown 
of potential target genes such as LC3 and BECN1, as 
prioritized in HAPTRIG analysis, conferred sensitivity to 
cells undergoing autophagic stress, suggesting that targeted 
inhibition of these genes may also have clinical relevance in 
the treatment of disease. 

Considering all of the abovementioned factors, the 
HAPTRIG method proposed by Delaney et al. can identify 
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the potential biological or clinical significance of extensive 
aneuploidy or frequent SCNAs in OV genomes. Genome-
wide SCNA profiles gathered across hundreds of cancer 
genomes often seem random, but it is expected that some 
of them, if not all, may follow a nonrandom distribution 
suggesting that they are under selective pressure and 
represent potential cancer drivers. The functional 
interpretation of SCNAs is not easy, especially for OV 
genomes with prevalent SCNAs. However, incorporation of 
several sources of information, as done in HAPTRIG, may 
help to overcome this problem and facilitate the functional 
interpretation of SCNAs. HAPTRIG analysis revealed 
that autophagy may be one of the major cellular functions 
perturbed by recurrent SCNAs in OV genomes, and it 
also provided lines of evidence supporting the usefulness 
of inhibition of autophagy by chemical or targeted 
knockdown of LC3 and BECN1. Their extensive analysis, 
which included PanCancer-scale HAPTRIG analysis of 
autophagy-related functions, provided additional insights 
into the roles of autophagy in different tumor types. We 
have witnessed an explosion in genomic data, especially that 
generated by new technologies including next generation 
sequencing. Unlike the genomics data generated from 
microarray-based platforms, the versatility of sequencing 
data facilitates its use for multiple purposes. For example, 
DNA sequencing data from whole-genome or -exome 
sequencing can be used to identify both somatic mutations 
and SCNAs. Thus, the recent explosion of DNA sequencing 
data on tumor genomes will lead to an enormous number 
of available cancer genome profiles with somatic mutations 
and SCNAs, for which the development of analytic methods 
geared toward advanced mechanistic insights into cancer 
genomes with potential clinical relevance will be the next 
hot issues in near future. 
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