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Introduction

Cells respond to DNA damage by activating checkpoint 
signaling and DNA repair pathways, collectively termed 
the DNA damage response (DDR), which promotes cell 
survival, and suppresses cancer by promoting genome 
stability and by triggering programmed cell death pathways. 
Components of the DDR are often defective in cancer, 
but because the DDR is a complex network of interacting/
cross-talking pathways, a defect in one DDR component 
can be compensated by alternative pathways. The DDR is a 

major determinant of cancer cell responses to chemo- and 
radiotherapy, most of which cause DNA damage directly or 
indirectly, thus DDR components are enticing targets in the 
quest to augment cancer therapy (1-6). 

Compensatory pathways within the DDR network 
also represent formidable obstacles to successful cancer 
treatment. By improving our understanding of DDR 
pathways, synthetic lethal relationships can be identified 
among different parts of the network that can be exploited 
to augment cancer therapy in general, and to develop 
personalized therapies based on knowledge of specific 
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DDR defects in patient tumors (7-10). This information 
may also be used to predict how further changes in the 
DDR (comprising DDR component inactivation, down-
regulation, or up-regulation) may compensate for prior 
defects and confer resistance to general or personalized 
therapeutics. Such predictions may permit oncologists to 
monitor tumor response to initial therapy and insert a new 
line of attack when resistance develops, or perhaps block 
the compensatory resistance pathway as part of the initial 
therapeutic strategy. This latter strategy may ultimately 
prove the most effective given recent insights that contrary 
to prior models that posited that cancer therapeutics 
induced mutations that confer resistance, the vast genetic 
heterogeneity characteristic of most solid tumors indicates 
that mutations that confer resistance to therapeutics are 
present subclonally prior to treatment (11). In this view, 
chemo- or radiotherapy simply selects for pre-existing 
resistant cancer cells, which can account for the significant 
rate of failed local tumor control in clinical settings. 
Translational research in ionizing radiation-induced DNA 
damage is a very active field, as the complexities of the 
DDR challenge researchers to define DDR defects in 
particular tumor types (and in specific patient tumors) and 

determine how to exploit these defects in personalized 
treatment to improve therapeutic outcomes. A particular 
focus is to develop rational strategies to inhibit redundant 
DDR pathways, so-called synthetic lethal approaches 
(6,9,10,12,13). 

DDR pathways

The DDR includes five major DNA repair pathways (some 
with sub-pathways; Figure 1) that process different types of 
DNA lesions. DNA damage can arise spontaneously as a 
result of chemical lability of DNA, or is induced by reactive 
oxygen species produced by normal cellular metabolism, 
nucleases such as RAG1/2 (14) or exogenous genotoxins 
including most cancer chemotherapeutics and ionizing 
radiation. The DDR also includes two DNA damage 
checkpoint signaling pathways (Figure 2), one centered 
on ATM that responds to double-strand breaks (DSBs), 
and one centered on ATR that is triggered by single-
stranded DNA (ssDNA) that forms when replication forks 
are blocked by DNA lesions (replication stress), and when 
broken ends of DSBs are resected (15,16). ATM and ATR 
are members of the PI3-kinase-like kinase (PIKK) family 
that also includes DNA-PK. Together, PIKKs are “early 
responders” to DSBs and replication stress caused by single-
strand damage and intra- and inter-strand crosslinks. Once 
activated, PIKKs phosphorylate large networks of proteins 
(17-19) including the downstream effector kinases Chk1 
and Chk2 that phosphorylate p53 and other targets to 
arrest the cell cycle in response to damage, promote DNA 
repair, and promote programmed cell death pathways when 
damage is too extensive (16,20-22). The DDR thus presents 
two general targets that can be manipulated for therapeutic 
gain: inhibiting DNA repair sensitizes cells to damage, and 
inhibiting checkpoint signaling prevents cell cycle arrest 
in response to damage, which increases replication stress 
(23-27). Great strides have been made in recent years to 
improve our understanding of DDR proteins and processes 
and this has been exploited to translate basic knowledge 
from the lab bench to preclinical models and in several 
notable cases to human clinical trials and clinical practice. 
Because the DDR is a complex network of cross-talking and 
redundant pathways, inhibiting a single pathway may have 
limited utility. For cancers with a specific defect, targeting 
a redundant pathway can cause synthetic lethality (9,10). 
This strategy is exemplified by the successful treatment 
of HR-defective (BRCA1/2-mutant) breast and ovarian 
cancers with PARP1 inhibitors (7,28). However, the highly 

Figure 1 Various types of DNA damage (boxes) are processed 
by five distinct repair pathways (red font). Interstrand crosslinks 
require multiple repair pathways.
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networked DDR also provides means for tumor cells to 
develop resistance to targeted therapies, and strategies 
are being developed to identify and block resistance  
pathways (29-32). 

