
© Translational Cancer Research. All rights reserved. Transl Cancer Res 2017;6(3):474-482 tcr.amegroups.com

Original Article

Identification of new biomarkers for cisplatin-resistance in A549 
human lung adenocarcinoma cells by an integrated bioinformatical 
analysis

Dong Wang1*, Leina Ma2*, Qingxia Ma1, Jia Liu1, Guohui Jiang1

1Department of Pharmacology, School of Pharmacy, Qingdao University, Qingdao 266021, China; 2Department of Oncology, The First Affiliated 

Hospital of Qingdao University, Qingdao University, Qingdao 266021, China 

Contributions: (I) Conception and design: D Wang, J Liu, G Jiang; (II) Administrative support: J Liu, G Jiang; (III) Provision of study materials or 

patients: D Wang, Q Ma, J Liu; (IV) Collection and assembly of data: D Wang, L Ma, Q Ma; (V) Data analysis and interpretation: D Wang, L Ma, 

Q Ma; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

*These authors contributed equally to this study.

Correspondence to: Jia Liu. Department of Pharmacology, School of Pharmacy, Qingdao University, 38 Dengzhou Road, Qingdao 266021, China. 

Email: dadaliujia@gmail.com; Guohui Jiang. Department of Pharmacology, School of Pharmacy, Qingdao University, 38 Dengzhou Road, Qingdao 

266021, China. Email: 13370830026@163.com.

Background: Drug resistance plays an important role in the failure of clinical therapy. This study aimed to 
identify the key genes related to cisplatin resistance in A549 human lung adenocarcinoma cells. 
Methods: The mRNA microarray dataset E-MEXP-3123 and miRNA dataset GSE43249 were 
downloaded from the Gene Expression Omnibus (GEO) database. The differentially expressed genes (DEGs) 
and miRNAs (DEMs) between parental and cisplatin-resistance A549 lung cancer cells were identified. 
Functional enrichment analysis and pathway analysis were performed by using the DAVID database. 
Protein-protein interactions of DEGs, microRNAs (miRNAs) network and their potential gene targets were 
formed by Cytoscape. Real-time quantitative polymerase chain reaction (qRT-PCR) was used to validate the 
identified candidate genes in cisplatin-resistant A549 cells. 
Results: Firstly, a total of 499 DEGs were identified from E-MEXP-3123. In gene ontology (GO) term 
analysis, DEGs were significantly involved in signal transduction, oxidation-reduction process, multicellular 
organism development, cell adhesion and inflammatory response. Pathway analysis showed that the most 
significant pathways were neuroactive ligand-receptor interaction, endocytosis and hippo signaling pathway. PPI 
network showed that the top five hub genes were CDH1 (cadherin 1), BDKRB2 (bradykinin receptor B2), FPR2 
(formyl peptide receptor 2), CCR5 (C-C chemokine receptor type 5) and YWHAE (tyrosine 3-monooxygenase/
tryptophan 5-monooxygenase activation protein epsilon). Secondly, 12 DEMs were identified from GSE43249, 
and the top six DEMs were miR-194, miR-192, miR-574-3p, miR-106b, miR-146a and miR-182. In subsequent 
qRT-PCR experiments, low expression levels of miR-192, miR-106b, miR-182 and high expression level of miR-
574-3p were confirmed in cisplatin-resistant group compared with control group. Meanwhile as predicted, the 
overexpression of NCALD, SPIN1 that are miR-182 potential targets and the weak expression of PSMA4 that is 
miR-574-3p potential target were also experimentally validated in cisplatin-resistant lung cancer cells.
Conclusions: These key genes identified in our study might provide new clues for developing effective 
strategies against cisplatin resistance during lung adenocarcinoma treatment.
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Introduction

Lung cancer has the highest incidence and causes the 
highest mortality among all cancers in China, which was 
projected to strike about 733,300 Chinese and to cause 
almost 610,200 cancer-related mortality in 2015 (1). 
Although more and more drugs have been developed and 
applied to treat lung cancer, the therapeutic efficacy is still 
poor. Platinum chemotherapeutic agents, such as cisplatin, 
are conventional drugs for treating advanced lung cancer. 
Despite the favorable initial response, they finally become 
inefficient in most patients because of cisplatin resistance (2).

