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Introduction

Radiation and chemotherapy remain the most effective and 
widely used cancer treatments. Despite improvements in the 
delivery, dosing or combination of treatments, significant 
toxicities to normal tissues remain. Approximately 70% 
of all cancer patients receive radiation therapy during 
their care, which plays a critical role in 25% of all cancer 
cures (1,2). There are currently more than 10 million 
cancer survivors in the United States, necessitating 
measures to reduce treatment-related side effects. A better 
understanding of the molecular and cellular basis of these 
treatments, the related side effects, and new interventions 
can help ameliorate or prevent short-term and long-term 
toxicities of cancer therapies (1-3).

Most patients undergoing radiation to the abdomen, pelvis, 
or rectum will develop acute enteritis, which is dose limiting, 
while 5% to 15% of them will develop chronic problems 

(3,4). Radiation enteropathy is classified as early (acute) or 
delayed (chronic) (3). Early radiation enteropathy occurs 
during or shortly after radiotherapy, characterized by the 
death of rapidly proliferating crypt cells, resulting in epithelial 
barrier breakdown and inflammation (radiation mucositis). 
Delayed radiation enteropathy occurs months or later 
after radiotherapy, characterized by intestinal dysfunction 
associated with vascular sclerosis and progressive intestinal 
wall fibrosis, a process involving a complex interplay of 
various cell types, factors, and extracellular matrix (3). Loss of 
intestinal stem and progenitor cells plays a key role in acute 
radiation side effects in abdominal radiotherapy (2), which has 
attracted great interests in radioprotective drugs (1,2). 

Intestinal stem cells (ISCs)

The single-layer columnar epithelium of the small intestine is 
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one of the most rapidly renewing tissues in an adult mammal 
with a renewal cycle estimated to be 3-5 days in mice. The 
intense proliferation that fuels this self renewal process is 
confined to the crypts (5-7). Differentiated epithelial cells 
such as absorptive enterocytes, mucus-secreting goblet cells, 
enteroendocrine cells, and Paneth cells are generally well-
defined by morphology and markers (8-10). Deep crypt 
secretory cells (11) may represent the colon counterparts of 
Paneth cells. However, the precise location and characteristics 
of ISCs remained elusive for a long time. Studies in the 1970s 
and 1980s defined two major populations of ISCs based on 
their locations: the stem cell zone model proposed by Cheng 
and Leblond defined the crypt base columnar cells (CBCs) 
sandwiched between Paneth cells (6,8), and the +4 label 
retaining cells (LRC) proposed by Potten and colleagues 

appeared radiosensitive (12).
Identification of ISC markers and generation of reporter 

mice have led to an explosion of ISC studies in the last 
five years (10). Most adult stem cell niches are coinhabited 
by cycling and quiescent stem cells. In the intestine, 
lineage tracing experiments revealed that Lgr5(+) (13) 
cells are frequently cycling stem cells, while Bmi1(+) (14),  
mTert(+) (15), Hopx(+) (16) and Lrig1(+) (17,18) cells appear 
more quiescent (10). Additional ISC-enriched populations are 
marked by CD133 (19,20), Musashi-1 (21), or dye-exclusion 
(side population, SP) (22) without definitive lineage tracing 
data. Since the expression of some reporters does not always 
recapitulate that of endogenous stem cell markers (Table 1), 
efforts are underway to use cell surface markers for ISC 
isolation (35,36).

Table 1 ISC populations, TAs and their responses to radiation

Marker (reporter) References Kinetics Position IR response

Bmi1 (LRC) (14,23,24) Quiescent, slow lineage Rare, +4, duodenum, 

broader mRNA patterns

Resistant, rare lineage 

(1% crypts) 

Hopx (LRC) (16) Quiescent, slow lineage +4 N/D

mTERT (15) Quiescent, slow lineage +4 Resistant, rare lineage 

(1% or less crypts)

Lrig1 (17) Quiescent, slow lineage +4, +1/+5 Resistant

Lrig1 (18) Active, fast lineage broader than lgr5+ N/D

Lgr5 (13,25-28) Active, fast lineage Mostly CBCs, +4 

and higher

Sensitive to high IR doses, 12, 

15 and 18 Gy, lineage after IR. 

Resistant to low doses.