Repair of IR-induced DNA damage

IR creates DNA DSBs and many types of single-strand 
damage (33). DSBs have gained the most attention due to 
their greater cytotoxicity and risk of triggering genome 
instability (22,34). In mammalian cells, DSBs are primarily 
repaired by classical non-homologous end joining (cNHEJ). 
cNHEJ is fast and error-prone, but it tends to produce 
small deletions and insertions at junctions so it prevents 
large-scale genome instability and suppresses cancer (35,36). 
DSBs are also repaired by homologous recombination 
(HR), which is slow and generally accurate, but it is largely 
limited to S/G2 phases (37). Alternative NHEJ (aNHEJ; 
also called microhomology-mediated end joining) can serve 
as a back-up to cNHEJ (38). aNHEJ is more error-prone 
than cNHEJ and more likely to create large-scale genome 
rearrangements such as translocations (38-40). Since cNHEJ 
is faster and more efficient than aNHEJ, the risk of genome 

destabilization by aNHEJ is low unless cNHEJ is defective 
(40-43). Single-strand damage (single-strand breaks, 
base damage, abasic sites) are repaired by a set of base 
excision repair (BER) pathways regulated by PARP1 (44),  
and by nucleotide excision repair (NER). 

DSB repair pathway choice is primarily determined by 
end resection (37). cNHEJ operates on unresected ends, 
catalyzed by the MRE11/RAD50/NBS1 (MRN) complex 
which trims radiation-damaged bases at broken ends 
prior to joining by Ku70/Ku80, DNA-PKcs, Lig IV, and  
XRCC4 (45). Broken ends at IR-induced DSBs can have 
a variety of chemical structures, some of which require 
processing by the Artemis nuclease (46). End resection is 
initially catalyzed by CtIP; this limited 5' to 3' resection 
can reveal microhomologies that serve to align ends for  
aNHEJ (47). HR requires extensive 5' to 3' resection 
(hundreds to thousands of nt), catalyzed by Exo1-BLM or 
Dna2-BLM (48-50). The long 3' ssDNA tails are initially 
bound by RPA, then RPA is exchanged for RAD51, and 
the RAD51-ssDNA filament searches for and invades 
a homologous sequence elsewhere in the genome. HR 
typically uses the sister chromatid as a repair template, 
as this reduces the chance for HR-mediated genome 

Figure 2 DDR signaling pathways. Ionizing radiation creates DSBs and single-strand damage that triggers PIKK activation (blue), which 
activates downstream effector kinases (green). Black arrows indicate functional pathways, red arrows indicate target phosphorylation by 
protein kinases. DDR, DNA damage response; PIKK, PI3-kinase-like kinase.
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rearrangements and large-scale loss of heterozygosity (6,51). 
Many proteins function with RAD51 in mediating HR, 
including BRCA1, BRCA2, PALB2, BCCIP, five RAD51 
paralogs (XRCC2/3, RAD51B/C/D), RAD54/B, and a 
growing number of Fanconi anemia proteins involved 
in HR repair of certain types of lesions (e.g., interstrand 
crosslinks) (52). 

IR creates DSBs by two distinct mechanisms. IR 
induces frank DSBs by direct energy absorption or more 
commonly through production of reactive oxygen species, 
and evidence of these DSBs (i.e., γ-H2AX foci) is apparent 
almost immediately after IR. IR also induces secondary 
DSBs several hours after IR—these appear several hours 
after irradiation, when replication forks encounter 
unrepaired single strand breaks or single-strand lesions, 
causing replication stress (53,54). Note that for every DSB 
produced by IR, approximately 30-fold more single-strand 
breaks are produced, along with numerous single-strand 
lesions such as broken rings, abasic sites, and interstrand 
crosslinks (55,56). Stalled forks are initially stabilized by 

checkpoint and repair factors including ATR, BLM, and 
BRCA2 (27,57-60), but if not restarted in timely manner 
blocked forks can be cleaved by structure-specific nucleases 
including the MUS81-EME2 complex and EEPD1, and 
possibly Metnase, causing fork collapse to DSBs (61-65). 
Importantly, the replication-associated, secondary DSBs 
induced by IR contribute to cell killing (53). 

Stalled and collapsed forks are preferentially restarted 
via HR which maintains genome stability and suppresses 
cancer (66,67). However, HR is a double-edged sword: 
when forks are not restarted in timely manner, HR factors 
can mediate formation of branched structures including 
“chicken feet” (68) (Figure 3), a recombination intermediate 
in a damage tolerance pathway. Some structures are toxic 
recombination intermediates that can induce genome 
instability or cause cell death if not resolved properly (69,70). 
The alternative to HR to repair DSBs at collapsed forks 
is NHEJ (40), but because DSBs at collapsed replication 
forks are one-ended (Figure 3), joining of DSBs at different 
collapsed forks causes large-scale genome rearrangements 
including deletions and chromosome translocations (71-73), 
or cell death if essential genes are inactivated or dicentric 
chromosomes are produced. From the discussion above it 
is clear that the tumor-killing effects of IR-induced DNA 
damage can be augmented in several ways. Repair of frank 
DSBs can be suppressed by inhibiting cNHEJ; repair of 
replication-associated, secondary DSBs can be suppressed 
by inhibiting HR; and replication stress can be increased 
by inhibiting repair of single-strand damage, e.g., with 
PARP1 inhibitors (74) or by blocking replication arrest 
with checkpoint inhibitors, which increases encounters of 
replication forks with unrepaired lesions. Given that the 
highly networked DDR provides tumor cells with ample 
“escape routes”, the most effective approaches may rely on 
multiple layers of targeting to achieve synthetic lethality, for 
example, by exploiting specific tumor weaknesses such as 
HR defects in some breast, ovarian, and other cancers with 
PARP1 inhibitors, or inducing “artificial synthetic lethality” 
by targeting multiple repair or checkpoint pathways in 
combination with radiotherapy (75). 

