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Introduction

222Rn is a naturally occurring radioactive noble gas produced 
by the decay of 226Ra and belonging to the decay series of 
238U. Since uranium is present in the earth’s crust, radon 
is found everywhere in different amounts depending on 
geology, in rocks, soil and underground water (1,2). It is 
formed underground, and its fraction rapidly penetrates 
into the outdoor atmosphere where it is quickly diluted. 
On the contrary, in confined spaces such as homes and 
office buildings, radon can accumulate to harmful levels (3).  

Today, radon in buildings is considered to be the most 
important indoor air pollutant. Moreover, radon and its 
products decay are the major source of ionizing radiation of 
natural origin for general population and it is considered a 
risk factor for lung cancer if inhaled in high concentration 
for a long period (4-6). After inhalation, radon is almost 
completely exhaled due to its long half-life (3.82 d) it is 
an inert gas while its progenies, in particular its daughters 
with short half-life 218Po and 214Po, are electrically charged 
so they can be attached to dust or smoke particles in 
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indoor air. Once inhaled these particles migrate to lungs 
where, decaying, they irradiate the tissue damaging cells 
increasing the probability to get a lung cancer (7,8). The 
fraction of lung cancer attributable to radon indoor is 
estimated to be between 3% and 14% depending on the 
average radon concentration in the concerned country 
and the calculation methods (8). To better understand 
the mechanisms of the effects of ionizing radiation on 
humans, the World Health Organization recommend 
study in vitro on lymphocytes to estimate the frequency 
and spectrum of chromosomal aberrations as of the effects 
of exposure to ionizing radiation (9). Druzhinin et al. (10) 
conducted a study to assess the effect of exposure to radon 
by evaluating the frequency and type of chromosomal 
aberrations differences between groups of not exposed and 
exposed children to a radon concentration of 468±77 Bq/m3  
during the years of investigations. The results show a 
significant increase of the frequencies of single and double 
fragmentations, chromosome interchanges, number of 
aberrations chromatid and chromosome type in the exposed 
group. Worldwide, many epidemiological studies have 
been carried out to estimate the association between radon 
exposure in houses and lung cancer for general population. 
However, the association between residential radon and 
lung cancer risk is still inconclusive. To summarize the 
results three meta-analyses were performed by Lubin and 
Boice (11), Pavia et al. (12) and Zhang et al. (13). All three 
meta-analyses showed a significant positive association 
between radon indoor and lung cancer risk. However, as 
regards these meta-analyses, more recent case-control 
studies of radon and lung cancer were published offering 
new information and more conclusions. In this paper 
authors reported the results of meta-analyses of 25 case-
control studies conducted all around the world in the last 
15 years. The decision to select only case-control studies 
was determined by the fact that many studies of this type 
have been conducted in many parts of the world to evaluate 
the association between the residential radon exposure and 
lung cancer risk. Moreover, these studies have provided 
information on the synergistic effect of the exposure to 
residential radon and other risk factors, such as smoking, 
and the risk of developing lung cancer.

Materials and methods

Study selection for the meta-analysis

The systematic literature search was carried out in PubMed, 
Web of Science, and Google Scholar to identify relevant 
studies published in English until January 2016. The key 

words used for the search were: “radon”, “lung cancer”, 
“radon epidemiology” and “radon case-control studies”. 
Moreover we supplemented this search checking the 
reference lists of the identified manuscripts to verify if the 
database search was incomplete. 

Inclusion criteria

The most relevant studies were selected for the meta-
analysis on the basis of the following inclusion criteria: (I) 
full-text published article; (II) case-control study with a 
hospital-based or population-based design; (III) examined 
residential exposure to radon with passive alpha-track 
detectors by means of measurements of at least one month; 
(IV) lung cancer cases histologically confirmed; (V) relative 
risks (RR) with their corresponding 95% confidence 
intervals (CIs) reported; (VI) all authors independently 
selected eligible studies. 

Data extraction

Data extracted from selected studies were: (I) the first 
author’s name; (II) year of publication; (III) country where 
studies were carried out; (IV) study period; (V) sample size 
(controls and cases); (VI) sex, age range and smoking habits; 
(VII) radon dosimetry including detector type, duration 
of measurements, place of measurements; (VIII) RR with 
corresponding 95% CI; (IX) absolute latitude of the study 
location.