LRC (Lgr5+) (29) Quiescent, no lineage Mostly +3 Resistant, lineage and form 

enteroids after IR

LRC (Paneth+) (30) Quiescent, no lineage CBC area Resistant, lineage and form 

enteroids after IR

Dll1+ (Lgr5+) (31) Quiescent, no lineage CBC area, no tracing Resistant, lineage and form 

enteroids after IR

Sox9 (L, Lgr5+) (32) Lgr5/CBC enriched CBC area Sensitive to 14 Gy

Sox9 (H, Lgr5+) (32) Bmi1/Hopx enriched +4 Resistant, form enteroids 

after IR

SP cells (22,33) N/D N/D Dox not IR, decreased then 

increase by 168 hrs

TA cells (34) Very active +4 to +9 Sensitive to 1 Gy, 

regenerate after high IR

Growth characteristics of ISC populations and TA cells under homeostasis, and their responses to radiation. N/D, not determined; H, 

high (GFP); L, low (GFP); SP, side population; Dox, Doxorubicin; TA, transiently amplifying; IR, ionizing irradiation. The populations 

that do not trace during homeostasis (i.e., LRC or Dll1+) only acquire stem cell property to lineage trace or form enteroids after IR.
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Another breakthrough in the ISC field is the successful 
culture of isolated crypts and ISCs (37) in so called 
enteroids (38) or organoids assays. Tracing experiments 
indicated that the Lgr5(+) stem-cell hierarchy is maintained 
in enteroids containing four major differentiated epithelial 
lineages. Since then, similar approaches have been used to 
culture Lgr5+ cells, crypts, or marker enriched cells from 
mouse and human GI tract (10). This “in vitro” clonogenic 
assay is expected to greatly help the understanding of stem 
cell injury and regeneration regulated by cell autonomous 
mechanisms, and certainly can be adapted to include niche 
components as discussed later.

Intestinal response to radiation and 
chemotherapy in mice

Radiation and chemotherapy cause DNA damage and 
selectively target rapidly proliferating cells such as cancer 
cells and normal cells that undergo rapid self renewal, 
including those in the gastrointestinal (GI) tract. The 
response of the small intestine to ionizing radiation (IR) 
has been well characterized in mice, and damage to the 
clonogenic cells in the crypts through apoptosis plays 
an important role in IR-induced acute GI damage (34). 
Radiation at 8 Gy or lower doses causes obvious apoptosis in 
the crypts, and subsequent shortening of villi over a period 
of 5-7 days. This is followed by full recovery, suggesting 
little or no permanent injury to the stem cell compartment. 
After receiving greater than 14 Gy of total body irradiation 

(TBI), mice die between 7 and 12 days due to damage 
to the small intestine and complications known as GI 
syndrome, which cannot be rescued by bone marrow (BM) 
transplantation (34,39,40), or by any approved treatment. 
This higher dose causes complete sterilization of most crypts 
and severe loss of the epithelium, accompanied by a powerful 
regenerative response measured using a micro colony assay 
3-4 days post IR (41,42). This so-called clonal regeneration 
process with characteristic regenerated crypts is widely 
used as the “in vivo” clonogenic assay. Therefore, apoptosis, 
cell proliferation, micro colony assays, and animal survival 
following 14 Gy (or higher) TBI or subtotal body irradiation 
have traditionally been used to assess ISC injury (34).

Radiation responses of several ISC populations have 
recently been examined in mice (Table 1). High doses of 
radiation (12 Gy or higher) cause loss of CBCs (23,25,26), 
and activation of quiescent stem cells (10,33) (Figure 1). 
Some early progenitors can revert back to stem cells 
only after IR, showing more efficient lineage tracing and 
formation of enteroids. These include some label retaining 
cells (LRC) (29), delta ligand expressing Dll1+ cells (31), 
and Sox9-GFP high cells (32), all expressing Lgr 5 in the +4 
region (+3-+7), where transiently amplifying (TA) cells also 
reside. LRC/Paneth cells also appear to enter cell cycle 
after IR (30). The chemotherapeutic agent doxorubicin 
(Adriamycin) caused increased SP before crypt regeneration 
(22,33). With in-depth gene expression analysis (27) and 
single cell transcripts analysis (24), a picture is emerging 
that ISC populations and early progenitors are plastic, 
overlap in gene expression profiles, and can interconvert 
upon injury or genetic ablation, while fully recovered crypts 
resume the CBC/Paneth cell pattern at the crypt base  
(Figure 1) (10). The relative contribution of these 
populations to regeneration, their overlap, activation 
mechanisms, and the effects of radiation on marker 
expression remain to be determined.