Distinctions between low and high linear energy 
transfer (LET) IR-induced DNA damage and 
repair

DNA repair systems evolved to deal with the constant 
threat of DNA damage from exogenous sources (UV 
light, low-level background ionizing radiation, genotoxic 

Figure 3 Sample fates of stalled replication forks. Stalled forks may 
regress to chicken foot structures that can serve as intermediates 
in an HR-dependent, lesion tolerance pathway; such structures 
may be cleaved, causing instability. Alternatively, stalled forks may 
be cleaved, causing fork collapse to one-ended DSBs. Collapsed 
forks may be restarted by HR, which preserves genome stability, 
or broken ends may be joined by NHEJ with ends from other 
collapsed forks, causing genome instability. HR, homologous 
recombination; NHEJ, non-homologous end joining.
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chemicals) and from endogenous ROS produced during 
oxidative metabolism. For the most part, DNA damage 
from these sources is widely dispersed, and repair 
pathways are highly efficient repairing such damage (76). 
LET is a measure of ionization density along a radiation 
track, and low LET IR largely produces dispersed DNA 
lesions. High LET IR, such as carbon and iron ions, create 
densely ionizing tracks that create complex, clustered 
DNA lesions including clustered DSBs, and clustered 
single-strand damage (77-82). Clustered DNA damage 
is repaired slowly or not at all, and this is a key reason 
why high LET carbon ions have 2–3-fold higher relative 
biological effect than low LET IR (83,84). It has been 
argued that the cytotoxic effects of low LET IR are largely 
due to occasional clustered lesions (78,83). In this view, 
the increased cytotoxicity of high LET IR simply exploits 
the intrinsic weakness of DNA repair systems to process 
clustered lesions. This can be understood as a consequence 
of the lack of natural selective pressure to develop systems 
capable of efficiently repairing clustered DNA damage. 
Clinical success with high LET carbon ions probably also 
reflects the fact that high LET IR has lower dependence 
on oxygen (83,84), thus hypoxic tumors resistant to 
traditional radiotherapy (e.g., head/neck, melanoma, and 
pancreatic cancers) are more readily controlled by carbon 
ion radiotherapy (85,86). The natural resistance of hypoxic 
tumors to low LET IR is a growing concern given recent 
evidence that most solid tumors have hypoxic regions (87). 

It is well established that clustered damage is repaired 
less efficiently than dispersed damage (78,79,81,83). Several 
studies indicate that HR plays a more important role in 
repair of damage created by high LET IR than low LET 
IR (82,88,89), at least in part due to increased resection 
of complex lesions induced by high LET IR (90), which 
promotes HR and suppresses cNHEJ. The difficulty 
in achieving proper repair of clustered DSBs does not 
depend on associated (clustered) single-strand damage, as 
clustered DSBs at engineered I-SceI nuclease sites greatly 
increases cell killing and causes massive genome instability 
(chromothripsis, chromosome translocations) that increases 
with increasing DSB density (91). The chromosome 
translocations were formed by aNHEJ, indicating that 
clustered DSBs are refractory to repair by cNHEJ (91). 
These results also indicate that high LET IR-induced 
chemical modifications at broken ends does not account for 
inhibition of cNHEJ, as I-SceI-induced DSBs have “clean” 
ligatable ends. It appears instead that DSB clustering per se 
suppresses cNHEJ. 

Targeting the DDR to sensitize tumor cells to IR 

Because of the cytotoxicity of DSBs, DSB repair proteins 
are attractive targets to sensitize tumors to radiotherapy. 
As cNHEJ is a primary determinant of resistance to low 
LET IR (X-rays, γ-rays, protons) throughout the cell cycle 
(45,92,93), blocking cNHEJ has long been pursued as a 
general strategy to radiosensitize tumors to IR, principally 
with inhibitors of DNA-PKcs (94,95). However, early 
DNA-PKcs inhibitors were relatively non-specific (96), 
and later versions with high specificity suffered from other 
problems, such as low bioavailability and rapid clearance 
or inactivation in vivo (97). The Turchi lab is currently 
investigating Ku inhibitors (3). LigIV inhibitors have also 
been investigated, but to date they have shown off-target 
effects or activities are too low to be therapeutically useful 
(98,99). In general, the promise of cNHEJ inhibition 
revealed in biochemical and cellular studies has not 
translated well to preclinical or clinical studies (3). 