Statistical analysis

Meta-analysis was performed using the metafor package (14) 
of the R Statistical Package (The R Project for Statistical 
Computing: https://www.r-project.org/). The package 
includes functions for fitting the meta-analytic fixed- 
and random-effects models and allows for the inclusion 
of moderators variables (study-level covariates). Dose-
response association of residential radon exposure with 
lung cancer risk with 95% CI was calculated by the method 
of trend estimation from summarized dose-response data 
(15-18). To obtain a pooled functional relation, the study-
specific trends were combined according to principles of 
multivariate random-effects meta-analysis. Covariances 
of log RRs were used to efficiently estimate an exposure-
disease relation by a collection of functions of the 
dosresmeta R package (19). Data from every single study in 
a dose-response meta-analysis were reconstructed by using 
the Greenland and Longnecker method obtaining Cases-

https://www.r-project.org/
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Controls Ratios. Statistical heterogeneity between studies 
was assessed with the Q test, I2 statistic (total heterogeneity/
total variability), and H2 statistic (total variability/sampling 
variability). Heterogeneity was considered significant when 
the P value was <0.05. A random-effects model was fitted to 
the data used. When statistical heterogeneity was observed, 
to control for the influence of potential moderators a meta-
analytic mixed-effects model was used together with the 
sample size, case-control ratio, study design, duration of 
exposure, sex, follow-up time and the absolute latitude 
of the study location as potential predictors. Restricted 
maximum-likelihood estimation was used when estimating 
τ2, the (total) amount of residual heterogeneity among the 
true effects. The average true effect and the coefficients 
βji of the j-th moderator variable for the i-th study were 
estimated via weighted least squares with weights equal to 

2ˆ1/( )i iw v τ= + , where vi denotes the sampling variance and 
2τ̂  denotes the estimate of τ2. Publication bias was evaluated 

with the contour-enhanced funnel plot and funnel plot 
asymmetry with the regression test (the Egger’s test). Leave-
one-out sensitivity analysis was carried out by sequentially 
omitting individual studies to explore whether the results 
were significantly influenced by a specific study.

Results 

By searching in all WEB databases about 318 studies were 
found. After a first screening many studies were excluded 
because they were studies on miners, not control-case 
studies and because they did not have enough information 
about radon exposure. Finally, 25 case-control studies on 
potential association between residential radon exposure 
and lung cancer published between 1990 and 2014 were 
considered eligible and used for meta-analysis (20-44). In 
Table 1 the characteristics of published studies on radon 
exposure and lung cancer risk included in the meta-analysis 
are reported. Of these studies 18 were population-based 
case-controls (20,21,23-38), 6 were hospital-based case-
controls (39-44) and one both of them (22). Fourteen studies 
were conducted in Europe (22,26-28,32-35,37,40,41,43,44), 
eight in North America (21,23,24,29,30,39,40,42) and three 
in Asian region (20,31,36). Overall 13,569 cases and 22,701 
controls were enrolled. All case-control studies involved in 
the three previous meta-analyses were included in this study 
(20-42), only newer papers (43,44) were added. 

Risk estimation—random-effects model

Fitting a random-effects model to the data the estimated 

average log RR is equal to µ̂  =0.1773 (95% CI, 0.0236–
0.3310). For easier interpretation, it may be useful to 
transform these values back to the RR scale through 
exponentiation, RR = exp (µ̂) =1.19 with 95% CI, 1.02–1.39. 
A graphical overview of the results can be obtained by 
creating a forest plot shown in Figure 1. The null hypothesis 
H0: μ =0 can be clearly rejected (z =2.261, P=0.0238).

Model without moderators

The I2 statistic, 88.86%, estimates how much of the total 
variability in the effect size estimates (which is composed of 
heterogeneity and sampling variability) can be attributed to 
heterogeneity among the true effects. The H2 statistic, 8.98, 
is the ratio of the total amount of variability in the observed 
outcomes to the amount of sampling variability. The test 
for heterogeneity (Q =325.331, df =24, P<0.0001) suggests 
considerable heterogeneity among the true effects. Figure 2  
illustrates the results from a cumulative meta-analysis, 
i.e., the accumulation of evidence (RR) of lung cancer 
risk, plotting the estimate of the average effect against the 
estimated amount of heterogeneity as each study is added in 
chronological order to the analysis. 