Pathways controlling GI and ISC injury in 
response to genotoxic stress

IR-induced acute GI injury is characterized by a rapid 
loss of stem cells, breach in barrier function and lethality, 
in a time frame coinciding with the 5-day renewal cycle. 
Current understanding of DNA damage-induced intestinal 
injury came largely from genetically manipulated mice. 
Radiation-induced stem cell killing is controlled by p53-
dependent early apoptosis and late mitotic death suppressed 
by p53. Regulators in DNA damage sensing, replication 

Figure 1 Radiation-induced ISC responses. High dose radiation 
induces rapid apoptosis in the CBCs (green) and TA (yellow) cells, 
which triggers activation of quiescent ISCs and progenitors (purple 
and enlarged after IR) for crypt regeneration. The CBCs and some 
other cells express Lgr5. Fully recovered crypts generally resume 
the CBC/Paneth cell (pink) pattern.

Loss of CBCs
 and TAs

Recovery

Activation of quiescent 
ISCs and progenitorsHomeostasis
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and repair, checkpoint functions and apoptosis significantly 
impact crypt radiosensitivity, consistent with generally 
cell autonomous mechanisms of DNA damage response as 
defined in humans, mice and other model organisms (43,44).

p53—a paradoxical role in IR-induced GI injury

p53 is one of the most important proteins protecting against 
carcinogenesis in mammals, and yet its activation by severe 
genotoxic stress leads to p53-dependent pathologies (45). 
Upon activation, p53 engages transcriptional programs to 
initiate apoptosis and cell cycle arrest, with opposing roles 
in cell survival (45-47). The BH3-only protein PUMA (48) 
and cyclin-dependent kinase (CDK) inhibitor p21 (49) 
are two major p53 effectors (Figure 2). p53 activation and 
responses are highly tissue-specific, likely reflecting selective 
activation of downstream p53 targets (45,46). Radiosensitive 
tissues tend to have high levels of p53 activity (50,51) and 
induction of apoptosis and apoptotic targets (52,53), while 
radioresistance tissues show selective induction of cell cycle 
regulators with little or no apoptosis (54,55). Loss of p53 
protects the hematopoietic (HP) system and skin against 
IR and chemotherapy-induced injuries (56,57), and the 
small intestine from chemotherapy-induced apoptosis and 
mucositis (58,59) by blocking apoptosis. However, loss of 
p53 unexpectedly exacerbates GI damage and accelerated GI 
syndrome (39,60) despite blocked apoptosis (60). Moreover, 

the delayed mitotic cell death in the crypts occurring 24 hours 
or later after IR is exacerbated by p53 loss (61).

PUMA and p21—the battle of killing and mending

The answer to the paradoxical role of p53 came from 
genetically uncoupling of two arms of p53 responses using 
mice that deficient in PUMA, p21 or both (PUMA/p21) (62). 
The induction of PUMA and p21 by IR was mostly p53-
dependent in the GI epithelium. In PUMA knockout (KO) 
mice, the early apoptosis was blocked, leading to increased 
ISC survival and regeneration, animal survival after high 
dose irradiation (25). A strong protection was observed 
in the CBCs besides the +4 region (25,28). In p21 KO 
mice, cell cycle arrest and DNA repair was lost, leading 
to shortened survival, accelerated crypt regeneration 
associated with massive nonapoptotic cell death, aberrant 
cell-cycle progression, persistent DNA damage, rampant 
replication stress, and chromosomal instability. Lack of 
p21 induction in p53 KO mice, or in PUMA/p21 double 
knockout (DKO) mice drastically elevated the delayed 
mitotic death, which was most pronounced during crypt 
regeneration despite blocked early apoptosis (Figure 2) (62). 
Loss of p21 also led to reduced cell viability after DNA 
damage (46), and abolished GI protection by “super p53” 
(63,64) and HP protection by CDK4/6 inhibition after 
IR (65). PUMA deficiency strongly protected against IR-

Figure 2 Exploring the p53 and NF-κB pathways for ISC protection. Radiation activates the p53 and NF-κB pathways in ISCs. p53-
dependent PUMA induction leads to rapid apoptosis of ISCs, while p53-dependent p21 induction suppresses genome instability and mitotic 
death via DNA repair. Blocking apoptosis, inducing quiescence or NF-κB activation transiently improves ISC survival and regeneration. A 
potential cross talk between these two pathways for ISC protection is worth exploring. Promising agents in development include growth 
factors, small molecule inhibitors of GSK (GSKi), PUMA (PUMAi), CDK (CDKi) and TLR agonists.