With the recognition that certain cancers harbor HR 
defects, the success in treating such cancers with PARP1 
inhibitors, and the importance of HR for managing 
replication stress, including IR-induced replication stress, 
there is increasing interest in targeting HR, and RAD51 
in particular, for therapeutic gain. RAD51 is frequently 
overexpressed in cancers (100), which is associated with 
therapeutic resistance, poor prognosis, and increased 
metastasis (101). Overexpression of RAD51 is likely both 
an adaptation to oncogenic replication stress (27,102) and 
a driver of tumor progression via genome destabilization 
(103,104). RAD51 may be targeted by genetic means (e.g., 
siRNA knockdown or expression of micro-RNAs that inhibit 
RAD51), or by using small molecules to inhibit RAD51 
biochemical functions (101). Downregulation of RAD51 
preferentially sensitized tumor vs. normal cells to cisplatin-
induced DNA damage (105). Although this suggests similar 
benefits may be seen with radiotherapy, one study failed to 
show such benefits with glioma cells (106). This might reflect 
the fact that HR plays a lesser role than cNHEJ in conferring 
resistance to IR. The effects of RAD51 inhibition might be 
more pronounced if cell survival was more dependent on 
managing IR-induced replication stress, an idea supported 
by improved outcomes when RAD51 inhibition is combined 
with PARP1 inhibition (106). 

Personalizing cancer therapy based on known defects 
in DDR factors through synthetic lethal approaches is 
a rapidly expanding research area, both in the lab and 
in clinical practice (2,4,6-10,12,13,107-111). However, 
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there are additional opportunities for targeting cancer by 
inducing “artificial synthetic lethality”, that is by combining 
radiotherapy with drugs that inhibit redundant DNA repair 
pathways. Studies of inhibitors of heat shock protein 90 
(Hsp90) illustrate the value of this approach. Hsp90 is a 
molecular chaperone responsible for the conformational 
maintenance of a number of client proteins that play key 
roles in cell cycle arrest, DNA damage repair, and apoptosis 
following radiation (112). Inhibition of Hsp90 by different 
substances increases radiosensitivity of various cancer cell 
lines; however, although Hsp90 is the target for inhibition, 
radiosensitization reflects effects on various downstream 
proteins (113). Early Hsp90 inhibitors were based on 
the natural compound geldanamycin and its derivatives, 
17-allylamino-17-demethoxygeldanamycin (17-AAG) 
and 17-DMAG (114,115), and next evolved to the orally 
bioavailable BIIB021 (116), all of which sensitize cells to 
IR. Studies of 17-AAG demonstrated radiosensitization 
of tumor cells resulted from downregulation of HR via 
BRCA2 degradation, and decreased RAD51 function (117).  
Subsequent studies revealed that second and third 
generation Hsp90 inhibitors PU-H71 and TAS-116 
downregulated both HR and cNHEJ factors (118-120), 
thus these agents inhibit both major DSB repair pathways, 
and therefore induce a type of artificial synthetic lethality in 
combination with IR. Importantly, Hsp90 adopts different 
conformations in tumor vs. normal cells (121), thus Hsp90 
inhibitors radiosensitize tumor cells, but not normal cells 
(117-120). In addition, these effects are seen in both p53 
WT and p53 mutant tumor cells (122), suggesting the 
potential for broad use in cancer therapy. The advanced 
Hsp90 inhibitors that block both HR and NHEJ may prove 
especially useful in combination with high LET IR, given 
the more balanced reliance on both cNHEJ and HR in 
repairing clustered DNA damage (123). 

ATM and ATR are master regulators of DNA damage 
checkpoints (cell cycle arrest) through Chk2 and Chk1, 
respectively (15,16), and they also promote HR (124,125). 
Given that these kinases phosphorylate many hundreds 
of targets (19), it is difficult to pinpoint radiosensitization 
mechanisms. Nonetheless, it is well-established that ATR 
suppresses origin firing, protects stressed replication 
forks by stabilizing the replisome, and promotes fork 
restart through RPA phosphorylation (15), and ATM is 
an important regulator of the G1/S checkpoint. Thus, 
inhibiting checkpoint proteins can enhance IR-induced 
cell killing by at least two mechanisms: inhibiting DNA 
repair, and increasing replication stress. ATM inhibitors 

such as KU55933 and KU60019 sensitize cells to IR 
(124,126-129) and the latter has been shown to sensitize 
cancer (glioma) cells but not normal fibroblasts (129). VE-
821 and AZD6738 are specific ATR inhibitors currently 
in clinical trials as mono-therapy and in combination 
with radiotherapy for solid tumors (110). Chk1 inhibition 
by siRNA increases DNA damage-induced apoptosis 
and radiosensitizes p53-deficient cancer cells (130), and 
selective Chk1 inhibitors, CEP-3891, Chir-124, and 
UCN-01 also enhanced cellular radiosensitivity (131). 
Small molecule inhibitors of Chk1 (SAR-020106), Chk2 
(PV1019), and Chk1/Chk2 (AZD7762 and XL-844) have 
also been tested in preclinical studies in combination with 
IR (110). PV1019 is particularly interesting as it selectively 
kills or suppresses growth of cancer cells that overexpress 
Chk2 while protecting normal thymocytes from IR-
induced apoptosis (132).