Detecting bias in meta-analysis

Publication bias was valuated from the contour-enhanced 
funnel plot (Figure 3). The Funnel plot shown in Figure 3  
is more useful for detecting publication bias due to the 
suppression of non-significant findings. The Egger’s test was 
used for funnel plot asymmetry. It is a weighted regression 
model with multiplicative dispersion and standard error as 
predictor, giving: t =0.4393, df =23, P=0.6645, not suggesting 
asymmetry in the funnel plot. 

Influential case diagnostics

Using the trim and fill method, a nonparametric (rank-
based) data augmentation technique, it was possible to 
estimate the number of studies missing from a meta-analysis 
due to the suppression of the most extreme results on one 
side of the funnel plot. The results for a random-effects 
model indicate one missing study on the right side. The test 
for heterogeneity (Q =325.9484, df =25, P<0.0001) shows 
that the effect is statistically significant.

The exclusion of one study at a time, to test if it leads to 
considerable changes in the fitted model, showed that the 
pooled estimate of indoor radon exposure and lung cancer 
risk did not vary substantially. With the exclusion of each 
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Table 1 Major characteristics of published studies on radon exposure and lung cancer risk

Study Year Country Study design Sex
Age range 

(years)
Cases controls 

ratio
Radon exposure

Absolute 
latitude

Blot et al. 1990 China PCC F 30–69 308/356 <70 vs. >296 35

Schoenberg et al. 1990 New Jersey (USA) PCC F All 433/402 <37 vs. 148–418 40

Pershagen et al. 1992 Sweden PCC, HCC F All 201/378 <75 vs. >151 61

Alavanja et al. 1994 Missouri (USA) PCC F 30–84 409/1,183 <3.7–29 vs. 91–566 38

Letourneau et al. 1994 Manitoba (Canada) PCC M/F 35–80 738/738 <25 vs. >200 53

Persehagen et al. 1994 Sweden PCC M/F 35–74 1,360/2,847 <50 vs. >400 61

Auvinen et al. 1996 Finland PCC M/F All 517/517 <49 vs. 400–1,277 61

Ruosteenoja et al. 1996 Finland PCC M 0–64 164/331 <95 vs. >186 61

Darby et al. 1998 South-West England HCC M/F <75 982/3,185 <25 vs. >400 52

Alavanja et al. 1999 Missouri (USA) PCC F All 372/471 <37 vs. >148 37

Field et al. 1999 Iowa (USA) PCC F 40–84 413/614 <57 vs. >228 41

Sobue et al. 2000 Japan PCC M/F >40 28/36 <24 vs. >100 36

Lagarde et al. 2000 Sweden PCC M/F >30 258/487 <50 vs. >140 61

Pisa et al. 2001 Italy PCC M/F All 138/291 <40 vs. >200 41

Kreienbrock et al.** 2001 Western Germany PCC M/F <75 1,449/2,297 <50 vs. 140 51

Barros-Dios et al. 2002 Spain PCC M/F >35 159/237 <37 vs. >148 40

Wang et al. 2002 Gansu (China) PCC M/F 30–75 768/1,659 <100 vs. >300 36

Kreuzer et al.** 2003 Eastern Germany PCC M/F <76 1,192/1,640 <50 vs. >140 37

Baysson et al. 2004 France HCC M/F <75 486/984 <50 vs. >400 46

Bochicchio et al. 2005 Italy HCC M/F 35–90 384/404 <50 vs. >400 41

Sandler et al. 2006 Connecticut and Utah 
(USA)

PCC M/F 40–79 1,474/1,811 <18 vs. >50 40

Thompson et al. 2007 Massachusetts (USA) HCC M/F >40 200/397 <25 vs. >250 42

Wilcox et al. 2008 New Jersey (USA) PCC M/F All 651/740 <25 vs. >150 40

Barros-Dios et al.* 2012 Galicia (Spain) HCC M/F >30 308/484 <50 vs. >147 42

Torres-Duran et al.* 2014 Galicia (Spain) HCC M/F >30 177/212 <100 vs. >200 42

*, New studies not included in the previous meta-analyses (13); **, considered together in the previous meta-analysis (13). HCC, hospital-
based case-control study; PCC, population-based case-control study.

study, P values for the test statistics were always <0.05. 