GSK3i

CDKiNF-κB
PUMAi
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induced hematopoietic stem cell apoptosis and lethality 
(66-71), which might also require p21. It would be 
interesting to see if blocking PUMA-dependent apoptosis 
potentiates p21 or p53-induced stem cell protection.

Bcl-2 family

The Bcl-2 family is a group of evolutionarily conserved 
regulators of apoptosis induced by diverse stimuli 
(72,73), and executes p53-dependent apoptosis through 
the mitochondrial pathway following severe genotoxic 
stress (23,46,74). This family is further divided into 
three subfamilies based on their functions and structures: 
antiapoptotic Bcl-2 like proteins, Bax-like proapoptotic 
members, and the BH3-only proapoptotic members such as 
PUMA and Noxa. The BH3-only proteins are responsible 
for sensing and transmitting apoptotic signals to other 
Bcl-2 family members (74). Mice deficient in NOXA (75), 
also a p53 target, BAX or BAK (25,76), or BAX and BAK 
in the GI epithelium (63) were resistance to IR-induced 
crypt apoptosis, but BAX or BAK appear to mediate crypt 
apoptosis and survival only at GI-toxic doses, unlike their 
largely overlapping functions in development (77). BCL-2 
KO (78) or BCL-w KO (79) mice showed increased apoptosis 
with 5-fluorouracil (5-FU) treatment or IR in the small 
intestinal crypts (80). In contrast, the Bcl-2 family plays little 
or no role in spontaneous crypt apoptosis (81).

DNA repair proteins

Deficiency in DNA repair proteins generally elevates 
intestinal radiosensitivity. ATM (ataxia telangiectasia 
mutated) KO mice showed accelerated GI-injury and 
lethality (82). Knockout of 53BP1 (83), or poly ADP-
ribosepolymerase-1 (PARP-1) (84), led to decreased 
crypt survival after treatment with alkylating agents or 
IR. Loss of RAD50, MRE11, or DNAPK reduced crypt 
survival, while enhanced Rad50 response engaged p53-
dependent protection (85). These data suggest that DNA 
repair protects against radiation-induced stem cell loss, 
without affecting early apoptosis or cell cycle arrest (83). 
Nonapoptotic killing of ISCs due to failed DNA repair 
likely involve replication stress, persistence DNA damage 
and chromosomal instability, as found in p21 KO mice (62).

Mismatch repair (MMR) proteins

Mutations in MMR proteins are found in the hereditary 

nonpolyposis colorectal cancer (HNPCC) syndrome (86). 
In addition to repair of mismatch DNA lesions, MMR 
proteins appear to interact with the p53 pathway to engage 
apoptosis depending on the type of DNA lesions (87). 
Deletion of MSH2 (88), MLH1, or PMS2 (89,90) led to 
resistance to apoptosis induced by IR or chemotherapy 
[5-FU, cisplatin, temozolomide, and N-methyl-N'-nitro-
N-nitrosoguanidine (MNNG)]. In these studies, MMR 
deficiency enhanced carcinogenesis likely by elevating stem 
cell survival and mutation rates, where MNNG did not 
cause significant ISC loss or GI injury.

ISC survival measured by micro colony assay is not 
always correlated with apoptosis or animal survival in mice 
deficient in p21, p53 or MSH2 (62,91). Inability to assess 
ISC apoptosis and the “quality” of regenerated crypts might 
help explain why it was only recently discovered that some 
Lgr5+ and +4 cells, opposed to transiently amplifying cells 
(TA cells), are resistant to IR up to 8 Gy (Table 1) (26,28) 
(JY unpublished data), and the p53/p21 axis suppresses mitotic 
death and accelerated crypt regeneration independent of 
apoptosis (62). Therefore, parameters such as non-apoptotic 
cell death, the timing of crypt regeneration, DNA damage, 
and villus length should be considered to better measure 
ISC responses to IR.