Recently, various new molecular biomarkers have been 
discovered to overcome the drug resistance. For instance, 
the protein disulfide isomerases PDIA4 and PDIA6 mediate 
the resistance to cisplatin-induced cell death in lung 
adenocarcinoma (3). The copper transporter CTR1 can 
regulate the uptake of cisplatin and has been developed as 
a therapeutic target (4). The multidrug resistance protein 
MRP2 can increase the efflux of cisplatin and is a biomarker 
for cisplatin resistance in advanced esophageal squamous 
cell carcinoma patients (5,6). Medical treatments should be 
designed according to the characteristics of each patient. It 
is necessary to discover more effective biomarkers and reveal 
the underlying molecular mechanisms of cisplatin resistance.

Microarray is a powerful tool for detecting gene 
expression pattern, including those mRNA and microRNAs 
(miRNAs).  Due to the wide use of  microarray,  a 
large number of microarray data have been collected. 
Bioinformatical methods are crucial for discovering 
more valuable information contained in these datasets, 
particularly those of signaling pathways, complex biological 
processes and the interaction network of differentially 
expressed genes (DEGs).

In this study, two microarray datasets, one mRNA dataset 
(E-MEXP-3123) and one miRNA dataset (GSE43249), 
were obtained from GEO and ArrayExpress database. 
The DEGs and differentially expressed miRNAs (DEMs) 
between parental and cisplatin-resistant A549 lung cancer 
cells were identified. We performed a functional enrichment 
analysis and analyzed PPI, miRNA network and their 
target genes. Some candidate biomarkers were tested by the 
cisplatin-resistance experiment in A549 cell lines.

Methods

Microarray data

GEO (h t tp s : / /www.ncb i .n lm.n ih .gov/geo/ )  and 

ArrayExpress (http://www.ebi.ac.uk/arrayexpress/) are two 
public functional genomics data repositories. They contain 
large free array and sequence-based datasets. E-MEXP-3123 
is an expression profiling of platinum drugs resistant genes 
in A549 cell lines, including three wild A549 cell samples 
and three cisplatin-resistant A549 cell samples. GSE43249 
is a miRNA expression profiling of cisplatin-resistant cells 
derived from the A549 lung cell line. It also contained 
the data of six samples, including those of three A549 cell 
samples and three cisplatin-resistant A549 cell samples.

Identification of DEGs and DEMs

R (version 3.3.2) is a free software environment for 
statistical computing and graphics. Data processing was 
accomplished by using the R package limma, and the DEGs 
and DEMs were identified between parental and cisplatin-
resistant lung cancer cells. Empirical Bayes statistics and 
Benjamini-Hochberg correction were applied to control the 
false-positive results. Expression change more than 2 folds 
(≥2 folds) and the adjusted P values (adj. P.val) less than 0.05 
(<0.05) denoted a statistical difference. A heat map of DEGs 
was generated by using the R package pheatmap, and the 
volcano plot of DEMs was drawn by using the R package 
ggplot2.

Functional analysis and pathway enrichment analysis

DAVID (http://david.ncifcrf.gov/) is an online tool that 
can be utilized to perform functional analysis and pathway 
enrichment analysis for discovering the relationships 
among the selected gene sets (7). Gene Ontology (GO) 
analysis and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis were performed by 
the DAVID online program. The R package ggplot2 was 
employed to present the related results.

PPI network construction and module analysis

All DEGs were uploaded to the Search Tool for the 
Retrieval of Interacting Genes (STRING, version 10.0, 
http://string.embl.de/) database which collected the data 
of 9.6 million proteins and 184 million interactions from  
2,031 organisms (8). The combined score ≥0.7 was set as 
the cut-off criterion. Cytoscape (version 3.4.0) was then 
employed to generate a PPI network (9). The significant 
modules were selected by Molecular Complex Detection 
(MCODE) which is an app at the Cytoscape store (10). The 
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advanced options were set as follows: degree cutoff =2, node 
score cutoff =0.2, k-core =2, max-depth =100.