Translational research in IR-induced DNA 
damage: rodent models

The ability to study IR-induced DSBs in an animal 
model system have allowed a comprehensive evaluation 
of biological effects, as well as the development of novel 
agents for radiotherapy, radiation protection, and treatment 
of radiation injury. There are numerous spontaneous and 
experimentally induced mutation syndromes caused by 
the dysfunction of various components of the DSB repair 
pathways that manifest as certain radiation hypersensitivity 
and chromosomal instability phenotypes. For example, 
mutation of the NHEJ process critical for T- and 
B-lymphocyte receptor development was used to create 
scid mice (133,134). When scid mice were irradiated, it 
was discovered that myeloid cells and fibroblasts were 
markedly more radiosensitive than those from control 
mice (133). Below we highlight examples of translational 
studies utilizing preclinical rodent models to understand 
how manipulation of IR-induced DNA damage repair and 
signaling can lead to clinical advances in radiation oncology. 
As described, pathways involved in signaling and repair of 
IR-induced DSBs are critical targets for cytotoxicity and 
the outcome of radiation therapy. Translational studies 
using rodent models to test the efficacy of combined DDR-
modulating compounds and IR have been performed with 
inhibitors of ATM, DNA-PKcs, Chk1/Chk2, PARP1, and 
Hsp90.

Mutations in ATM cause radiation hypersensitivity 
in patients with the autosomal recessive disorder, ataxia-
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telangiectasia; therefore, inhibition of ATM within tumors 
is a therapeutic approach designed to disrupt DSB repair 
and cause tumor radiosensitization. KU55933 is a relatively 
specific ATM inhibitor, but its analog KU60019 is more 
effective at blocking ATM phosphorylation (129). Using 
orthotopic xenograft models of glioblastoma multiforme in 
mice, it was demonstrated that combined IR and KU60019 
significantly increased the survival of mice by 2- to 3-fold 
when compared with controls (135); importantly, tumor 
radiosensitization was more pronounced in mice harboring 
p53-mutant glioblastoma xenografts than mice with 
genetically matched p53-wild-type tumors (135). The ability 
of ATM inhibitors to sensitize p53-deficient cancer cells 
to IR is critical in light of the tumor resistance to therapy 
associated with p53 mutations, and the high frequency of 
p53 mutations in malignant tumors (136). 

A novel and potent mTOR inhibitor, NVP-BEZ235, 
was shown to also inhibit ATM and DNA-PKcs (137), 
which have catalytic domains highly homologous to 
phosphoinositide 3-kinases (138,139). mTOR is also a PIKK 
family member, thus NVP-BEZ235 is a general PIKK 
inhibitor. NVP-BEZ235 blocks both cNHEJ and HR repair 
pathways and significantly attenuates DSB repair (137).  
In addition to reducing phosphorylation of ATM targets 
and G2/M cell cycle checkpoint activation, NVP-BEZ235 
was shown to radiosensitize a panel of glioblastoma 
multiforme cell lines. Although the effects of IR and NVP-
BEZ235 on tumor growth delay were not investigated, mice 
bearing subcutaneous glioblastoma multiforme xenografts 
were used to demonstrate that NVP-BEZ235 significantly 
impairs IR-induced DSB repair, validating the efficacy of 
this drug as a DNA repair inhibitor in vivo (137). However, 
as discussed by Goldstein and Kastan (136), a potential 
drawback of NVP-BEZ235 is that it also inhibits ATR, 
which is crucial in resolving stalled replication forks, and 
more generally for cell survival (140). Disruption of ATR is 
lethal at both the cellular and organism levels (141,142). As 
such, NVP-BEZ235 was predicted to induce unacceptable 
systemic toxicities in patients (136). Indeed, a phase II study 
of NVP-BEZ235 in patients with advanced pancreatic 
neuroendocrine tumors revealed that the drug was poorly 
tolerated and, because of this, it failed to reach the second 
stage of the study despite observed disease stability (143). 