Nuclear factor kappa B (NF-κB)

NF-κB regulates a wide variety of cellular functions, such 
as survival, proliferation, migration, and immune response, 
and its persistent activation leads to inflammation and 
cancer (92). TBI activated NF-κB/RelA heterodimers (93). 
NF-κB p50 KO mice showed elevated crypt apoptosis and 
sensitivity to IR-induced lethality and decreased crypt 
survival (93). Intestinal deletion of NF-κB/p65 activator 
IKKbeta led to increased epithelial apoptosis without 
treatment (94), suggesting transient NF-κB activation might 
improve ISC survival.

Prostaglandins (PGs) and Cox1 and Cox2

Prostaglandins are lipid second messengers that regulate 
intestinal epithelial apoptosis and proliferation, as 
well as immune responses. PGs are synthesized from 
arachidonic acid by either cyclooxygenase-1 (Cox-1) or 
cyclooxygenase-2 (Cox-2) (95). In particular, PGE2 shows 
strong radioprotective effects on the epithelium largely 
via the prostaglandin E2 receptor (EP2) (95). PGE2 
suppressed IR-induced crypt apoptosis and enhanced 
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crypt regeneration. PGE2 neutralizing antibody, COX1 
KO, nonselective Cox inhibitors, but not COX2 KO, had 
opposite effects (96,97). These data suggest an important 
role of Cox1-mediated PGE2 production in the survival of 
irradiated ISCs.

Circadian clock

The circadian clock is an evolutionarily conserved intrinsic 
timekeeping mechanism that controls daily variations in 
multiple biological processes (98). It has been known that 
intestinal proliferation, migration, and radiation response 
follow a circadian rhythm (12). Recent work showed 
that clock components regulate ISC (99) and hair follicle 
regeneration (100) in flies by coordinating cell cycle 
progression, stem cell division and gene expression (99). 
Interestingly, sensitivity to chemotherapy was also regulated 
by circadian rhythm (101), which can be suppressed by 
selenium in mice (102). These findings suggest novel ways 
for stem cell protection.

Regulation of radiation-induced ISC injury and 
regeneration by the “niche” and beyond

Stem cell function is controlled by extracellular cues from 
the niche in addition to intrinsic programs. The stem cell 
niche refers to cellular components and various signals 
found in their surrounding microenvironment, which 
collectively play a key role in stem cell self renewal and 
quiescence (103,104). Non-epithelial cells and soluble 
mediators can modulate the survival, differentiation or 
proliferation of ISCs and progenitors during injury. These 
include the BM (40), endothelial cells, mesenchymal 
cells, enteric neurons (104,105), immune cells (106), and 
growth factors or other ligands (107). As discussed below, 
understanding the effects of non-epithelial cells or factors 
are important for intestinal protection against cancer 
treatments.

Vascular endothelial cells

The concept that GI and crypt radiosensitivity is 
determined by vascular endothelial cells was primarily based 
on the antiapoptotic effects of bFGF, acid sphingomyelinase 
(also called ceramide synthase, ASMase) gene KO (108) or 
anti-ceramide antibody (109) in endothelial cells. Vascular 
endothelial dysfunction is involved in pathogenesis of 
early and delayed radiation enteropathy (110). However, 

several key findings argue against a significant role of 
endothelial cell loss in IR-induced acute apoptosis of ISCs 
occurring within hours. FGFR was expressed in ISCs not 
just endothelial cells (111). Growth factors and ASMase KO 
block IR-induced and p53-dependent apoptosis in ISCs (28) 
or lymphoid tissues (112). ISC protection occurred with 
minimal change in endothelial cells (25); and high dose 
IR caused “target” switching” to epithelial cells (82). All 
suggest a direct effect of these conditions on ISC apoptosis 
independent of those in endothelial cells. Using mice 
reconstituted with ASMase KO BM, crypt culture, or tissue 
specific KO should provide a more definitive answer.