Analysis of miRNA-target mRNA network 

The top 6 DEMs were imported to TargetScan (Release 
7.1, http://www.targetscan.org/) which can search the 
target genes based on the conserved sites matching the seed 
regions of miRNAs. Cumulative weighted context++ score 
≤−0.4 were set as the threshold. The miRNA-target mRNA 
network was constructed by Cytoscape.

Cell culture and cell viability assay

Normal and cisplatin-resistant human A549 lung cells 
were obtained from Zhongshan University. The cells were 
cultured in minimal Roswell Parker Memorial Institute 
(RPMI)-1640 (HyClone) medium supplemented with 10% 
fetal bovine serum (FBS, Gibco), 100 U/mL penicillin, 
and 100 mg/L streptomycin (HyClone) under 37 ℃ and 
5% CO2. Normal and cisplatin-resistant A549 lung cells 
at the logarithmic growth phase were collected and seeded 
in 96-well tissue culture plates (5×103 cells/well, Corning), 

and incubated until adhesion. Cells were treated with 
cisplatin at indicated concentrations for 48 hours and 
then 20 µL of MTT (5 mg/mL). Cells were incubated at 
37 ℃ for 4 hours and then treated by 150 µL of dimethyl 
sulfoxide (DMSO). Microplate Reader Model 550 was 
used to measure the absorbance value of each well at  
490 nm. Every experiment was independently performed 
for at least three times.

Reverse transcription-quantitative polymerase chain 
reaction (qRT-PCR)

Total RNA was extracted from normal and cisplatin-
resistant A549 lung cells using the TRIzol reagent 
(Invitrogen), and 500 ng RNA was used for reverse 
transcription. Stem-loop RT primers were used for 
miRNAs, and oligo (dT) primer for genes. qRT-PCR was 
performed on the ABI StepOnePlus™ thermocycler using 
the SYBR® Green PCR kit. U6 snRNA served as a loading 
control for miRNAs while beta-actin for genes. Primer 
sequences are shown in Table 1. All reactions had three 
replicates. Data were quantified by using the comparative  
2−ΔΔCT method. 

Table 1 Primer sequences of some DEMs and DEGs

Gene Forward primer Reverse primer Stem-loop RT primer

miRNA

hsa-miR-192 GGCTGCCAATTCCATAGGT CAGTGCGTGTCGTGGAGT GTCGTATCCAGTGCGTGTCGTGGAGTCGGC
AATTGCACTGGATACGACCTGTGAC

hsa-miR-106b GGGGTAAAGTGCTGACAGTG CAGTGCGTGTCGTGGAGT GTCGTATCCAGTGCGTGTCGTGGAGTCGGC
AATTGCACTGGATACGACATCTGCA

hsa-miR-574-3p GCACGCTCATGCACACAC CAGTGCGTGTCGTGGAGT GTCGTATCCAGTGCGTGTCGTGGAGTCGGC
AATTGCACTGGATACGACTGTGGGT

hsa-miR-182 GGTTTGGCAATGGTAGAACTC CAGTGCGTGTCGTGGAGT GTCGTATCCAGTGCGTGTCGTGGAGTCGGC
AATTGCACTGGATACGACAGTGTGA

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT AACGCTTCACGAATTTGCGT

mRNA

EREG GTGATTCCATCATGTATCCCAGG GCCATTCATGTCAGAGCTACACT

PKIA GCCTTGAAATTAGCAGGTCTTGA GCTTCCCCACTTTGTTCTGTAG

PSMA4 AGTGTGGCAGGCATAACTTCT TCACAAGGTATTGGCTCCTGA

NCALD GACTGCCCCAGTGGACATTT TTGGAAGCATCCCCATAAGGG

SPIN1 CAGTGTGGGTCCGAGCAAA CAGGGCCATTCCCCTCTTT

Beta-actin TGACGGGGTCACCCACACTG AAGCTGTAGCCGCGCTCGGT

DEMs, differentially expressed microRNAs; DEGs, differentially expressed genes.
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Statistical analysis