Model with moderators—mixed-effects model

A meta-regression analysis was conducted to test if part 
of the heterogeneity might be due to the influence of 
moderators. Results are shown in Table 2. As a matter of 
fact, sample size, study design, duration of exposure, sex, 
follow-up time, year of publication, and the absolute latitude 
of the study location (but see below for more explanation) 
were not major contributors to the observed heterogeneity. 
Cases Event-Controls Event Ratio, and Cases Total-

Controls Total Ratio (with reference to numbers reported 
in Figure 1) were instead the major contributors to the 
observed heterogeneity. The test for residual heterogeneity 
is now not significant (QE =3.276, df =17, P=0.99), with 
τ2, the estimated amount of residual heterogeneity, ≈0 (SE 
=0.0063), indicating no other moderator is influencing the 
radon indoor effectiveness to lung cancer risk. The test 
of moderators is obviously significant (QM =322.05, df =7, 
P<0.0001). Both moderators accounted for total amount of 
heterogeneity, R2 ≈100. Approximately half of this value was 
obtained if just one of the two moderators was considered in 
meta-regression analysis. Noteworthy, the two moderators, 
Cases Event-Controls Event Ratio and Cases Total-
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Controls Total Ratio, are poorly correlated (ρ=0.37), so 
avoiding multicollinearity effects in meta-regression. 

Study location and RR 

Forest plot in Figure 4 shows the estimated average RR at 
various degrees absolute latitude. Study location analysis 
showed that radon exposure was associated with increased 
risk for lung cancer from 40 degrees absolute latitude (RR, 
1.09; 95% CI, 0.92–1.31), to 50 degrees (RR 1.26; 95% CI 
1.08–1.48), to 60 degrees (RR, 1.46; 95% CI, 1.12–1.91). 
Figure 5 shows the RRs of the individual studies plotted 
against a quantitative predictor, the absolute latitude. The 
predicted average RR based on a mixed-effects model is 
added to the plot, with corresponding 95% CI bounds. 
Figure 6 shows a histogram of the permutation distribution 
of the test statistic for absolute latitude, together with 
the standard normal density (in red) and a kernel density 
estimate of the permutation distribution (in blue). The 

Figure 1 Forest plot showing the results of 25 studies examining the association between radon exposure and relative risk of lung cancer in 
the exposed versus the control group. Data are reported with corresponding 95% CI in the individual studies and based on a random-effects 
(RE) model.

Figure 2 Plot of cumulative results. Relative risk of lung cancer, 
for a model without moderators, versus amount of heterogeneity,  

2τ̂ . The color gradient of the points/lines indicates the order of the 
cumulative results: light gray at the beginning, dark gray at the end.
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Figure shows that the tail area under the permutation 
distribution is larger than under the standard normal 
density (hence, the larger P value in this case). There is a 
difference of 0.011 between the two permutation P values, 

such that P becomes =0.054, making Latitude a significant 
contributor to the observed heterogeneity, unlike the value 
appearing in Table 2.

Discussion

Figure 7 shows various diagnostic measures when each 
study is removed in turn, which is a plot of the (I) externally 
standardized residuals, i.e., residuals divided by their 
estimated standard errors (like t-statistics). Observations 
with values larger than 3 in absolute value are considered 
outliers; (II) DFFITS values, that are a measure of how 
much an observation has effected its fitted value from the 
regression model. Values larger than 2*sqrt [(k+1)/n] in 
absolute value are considered highly influential; (III) Cook’s 
distances, measuring aggregate impact of each observation 
on the group of regression coefficients, as well as the group 
of fitted values. Values larger than 4/n are considered highly 
influential; (IV) covariance ratios, that are a measure of the 
impact of each observation on the variances (and standard 
errors) of the regression coefficients and their covariances. 
Values outside the interval 1±3(k+1)/n are considered highly 
influential; (V) leave-one-out estimates of the amount of 
heterogeneity; (VI) leave-one-out values of the test statistics 
for heterogeneity; (VII) hat values, that are a measure of 
how far an observation is from the others in terms of the 
levels of the independent variables (not the dependent 
variable). Observations with values larger than 2(k+1)/n are 
considered to be potentially highly influential, where k is 
the number of predictors and n is the sample size; (VIII) 
weights (in %) given to the observed outcomes during 