Inflammation and immune cells

Inflammation plays an important role in radiation-induced 
injury, though the cellular and molecular targets are 
likely complex and remain poorly understood (106). 
GI epithelium interacts with a plethora of commensal 
and foreign antigens, making the gut mucosa a strong 
responsive organ in radiation-induced inflammation (106). 
The relatively poor therapeutic efficiency of “classic” 
anti-inflammatory strategies compared with the pathway 
agents discussed would suggest that ISC and epithelial 
injury is likely the trigger of lethal inflammatory responses. 
Production of inflammatory cytokines and immune cell 
infiltration negatively impacts ISCs further in the delayed 
phase via the niche and systemic effects (113-115). Therefore, 
opportunities might exist for exploiting the immune system 
to repair and heal gut epithelium with sufficient protection 
of ISCs in the acute phase.

Intestinal protection and mechanisms

Radiation protectors are agents that reduce normal tissue 
damage when administered before or at the time of radiation 
for effectiveness. Mitigators do so when administered even 
after radiation exposure. The major classes discussed below 
include antioxidents, growth factors, TRL ligands, apoptosis 
and cell cycle targeted agents and cell-based therapies. 
Almost all these agents suppress radiation-induced apoptosis 
and are more effective given before radiation, reinforcing the 
importance of ISC loss in the acute radiation injury. Some 
also protect against chemotherapy-induced GI injury, while 
a few promote ISC regeneration and suppress inflammation. 
Most of these agents are pleiotropic and act on the intestinal 
epithelium and other cell types (i.e., HP, immune and 
endothelial cells), making defining precise cellular targets 



390 Yu. ISCs and cancer therapy

© Pioneer Bioscience Publishing Company. All rights reserved. Transl Cancer Res 2013;2(5):384-396www.thetcr.org

difficult. Many new agents are in development and have 
shown promises in preclinical testing (1). On the other 
hand, stem cell protection might increase cancer risk upon 
expansion of damaged ISCs (116,117), a possibility which 
should be carefully assessed.

Antioxidants and natural products

Reactive oxygen species (ROS) are generated by IR and can 
directly damage DNA and other macromolecules, or cause 
damage indirectly by depleting cellular antioxidants (2). 
Various antioxidants, including plant-derived phytochemicals, 
and superoxide dismutase (SOD) gene therapy protect normal 
tissue from radiation-induced mild tissue injury, but have 
limited activities for IR-induced severe GI damage (118). The 
use of some antioxidants during radiotherapy was associated 
with poorer tumor control in human trials (1). Interestingly, 
PHY906, a four-herb Chinese medicine formula, reduced 
chemo-induced GI injury in clinical trials and mice without 
affecting tumor responses (119). The effects were associated 
with enhanced stem cell regeneration and Wnt signaling (119). 
However, the selectivity of PHY906 and other agents in this 
class in normal cells is generally not understood. Amifostine 
is the only approved radiation protector in clinical use that 
can reduce toxicity in the lung and hematopoietic system after 
chemotherapy or radiation (1).

Growth factors

A wide variety of growth factors and cytokines protect mice 
against radiation-induced GI injury and apoptosis, and improve 
crypt survival when administered before or shortly after IR 
(107). These include fibroblast growth factor 1(FGF-1) (120), 
basic fibroblast growth factor (bFGF or FGF-2) and related 
peptides, insulin-like growth factor 1 (IGF-1) (28,108,121,122), 
IGF transgenic (123), keratinocyte growth factor (KGF), 
transforming growth factor beta 3 (TGFβ3), interleukin 11 
(107), antagonist of transforming growth factor beta 2 receptor 
(TGFβR2) (124), glucagon-like peptide-2 (GLP-2) (125), Lgr5 
ligand R-Spondin 1 (126), and stem cell factor (SCF) (127,128). 
However, epidermal growth factor (EGF) was ineffective 
(129). KGF (130) and R-Spondin 1 also protected against 
chemotherapy-induced GI-injury and apoptosis, which is p53-
dependent (58,59). Recent mechanistic studies indicate that 
IGF-1 and bFGF suppress p53-mediated PUMA expression 
and apoptosis in ISCs through the phosphoinositide 3-kinase 
(PI3K)/protein kinase B (AKT)/MDM2 axis (28), perhaps a 
common mechanism underlying growth factor-mediated ISC 

protection. Palifermin, a recombinant human KGF, is approved 
for clinical use to reduce severe oral mucositis in cancer patients 
after myeloablative therapy with BM transplantation.