All samples had at least three independent replicates. Data 
were presented as means ± SD. The SPSS software (version 
17.0) was employed for statistical analysis. Statistical 
significance was examined by t-tests or one-way analysis 
of variance (ANOVA). P<0.05 (*) or P<0.01 (**) denoted 
statistically significant difference.

Results

Identification of DEGs

A total of 499 DEGs were selected from E-MEXP-3123. 
Using the criteria of adj.P.val <0.05 and fold change ≥2.0, 
58 upregulated genes and 441 downregulated genes were 
identified in cisplatin-resistant A549 cells. The top 50 
upregulated and downregulated genes were shown in a 
heatmap (Figure S1A).

GO function and KEGG pathway analyses

To investigate the functions of DEGs, we analyzed 
GO functions and KEGG pathways. The results were 
obtained by DAVID. DEGs were significantly involved in 
some biological processes including signal transduction, 
oxidation-reduction process, multicellular organism 

development, cell adhesion and inflammatory response. For 
molecular functions, DEGs were mainly involved in calcium 
ion binding, actin binding, receptor binding, oxidoreductase 
activity and ion channel binding. For cell components, 
DEGs primarily were enriched in plasma membrane, 
extracellular exosome, cytosol, membrane and extracellular 
region (Figure S1B). In addition, KEGG pathway analysis 
showed that the most significant pathways of DEGs were 
neuroactive ligand-receptor interaction, endocytosis and 
hippo signaling pathway (Table 2).

PPI network and module selection 

To evaluate the interactions of DEGs, a PPI network with 
215 nodes was constructed (Figure S2A). The top five 
hub genes were CDH1 (cadherin 1), BDKRB2(bradykinin 
receptor B2), FPR2 (formyl peptide receptor 2), CCR5 
(C-C chemokine receptor type 5) and YWHAE (tyrosine 
3-monooxygenase/tryptophan 5-monooxygenase activation 
protein epsilon). In addition, a significant module in PPI 
network including 6 nodes and 15 edges was selected by 
MOCODE (Figure S2B).

Identification of DEMs and miRNA-target mRNA network

Twelve DEMs including seven upregulated miRNAs and 

Table 2 KEGG pathway analysis of the DEGs 

Term Count P value Genes

hsa04080: neuroactive ligand-receptor interaction 16 0.05 MCHR1, C3AR1, CCKAR, GABRB3, CYSLTR2, GABRA5, 
BDKRB1, FPR3, FPR2, BDKRB2, P2RX5, GRM2, PRSS3, CNR2, 
TAAR5, CHRNA2

hsa04144: endocytosis 14 0.09 IL2RB, KIF5C, CHMP7, CHMP2B, AMPH, TGFB2, RAB31, FOLR3, 
CCR5, NEDD4, HSPA6, RAB11B, EHD2, GRK1

hsa04390: hippo signaling pathway 12 0.01 WNT5A, ID2, CSNK1E, GDF5, CDH1, AREG, BMPR1B, GLI2, 
SNAI2, FZD4, YWHAE, TGFB2

hsa04970: salivary secretion 7 0.07 BEST2, CD38, BST1, CST4, CST2, SLC4A2, CALM1

hsa00330: arginine and proline metabolism 6 0.03 LAP3, PYCRL, SRM, SMOX, AGMAT, ALDH9A1

hsa00480: glutathione metabolism 6 0.03 MGST3, LAP3, GSTA3, SRM, GPX3, ANPEP

hsa03320: PPAR signaling pathway 6 0.07 ACOX2, OLR1, SCD, PPARG, SLC27A2, NR1H3

hsa00512: mucin type O-Glycan biosynthesis 5 0.02 ST3GAL1, GALNT2, GALNT10, GALNT12, C1GALT1