Figure 3 Contour-enhanced funnel plot. The funnel is centered at 0, 
i.e., at the value under the null hypothesis of no effect. Various levels 
of statistical significance of the points/studies are indicated by the 
shaded regions. In particular, the unshaded (i.e., white) region in the 
middle corresponds to P values greater than 0.10, the gray-shaded 
region corresponds to P values between 0.10 and 0.05, the dark gray-
shaded region corresponds to P values between 0.05 and 0.01, and the 
region outside of the funnel corresponds to P values below 0.01.
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Table 2 Meta-regression analysis

Moderators Coefficient SE Z value P value 95% CI

Sample size 0.000 0.0002 0.181 0.857 −0.0004 to 0.0005

Cases event-controls event 
ratio

1.001 0.096 10.41 <0.001 0.812 to 1.189

Cases total-controls total 
ratio

−1.246 0.118 −10.54 <0.001 −1.478 to −1.015

Study design −0.289 0.244 −1.185 0.236 −0.766 to 0.189

Duration of exposure −0.147 0.119 −1.236 0.216 −0.380 to 0.086

Sex 0.118 0.140 0.841 0.400 −0.156 to 0.023

Follow-up time −0.022 0.023 −0.945 0.345 −0.066 to 0.023

Year of publication 0.004 0.012 0.353 0.723 −0.019 to 0.028 

Latitude 0.015 0.008 1.749 0.065 −0.002 to 0.033

SE, standard error.
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Figure 6 Permutation distribution of the test statistic for absolute 
latitude.

Figure 5 Relative risk of lung cancer versus absolute latitude of 
study location. The observed relative risks are drawn proportional 
to the inverse of the corresponding standard errors, i.e., larger/more 
precise studies are shown as larger points. The predicted effects with 
corresponding confidence interval bounds are also shown. 

Figure 4 Forest plot showing the results of 25 studies examining the association between radon exposure and risk for lung cancer. The 
estimated average relative risk at 40, 50, and 60 degrees absolute latitude are indicated at the bottom of the Figure.
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Figure 7 From top left to bottom right: plot of the (I) externally standardized residuals; (II) DFFITS values; (III) Cook’s distances; 
(IV) covariance ratios; (V) leave-one-out estimates of the amount of heterogeneity; (VI) leave-one-out values of the test statistics for 
heterogeneity; (VII) hat values; and (VIII) weights.

the model fitting. Some of them may suggest that studies 
4 and 6 (in red) (RR, 1.58; 95% CI, 1.31–1.91) and (RR, 
3.53; 95% CI, 3.08–4.05) respectively, may be considered 
outliers. However, instead of just removing those studies, 
one should examine them in detail to determine what 
the reason may be for their unusual results. They have 
considerable influence on the fit of the model (the plot of 
the Cook’s distances and DFFITS values show this most 
clearly). Study 4 has in particular high leave-one-out values 
of the test statistics for heterogeneity and study 6 of hat 
values. On the other hand, removing study 4 would yield 
large change in the amount of covariance ratios values, 
meanwhile both studies do not show unusual influence 
on the model weights. According to (45-47), outliers and 
influential cases can actually reveal patterns that may lead to 
new insights about study characteristics. For these reasons, 
taking account of the reported leave-one-out sensitivity 
analyses, and considering the statistical significance of study 
6, we decided not to remove studies 4 and 6. Moreover, the 
present work shows that the RR of lung cancer may depend 
on the absolute latitude of the residential exposure to radon. 

New coming studies may bear out such trend. A clue in this 
direction is the fact that the tail area under the permutation 
distribution is larger than under the standard normal 
density. As a matter of fact, indoor doses depend primarily 
on radio-active content of construction materials and on 
the attenuation of outside radiation by roofs and walls. 
The correlation of latitude with radon may be due also to 
other determinants of lung cancer risk: although levels at 
equatorial latitudes should reflect higher ventilation rates 
because of higher average indoor temperatures, the general 
scatter in the results of concentrations of radon indoors in 
various countries in which measurements have been made 
in relation to latitude, indicated that many other factors are 
involved. Lagarde and Pershagen reported an increase of 
the county-mean radon levels (Bqm−3) against latitude (48). 

Conclusions

Present meta-analysis revealed that indoor exposure to 
radon may be associated with an effective risk of lung cancer 
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which variates with absolute latitude. Nevertheless, further 
studies are needed to obtain a definitive conclusion and 
to determine the mechanisms underlying this association. 
It is far from clear, however, if the increased cancer risks 
reported in the literature also for other sites than the lung 
can be attributed to radon and progeny or concomitant 
gamma radiation.
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