TLR ligands

Pattern recognition receptors (PRRs) are proteins 
expressed on the surface of cells of the innate immune 
system that specifically recognize pathogen-associated 
molecular patterns (PAMPs) from microbial pathogens or 
cellular stress, and damage-associated molecular patterns 
(DAMPs) from cell components released during cell 
damage. They are also expressed on intestinal epithelial 
cells and are important in GI injury (131,132). Commensal 
bacteria activate Toll-like receptors (TLRs) and a variety 
of responses in different cells (131,132). Simulating TLR 
signaling by TLR4 ligand lipopolysaccharide (LPS) (133), 
TLR5 ligand Flagellin (134) and derivative CBLB502 (135), 
or TLR9 agonist (136), protects intestinal epithelium via 
NF-κB activation and apoptosis suppression (Figure 2). 
LPS or Flagellin are too proinflammatory to be useful 
radiation protectors. In contrast, CBLB502 suppressed 
“cytokine storm” and apoptosis in epithelial and endothelial 
cells, and effectively protected mice and rhesus monkeys 
against lethal TBI, given before or shortly after IR (135). 
Whether these agents engage p53-dependent responses 
in ISCs was unclear. Uncoupling NF-κB’s prosurvival and 
proinflammatory activities, much like the p53 pathway, 
might help find more effective radiation protectors.

Apoptosis and cell cycle targeted agents

A better understanding of p53 function in radiation-induced 
intestinal injury has an important implication. Unlike in 
the HP system, temporary suppression of p53 is predicted 
to be detrimental to the irradiated GI tract and ISCs. 
The differences between the HP and GI systems might 
reflect a significant difference in DNA repair in respective 
stem or progenitor compartments and is worth exploring 
(as discussed before). PUMA deficiency or p21 elevation 
did not significantly predispose mice to spontaneous 
carcinogenesis or aging (46,47). Small molecule PUMA 
inhibitors (137) and CDK inhibitors (69) are currently in 
development for radiation protection. Glycogen synthase 
kinase 3 (GSK3β) inhibitors might be another option by 
selectively blocking p53-dependent apoptosis (138). Growth 
factors might also suppress GSK3 via activation of PI3K/
AKT (139).
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Bone marrow-derived cells 

Transplantation of large numbers of BM-derived cells protected 
against IR-induced GI injury, suppressed apoptosis and improved 
crypt and whole animal survival in mice. These include human 
mesenchymal stem cells (140,141), BM stromal cells (142), or 
whole marrow (143). BM-derived cells can give rise to several cell 
types outside of the hematopoietic system (144-146). However, 
even in the setting of GI injury, BM-derived cells were found to 
be incorporated into the human or mouse gastrointestinal tract 
at very low frequencies (147-149), excluding a direct role in tissue 
repair. Instead, paracrine signaling is likely to be important due 
to a systemic increase of growth factors such as bFGF, platelet-
derived growth factor (PDGF), KGF and R-Spondin1 (142,143). 
The hematopoietic (CD45+) populations did not appear to play 
an important role in this process (142).

Conclusions

Successful cancer treatment by radiation and chemotherapy 
relies on selective killing of cancer cells with adequate 
protection of the normal tissue (133). Radiation and 
chemotherapy-induced GI injury is complex. In radiation-
induced acute GI injury, both apoptotic and nonapoptotic cell 
death of ISCs play important roles and are largely regulated 
by cell-autonomous mechanisms. The epithelium and ISC 
injury in the delayed phase is less understood and involves 
additional cell types and the immune system. Understanding 
the differences between normal and tumor cells’ responses 
to genotoxic stress can lead to new rational approaches for 
selective protection of normal cells, such as suppression of 
p53-dependent apoptosis, enhanced DNA repair, activation 
of NF-κB, induced stem cell quiescence, and suppression 
of inflammation. Many challenges as well as opportunities 
lie ahead for GI protection against severe genotoxic stress. 
These will include the identification of additional regulators 
of ISC survival, better defining the role of non-epithelial cells 
and factors, and development of selective protectors. Crypt 
and ISC culture might prove to be a very useful model for 
many of these studies by enabling manipulation of pathways, 
validation of human relevance, and a high throughput 
platform for drug discovery. Lastly, short-term benefits of 
normal tissue and stem cell protection, and long-term risk of 
organ failure due to stem exhaustion or carcinogenesis due to 
damaged stem cells, need to be balanced.
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