hsa00532: glycosaminoglycan biosynthesis-
chondroitin sulfate/dermatan sulfate

4 0.03 CHST7, CHPF, CHST11, CHSY1

hsa00760: nicotinate and nicotinamide metabolism 4 0.07 CD38, NNT, BST1, AOX1

KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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five downregulated miRNA in cisplatin-resistant A549 cells 
were identified from GSE43249 (Figure S3A). The top three 
upregulated miRNAs (miR-194, miR-192 and miR-574-3p)  
and the top three downregulated miRNAs (miR-106b,  
miR-146a and miR-182) were uploaded to TargetScan to 
predict their target genes. The network of miRNAs and 
their predicted target are shown in Figure S3B.

Experimental validation of the key DEMs in GSE43249 
and their potential target genes in E-MEXP-3123

To preliminarily verify the above analyses, we firstly selected 
the key DEMs in GSE43249 and their potential target 
genes in E-MEXP-3123. In prediction, the target gene of 
miR-192 was EREG (epiregulin), miR-106b targeted PKIA 
(cAMP-dependent protein kinase inhibitor alpha) while 
miR-182 targeted NCALD (neurocalcin delta) and SPIN1 
(spindlin 1), but no prediction was found on miR-194 and 
miR-146a (Figure 1A). 

The cisplatin-resistant A549 cells showed higher cell 
viability than the control group (Figure 1B). After 48 h 

of cisplatin (8 mg/mL) treatment, the inhibition ratios of 
cisplatin-resistant group and control group were 83% and 
54%, respectively (P<0.01). miRNA and mRNA expression 
levels were measured by qRT-PCR. As predicted, miR-106b,  
miR-182, PSMA4 expressions were downregulated in 
cisplatin-resistant A549 cells, and miR-574-3p, NCALD 
and SPIN1 expression were upregulated. However, the low 
expressions of miR-192, PKIA and the high expression of 
EREG in cisplatin-resistant A549 cells were not consistent 
with the predicted trends (Figure 1C,D).

Discussion

Drug resistance is a major cause of the clinical failure of 
chemotherapy and radiotherapy. So far only a few advanced 
cancers with certain histogenesis can be cured by drugs. 
Even though these cancers may relapse and obtain drug 
resistance. Cisplatin is an effective anti-cancer drug and 
has been used for treating various solid tumors, including 
testicular, head and neck, ovarian, bladder, colorectal 
and lung cancers (11). Despite the initial response, many 

Figure 1 Validation of the key DEMs in GSE43249 and their predicted target genes in E-MEXP-3123. (A) miR-192, miR-574-3p, miR-
106b, miR-182 and their predicted genes in E-MEXP-3123; (B) cell viabilities of cisplatin-resistant A549 cells and normal A549 cells in the 
presence of cisplatin; (C,D) expressions of miR-192, miR-574-3p, miR-106b, miR-182 and their predicted genes in cisplatin-resistant A549 
cells and normal A549 cells. Expression levels are normalized to that of beta-actin. *, P<0.05; ***, P<0.001. Results are represented by the 
means of three independent experiments. Bars indicate SD. DEMs, differentially expressed miRNAs.
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patients develop a cisplatin resistance. Therefore, revealing 
the specific molecular mechanisms underlying cisplatin 
resistance is critical for cancer clinical treatment.

Recently, microarray has been an effective tool for 
studying the expressions of thousands of genes in different 
physiological and pathological conditions. It enables the 
discovery of new targets related to drug resistance in 
tumors. In the present study, 58 significantly upregulated 
genes and 441 significantly downregulated genes were 
screened from E-MEXP-3123 which provides the datasets 
of normal and cisplatin-resistant A549 cells. GO term 
analysis and KEGG pathway analysis were performed to 
systematically investigate the regulatory mechanism of 
DEGs. In GO term analysis, DEGs were significantly 
involved in some biological processes including signal 
transduction, oxidation-reduction process, multicellular 
organism development, cell adhesion and inflammatory 
response. These results were consistent with the standpoint 
that cell adhesion mediates drug resistance limiting cancer 
therapy success (12,13). Low chronic inflammatory response 
can contribute to drug resistance (14,15). The proteins 
encoded by both upregulated and downregulated genes were 
mainly located on the membrane and extracellular exosome. 
It indicates that cancer drug resistance may be mediated by 
protein transduction and dissemination (16). Furthermore, 
pathway analysis showed that the most significant pathways 
were neuroactive ligand-receptor interaction, endocytosis 
and hippo signaling pathway.