As noted above, tumor radiosensitization can be achieved 
via inhibition of Chk1- and/or Chk2-mediated checkpoint 
signaling. Rodent models have been used to demonstrate 
the efficacy of Chk1 inhibitors as cancer therapeutics. 
UCN-01 proved to be efficacious as a single agent in 

delaying tumor growth of orthotopic and subcutaneous 
xenograft glioblastoma multiforme tumor models in 
mice (144), and the Chk1 inhibitor MK8776 sensitized 
subcutaneous pancreatic cancer xenografts to combination 
therapy with gemcitabine and IR (145). In an alternative 
approach, a genetically modified mouse model revealed 
that Chk2−/− mice were more resistant to normal tissue 
radiation damage than WT mice, as characterized in splenic 
lymphocytes, thymocytes, and neurons of developing 
brains (146). As noted above, the Chk2 inhibitor PV1019 
protects normal thymocytes from IR-induced apoptosis 
while simultaneously showing antiproliferative effects in 
cancer cells that express Chk2 at high levels (132), but this 
compound has not yet been tested in animal models. 

Because IR-induced base modifications and single-
strand breaks can indirectly induce toxic DSBs by blocking 
replication forks, inhibition of BER provides another means 
of radiosensitization. PARP1 promotes repair of single-
strand lesions and it has long been known that PARP1 
inhibition or genetic deletion enhances radiosensitivity 
(147-149). Genetically-modified PARP1−/− mice are 
hypersensitive to whole body irradiation compared to 
WT controls (150), and PARP1 inhibitors have been 
demonstrated to radiosensitize rodent xenograft models 
of human cervical carcinoma (151), colorectal cancer 
(152), lung cancer (153,154), head and neck squamous cell 
carcinoma (155), glioblastoma (156), and colon cancer (157). 
These preclinical studies were critical to the translation of 
PARP1 inhibitors to human clinical trials. 

Hsp90 inhibitors suppress HR by downregulating RAD51 
and/or BRCA2 (112,117-120). Preclinical studies of Hsp90 
inhibitors have been promising. In vivo radiosensitization 
with various Hsp90 inhibitors has been shown in human 
tumor xenograft models of cervical (158), prostate (159), 
and head and neck squamous cell carcinoma (116). A 
synthetic alternative, NVP-AUY922, was also developed 
and shown in vivo to delay tumor growth and increase end-
point survival in a head and neck squamous cell carcinoma 
xenograft model (112). Visual impairment has been a 
serious toxicity effect associated with early-generation 
Hsp90 inhibitors, and this has been largely overcome by the 
development of TAS-116 (160). Lee et al. (119) investigated 
the radiosensitizing effects of TAS-116 in low LET X-ray 
and high LET carbon ion-irradiated human cancer cells 
and mouse tumor xenografts. TAS-116 decreased cell 
survival of both X-ray and carbon ion-irradiated human 
cancer cell lines (HeLa and H1299 cells), and similar to 
other Hsp90 inhibitors, it did not affect radiosensitivity of 
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noncancerous human fibroblasts. The combined treatment 
of mouse subcutaneous cervical tumor xenografts with 
carbon ions and TAS-116 significantly delayed tumor 
growth compared to controls (119). In another HR 
targeting approach, growth of HeLa cell tumor xenografts 
in mice was significantly reduced by cisplatin combined 
with RAD51 knockdown (105), suggesting similar effects 
might be obtained by combining RAD51 inhibition with 
radiotherapy. 

While there is great value in these preclinical rodent 
models for studying radiation-induced DNA damage 
repair and therapeutic applications of DDR inhibitors, it 
is important to recognize the limitations of this model for 
translational science. First, in order to study human cancers 
using the standard subcutaneous xenograft model in vivo, the 
mouse immune system must be significantly altered, such as 
with athymic nude or severe combined immunodeficiency 
(SCID) mice. However, the immune system strongly 
influences overall therapeutic responses of cancer patients. 
Further, while murine orthotopic tumors are grown 
within their host tissue and mimic local tumor growth and 
metastasis, xenograft models usually rely on highly passaged 
cell lines and clonal selection may not mimic human tumors 
arising spontaneously in patients. Alternatives to xenograft 
models are genetically engineered animal models (GEM), 
where oncogenes are activated and/or tumor suppressor genes 
are inactivated to induce tumors in situ, generally via the 
temporally controlled and tissue-specific expression of CRE 
recombinase (161-163). Tumors initiated within GEM rodent 
models develop in a more natural microenvironment, with 
supporting vasculature, stromal cells, and an intact immune 
system; however, inducible tumors tend to be artificially 
homogenous, lacking the vast heterogeneity seen in natural, 
spontaneous cancer (164,165). Finally, murine tumor models 
frequently error towards false positive therapeutic results, 
with cancer cures in mice frequently failing to translate to 
humans (166). Despite these limitations, preclinical research 
in rodent models is a crucial and necessary step in taking 
positive therapeutic results from cell lines to the clinic. In the 
next section we discuss advantages of translational research 
that involves clinical trials to treat spontaneous tumors in 
companion animals. 