A PPI network of DEGs was constructed, and the top 
degree hub genes and a significant module were selected. 
The top 5 degree hub genes were CDH1, BDKRB2, 
FPR2, CCR5 and YWHAE. CDH1 has the highest degree 
in PPI network and is known as Cadherins, which are 
calcium-dependent cell adhesion proteins. As a famous 
member of cadherin family, E-cadherin is a ligand for 
integrin alpha-E/beta-7, and their binding contributes 
to stabilize epithelial phenotype (17,18). An increasing 
number of evidence emphasized the close relation between 
epithelial-mesenchymal transition and drug resistance 
(19,20). Han et al. found that Cathepsin L increased 
EMT by downregulating epithelial marker (E-cadherin) 
and upregulating mesenchymal marker (vimentin), thus 
mediated cisplatin or paclitaxel resistance in A549 cells (21).  
The second highest degree hub gene was BDKRB2 which 
encodes Bradykinin receptor B2 (B2R). It is a G protein-
coupled receptor and widely distributed in healthy tissues. 
It was reported that B2R prevented insulin resistance 
while B1R is involved in insulin resistance and metabolic 

syndrome (22). But the relationship between B2R and 
cancer drug resistance is still unclear. The third highest 
degree hub gene FPR2 encodes N-FPR2 which is a 
G-protein coupled receptor and expressed on many human 
cells including airway epithelium (23). It plays important 
roles in immune regulation and inflammatory response. A 
recent study showed that resolvin D1 inhibited TGF-β1-
induced EMT in A549 lung cancer cells via binding ALX/
FPR2 (24), which indicated that FPR2 may be also involved 
in drug resistance. CCR5 is located on chromosome 3 and 
encodes CCR5. It is a protein on the surface of white blood 
cells that is involved in the immune system as it acts as 
a receptor for chemokines including CCL3, CCL4 and 
CCL5, which subsequently transduces a signal by increasing 
the intracellular calcium ion level (25,26). Recent study 
showed that XAP, an extract of Marsdenia tenacissima, 
inhibited A549 cell migration and invasion through down-
regulation of CCR5-CCL5 axis, Rho C, and FAK (27). 
The last hub gene YWHAE encodes a 14-3-3 protein called 
14-3-3 protein epsilon. This highly conserved protein 
implicated in the regulation of diverse biochemical activities 
related to signal transduction, such as cell division and 
regulation of insulin sensitivity. Elevated 14-3-3 epsilon 
level is an independent predictor of chemotherapy-
resistance and poor prognosis for patients with advanced 
extranodal NK/T cell lymphoma with asparaginase-based 
treatment (28). Taken together, the majority of selected 
hub genes are involved in A549 lung cancer cells or drug 
resistance through various biological pathways.

miRNA is a small non-coding RNA molecule with  
19–25 nucleotides. It can affect target gene expression to 
regulate cell apoptosis, proliferation and differentiation. 
Recently, an increasing number of researches indicate 
that some miRNAs can target drug-sensitivity genes, 
leading to cancer drug resistance. In this study, we also 
analyzed the miRNA expression profiling of cisplatin-
resistant cells derived from the A549 lung cell line. 
Twelve DEMs including seven upregulated miRNAs and 
five downregulated miRNAs were identified. A network 
containing the top 6 DEMs and their predicted target genes 
was constructed. In addition, we selected some hub DEMs 
in GSE43249 and their target genes in E-MEXP-3123. 
We cultured the cisplatin-resistant A549 cells and normal 
A549 cells to verify the above analyses on selected DEMs 
and their target genes. Our results showed that miR-192 
was downregulated and EREG which is miR-192 predicted 
target was upregulated in cisplatin-resistant A549 cell lines, 
which was not consistent with our prediction. However, two 
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other studies on cisplatin-resistance in A549 cells showed 
that miR-192 induced gemcitabine and cisplatin combined 
chemoresistance by targeting Bcl-2 (29) and cisplatin 
resistance by targeting Bim (30), respectively. Consistent 
with our prediction, our study indicated that significantly 
high expression of miR-574-3p may regulate cisplatin 
resistance by targeting PSMA4. Ujihira et al. reported 
that miR-574-3p modulates tamoxifen response in breast  
cancer (31). Also, our study showed miR-106b and 
miRNA-182 expressions were downregulated in drug-
resistant group. Hu et al. (32) and Ning et al. (33) also 
showed that miR-106b and miR-182 were closely related to 
the altered chemosensitivity of human cancer, respectively. 
Contrary to the prediction, PKIA expression was found 
to be low in drug-resistant group in our study. This 
inconsistency between our prediction and results might be 
due to the prediction error. At present, the role of NCALD 
or SPIN1 in cisplatin resistance remains unclear. Notably 
according to our results, NCALD and SPIN1 might be 
potential targets of miR-182 and play a role in cisplatin-
resistant lung cancer, which was completely consistent with 
the prediction.

The cellular experiment plays an important role in 
the preliminary verification of further clinical sample 
experiment. A549 lung cancer cell lines, initiated in  
1972 (34), has been widely employed in various studies, 
such as the molecular pathogenesis of lung cancer and drug 
function mechanism research. It has been reported that 
cisplatin can induce both apoptosis and ferroptosis in A549 
cells (35). The designed light-triggered nanoparticles called 
P/C-Micelles exhibit enhanced cisplatin cellular uptake 
and reduced cisplatin efflux in A549 cells and cisplatin-
resistant A549 cells (36). However, it is worth noting that 
the mechanism of cisplatin resistance in lung cancer cannot 
be fully understood by only A549 cell lines due to cancer 
heterogeneity and different living conditions compared 
with tumor in vivo, more work on some different cell lines 
and tumor tissues is needed to validate these results in the 
future.

Data integration and data mining are important tools for 
understanding the mechanism of cancer drug resistance. In 
conclusion, in this study, a comprehensive bioinformatical 
analysis was employed to discover the potential biomarkers 
for cisplatin resistance. Some significant miRNAs and 
their predicted DEGs were validated by qRT-PCR. 
Although these identified genes still need to be verified by 
more molecular biology experiments and tested in lung 
cancer tissues, our study might have provided new clues 

for developing effective strategies against the cisplatin 
resistance during lung adenocarcinoma treatment.
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A B

Figure S1 DEG and GO analyses between cisplatin-resistant A549 cells and normal A549 cells in E-MEXP-3123. (A) A heatmap showing 50 upregulated and 50 downregulated genes. Red stands for upregulation; green stands for 
downregulation; (B) the top five terms of molecular functions, cell components and biological processes of GO enrichment analysis in DEGs. The x-axis represents gene counts. DEG, differentially expressed gene; GO, gene ontology.

Supplementary



Figure S2 PPI network and a selected module. (A) A PPI network of DEGs; (B) a selected module identified by MOCODE from the PPI network. Red stands for upregulation; green stands for downregulation; thick edge stands for a higher combined score. 
DEGs, differentially expressed genes.
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Figure S3 The DEMs in GSE43249 and a miRNA-targets network. (A) A volcano plot showing DEMs. Blue stands for DEMs; Red stands for non-DEMs; (B) a network consisted of miR-194, miR-192, miR-574-3p, miR-106b, miR-146a, miR-
182 and their target genes. DEMs, differentially expressed miRNAs.
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