Past, present and future translational research 
opportunities with clinical trials to treat 
spontaneous tumors in companion animals

The value of spontaneously occurring tumors as a tool 

for translational research has recently received increased 
attention by cancer scientists. In June 2015, the US National 
Academy of Science Institute of Medicine’s National 
Cancer Policy forum hosted a workshop on comparative 
oncology. Comparative oncology was defined as the study of 
naturally occurring cancers in animals as models for human 
disease. This workshop titled “The Role of Clinical Studies 
for Pets with Naturally Occurring Tumors in Translational 
Cancer Research” explored a number of topics including 
the rationale for clinical trials, canine tumor biology, 
and lessons learned from comparative oncology (167).  
Although the focus of the workshop was primarily on 
the role of comparative oncology in drug development, 
the take-home messages are broadly applicable to cancer 
therapy in general including radiotherapy. 

Current interest not-withstanding, comparative oncology 
in the field of radiation oncology has been ongoing since 
the discovery of X-rays. Understanding normal tissue 
tolerance and regulatory factors is the cornerstone of 
radiation oncology. The effects of the radiation therapy 
should not be worse than the disease, so radiation dose is 
constrained by normal tissue tolerance. While speciation 
resulted in gradual changes over the course of evolutionary 
time, DNA repair is critical for the maintenance of 
genome integrity, and DNA repair mechanisms are highly 
conserved (168). Thus, the radiation sensitivity, and the 
radiation tolerance of normal tissues, is similar for most 
mammalian species. This means that radiation therapy data 
from humans is valuable for the treatment of veterinary 
patients, and vice versa. While naturally occurring tumors 
are used in a wide array of studies, including evaluation of 
chemotherapy and cancer imaging, here we focus on early 
studies that evaluated tumor control and radiation effects 
to demonstrate important principles in radiation oncology, 
and on more recent molecular advances that highlight 
the importance of comparative oncology in radiotherapy 
research. 

Shortly after Roentgen discovered the X-ray in 
1895, both human and animal skin tumors were treated 
empirically. With minimal scientific methodology, 
encouraging responses to treatment were reported in 
human and veterinary patients, including dogs and horses 
(169-171). The fields of human and veterinary radiation 
oncology followed parallel paths and information was 
frequently shared regarding treatment outcome and normal 
tissue effects at national and international meetings (172).  
Despite early excitement, radiation therapy did not provide 
an effective or easy treatment for cancer. Tumor control 
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was not durable, and patients were often plagued with 
severe radiation effects (173). Dr. Henri Coutard was a 
radiation oncologist at the Curie Institute in Paris whose 
keen observations changed radiation oncology (174). By 
the 1920s he was studying fractionation schemes using 
a more scientific method. He evaluated the impact of 
dose per fraction, total dose, tumor size, field size, and 
overall treatment time on tumor control and adverse 
radiation effects. While these studies did not elucidate 
an understanding of underlying biology, they did provide 
a protocol that could be safely delivered and resulted in 
more durable tumor control. During the same period, Dr. 
Alois Pommer, a veterinarian at what was then called the 
Vienna Veterinary High School, received funding from the 
Rockefeller Institute to start a radiation therapy program 
for animal patients. Pommer, like Coutard, published 
extensively on fractionation schedules, tumor control and 
radiation effects (173,175). These two pioneering radiation 
oncologists, both of whom used orthovoltage radiation 
equipment, provided a template for safe treatment for 
future decades. 

By the late 1960s scientists  had a rudimentary 
understanding of radiation biology, based on cell culture 
experiments and work with rodent tumor models. The 
Elkind lab reported that mammalian cells in culture could 
repair radiation damage, explaining one of the benefits 
of delivering dose in fractions instead of in large single  
doses (176). This led to other hypotheses about mechanisms 
underlying the efficacy of fractionated radiation therapy 
such as Wither’s description of the four Rs: repair, 
redistribution (in the cell cycle), repopulation, and 
reoxygenation of hypoxic regions (177). But cells in culture 
are isolated systems, and induced tumors in rodents lacked 
the complexity of human tumors. Naturally occurring 
tumors in companion animals (dogs and cats) share many 
commonalties with human tumors (178-180). Histological 
appearance and behavior of some animal tumors are 
markedly similar. The relative size of the tumor to the 
body is more comparable to that in rodent tumors, yet the 
gross tumor size is large enough for serial sampling. The 
size of the patients makes sophisticated imaging, treatment 
and monitoring possible, using the same technology used 
for humans. Most importantly, the tumors share similar 
microenvironments. In both species tumors can be acutely 
or chronically hypoxic, and intra- and extracellular pH may 
be altered. Genetic changes observed in human tumors are 
seen in canine tumors, and unlike many rodent models, the 
immune system is intact (180). 

Dr. Edward L. Gillette helped establish a Veterinary 
Radiation Oncology program at Colorado State University 
in the late 1950s, with a vision of using naturally occurring 
tumors as a model for human disease. In 1968 he worked 
with Drs. Herman Suit and Rodney Withers at M.D. 
Anderson Cancer Center (181). These colleagues saw the 
value of the dog model and they encouraged Gillette to 
pursue research in comparative oncology. Gillette’s work in 
intraoperative radiation therapy set the standard for normal 
tissue tolerances in human and veterinary medicine, and 
his work evaluating the impact of fraction size and field size 
helped create data on α/β ratios that are still used by both 
veterinary and human radiation oncologists (181-191). But 
it was Gillette’s work using spontaneous tumors to evaluate 
radiation biological principles that elevated the value of 
the naturally occurring tumor model. Therapeutic gain 
in the context of radiotherapy was based on the concept 
that to improve treatment outcome (tumor control) while 
maintaining quality of life (limited late effects), both 
tumor control and late effects needed to be evaluated and 
compared between different treatments. Tumor control 
without complications is the ultimate exploitation of 
differences in DNA repair characteristics between tumor 
cells and late responding normal tissues. Gillette was able 
to prove this principle because of the flexibility for trial 
design in the naturally occurring tumor model in veterinary 
patients. He first conducted a trial in which dogs with 
naturally occurring squamous cell carcinomas of the oral 
cavity were randomized to receive different total doses of 
fractionated radiation. The patients were followed through 
their lifetime for tumor control and late radiation effects. 
He used this information to determine the dose that 
provided the best tumor control with least complications, 
and these radiation dose groups were also tested with 
hyperthermia treatments (192,193). These studies helped 
inform the design of clinical trials in human patients. 

These early clinical studies of normal tissue and tumor 
responses to radiation in naturally occurring tumors in 
dogs led scientists to further utilize this translational model 
by evaluating DNA repair characteristics in normal dogs 
and in canine tumors. Sequencing of the canine ATM 
mRNA demonstrated high homology with the human 
counterpart, both in the promoter and overall gene 
structure, facilitating comparative studies of ATM function 
in dogs and a potential model for ATM deficiency (194). 
There is significant overlap between deregulated human 
and canine genes in mammary tumors, as well as from 
normal mammary tissues (195). ATM mRNA and protein 
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expression were shown to be downregulated in canine 
mammary tumors (196), consistent with frequently observed 
checkpoint and DNA repair defects in human tumors (2,16). 
Recently the molecular mechanisms of both XLF and Ku-
dependent NHEJ in canines was evaluated and proposed 
as a platform for development of novel chemotherapies 
for dogs and humans (197,198). Human cancer cell lines 
have been extensively characterized over the years, but 
only recently have in-depth studies of radiation sensitivity, 
including analysis of radiation-induced DSB repair been 
undertaken. Twenty-seven established canine cell lines were 
evaluated and radiation-induced DSB repair was related 
to radiation sensitivity, as previously shown in human 
tumors (199). Thus, canine cancer models present many 
translational research opportunities to exploit fundamental 
knowledge about DNA repair to improve radiotherapy. 

Conclusions

There was broad consensus at the Institute of Medicine’s 
National Cancer Policy Workshop that a more detailed 
characterization of the canine genome, and expansion 
of comparative oncology research will define similarities 
and differences in dog and human cancers to benefit both 
companion animal and human patients (167). There are 
broad opportunities to apply well-established clinical trials 
techniques to explore promising leads in radiotherapy 
research: To augment and personalize radiotherapy using 
many forms of tumor molecular profiling (transcriptomics, 
metabolomics, DDR network analysis, etc.) and novel 
combination chemo-radiotherapies. By developing tools to 
evaluate DDR proteins in canine cells (197) or in treated 
tumors, biological responses to therapy can be defined 
and correlated with treatment outcomes to seek improved 
therapeutic strategies. 

There are many key frontiers in radiation oncology that 
can be advanced through expansion of comparative oncology 
research; several are highlighted here. The past decade has 
produced an explosion of information about DDR “strengths 
and weaknesses” that are just beginning to be exploited 
in clinical settings (1,2,5,101,107,110,111,200,201).  
DDR manipulation can involve radiosensitization of tumors, 
as well as radioprotection of normal tissue which would 
allow safe delivery of increased doses to tumors. Companion 
animals will likely play a key role at the new frontier of 
radio-immunotherapy with PD-1 and PD-L1 inhibitors, 
to unleash the power of the immune system to “clean 
up” micrometastases (and perhaps even well-established 

metastases) by enhancing the abscopal effect (201,202). 
Tumor imaging through advanced radiologic methods 
remains a critical foundation for radiotherapy, and an area 
with great potential for diagnostic and theranostic progress 
(again, best studied in large, easily imaged, animals), 
especially with novel PET isotopes linked to tumor-tropic 
biologicals or small molecules (203,204). Carbon ion 
radiotherapy, with >22 years human clinical practice and 
>20,000 human patients treated, is making great strides (85), 
but it is clear that to accelerate our understanding of the 
complexities of tumor and normal tissue responses to heavy 
and light ion radiation we must attack on all fronts: at the 
basic cell and molecular level, with preclinical small animal 
models, and with clinical studies of naturally occurring 
tumors in companion animals. This integrated approach 
offers the best chance to rapidly translate life-saving cancer 
cures to human clinical practice. 
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