
© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017;6(Suppl 6):S1091-S1097 tcr.amegroups.com

In the recent years, blockade of immune checkpoints 
to reinst i tute host  antitumor immunity has been 
extensively investigated in a variety of tumors (1). 
In the field of lung cancer, monoclonal antibodies 
targeting the programmed death 1 (PD-1) (also known 
as CD279) receptor and its ligand, programmed death-
ligand 1 (PD-L1) (also known as B7-H1) have been 
most studied. High profile clinical trials have shown 
impressive anti-tumor activity of PD-1/PD-L1 blockade 
and significant improvements in overall survival (OS)  
of non-small cell lung cancer (NSCLC) patients in the first-
line and/or second or more line settings (2-6), leading to 
approval of nivolumab, pembrolizumab and/or atezolizumab 
for treatment of NSCLC in the US, Europe and some 
other countries (7). Clinical trials with two other agents, 
durvalumab and avelumab, have also shown promising 
results (7).

In these clinical trials, correlation between PD-L1 
protein expression in tumor cells and/or immune cells by 
immunohistochemistry (IHC) and clinical responses to 
anti PD-1/PD-L1 agents has been evaluated. Although the 
PD-L1 expression generally serves as a marker to predict 
clinical responses, only up to 45% of patients whose tumors 
express high levels of PD-L1 respond to the blockade (6). 
Therefore, other factors in the tumor microenvironment 
including tumor-associated lymphocytes (TILs) and tumor-
associated macrophages (TAMs) may contribute to the 
response or resistance to the PD-1/PD-L1 blockade. In 
fact, it has been proposed that four different types of tumor 

microenvironment exist based on the presence and absence 
of TILs and PD-L1 expression (8,9). Further, some patients 
with tumors negative for PD-L1 expression have responded 
to those agents (2,4,5,10,11). It may be attributed in part 
to heterogeneity in PD-L1 expression within a tumor and/
or between primary and metastatic lesions, changes in 
the PD-L1 expression level pre and post chemo/radiation 
therapies and subjectivity in interpretation of PD-L1 IHC 
by pathologists.

Multiple groups have correlated PD-L1 expression with 
clinicopathologic features and prognosis in NSCLC leading 
to conflicting results (Table 1) (12,13). The discrepant results 
may be due to differences in study cohorts (ethnicities, 
histologic types and tumor stages), the type of specimens 
evaluated [whole histologic sections vs. tissue microarrays 
(TMA)], the method of protein expression analysis (IHC 
vs. immunofluorescence), quantification assessment (image 
analysis vs. microscopic observation), scoring system 
[the intensity and extent (including H scoring) vs. extent 
of positive tumor cells] and the cut-off for positivity. 
Among the clinicopathologic features, as mentioned 
briefly, tumor associated immune cells (TAICs) consisting 
of TILs and TAMs comprise an important element of 
tumor microenvironment, and their characteristics and 
interaction with PD-L1 expressing tumor cells likely dictate 
response to PD-1/PD-L1 blockade (9). However, only a 
limited number of studies have attempted to correlate the 
expression of PD-L1 with TAIC density and characteristics, 
particularly TILs, using a limited number of IHC markers 
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(e.g., CD8, CD45RO) or simple histologic evaluation (14). 
Thus, an assessment of a comprehensive panel of immune 
markers, ideally with an objective method, to characterize 
the association between PD-L1 expression, immune 
microenvironment, clinicopathologic features of tumors 
and patient outcomes is warranted to determine distinct 
subgroups of NSCLC.

With this background, Parra and colleagues characterized 
the expression of a large panel of immune markers (PD-
L1, PD-1, and 8 others) by IHC and assessed the TAIC 
densities in surgically resected NSCLC specimens [stage 
I–III, 146 adenocarcinomas (ADCs) and 108 squamous 
cell carcinomas (SCCs)] (14). In this study, the PD-
L1 IHC was performed using an automated platform 
(BOND-MAX, Leica Microsystems) with the antibody 
clone E1L3N (dilution 1:100; Cell Signaling Technology), 
the combination that has shown similar performance in 
detecting PD-L1 protein expression in NSCLC to the FDA 
approved PD-L1 IHC assays [PD-L1 IHC 28-8 and 22C3 
pharmDx assays (Agilent technologies/DAKO)] (15). To 
assess the expression of PD-L1 and various TAIC markers 
objectively, the authors applied quantitative image analysis 
on digitally scanned slides and correlated the findings with 
the clinicopathologic and molecular features and prognosis. 
While the results of the study confirmed the previously 
reported findings (the association of high PD-L1 expression 
and high TAIC densities with positive smoking history 
and solid histologic pattern in ADC patients) (12), several 
important findings have also been discovered.

First, the authors looked at the concordance of PD-
L1 expression between the whole section and the 
corresponding TMA cores in a subset of the cohort to 
answer the question whether PD-L1 expression on the 
tumor cells in a biopsy could represent that of the entire 
tumor. Using H-scores they found that PD-L1 expression 
on the tumor cells in whole histologic sections correlated 
positively and significantly with that in TMA cores (average 
of 3× or 2×1.0-mm cores per case) in both ADCs and SCCs. 
They also observed a positive and significant correlation 
between the expression of PD-L1 on tumor cells and TAMs 
in whole sections and that in five randomly selected 1-mm 
areas of each section leading the conclusion that randomly 
selected 3× to 5×1-mm areas could serve as surrogates for 
whole tumor sections. The results are different from those 
of two prior reports that showed discordant expression of 
PD-L1 on tumor cells when compared between the whole 
tissue section and the corresponding individual TMA 
cores or biopsy specimen (16,17). The difference could 

be explained by the methods used, but it appears to be 
important to obtain a tissue sample from multiple random 
areas of the tumor to represent the entire tumor tissue, 
since Ilie and colleagues also found in their study that there 
was a trend toward larger numbers of tissue fragments in 
the biopsy associated with concordant results when PD-L1 
expression was compared between the whole section and 
the corresponding biopsy specimen (16).

Second, the study has shown the differences in PD-
L1 expression as well as those in the distribution and 
characteristics of TAICs between ADCs and SCCs. Of 
those, membranous staining of PD-L1 on tumor cells with 
a 5% cut-off was present in 23% of ADCs and 31% of 
SCCs, and larger numbers of SCC specimens were positive 
for PD-L1 expression with various cut-offs than ADCs. 
In addition, SCCs exhibited significantly higher PD-L1 
H-score on TAMs than ADCs, while PD-L1 expression on 
TAMs was more frequently observed than that on tumor 
cells in both histologies. Of note, PD-L1 expression can 
be induced on TAMs by IFNγ and VEGF similar to that 
on tumor cells (18,19), leading to effective suppression 
of T cell immunity, and thus appearing to be biologically 
relevant and possibly associated with tumor progression. 
These results suggest that SCCs may have a milieu more 
responsive to PD-1/PD-L1 axis blockade than ADCs.

In order to show the difference in the distribution and 
characteristics of TAICs between the two histologies, 
the following immune markers were stained individually 
and counted both in the peritumoral and intratumoral 
components: CD3 (a marker for T cells), CD4 (a marker for 
helper T cells), CD8 and granzyme B (markers for cytotoxic 
T cells), CD57 (a marker for natural killer and senescent T 
cells), CD45RO (a marker for memory T cells), PD-1 and 
FOXP3 (markers for regulatory T cells) and CD68 (marker 
for TAMs). Interestingly, in the peritumoral compartment, 
SCCs exhibited higher densities of TILs expressing all 
markers except PD-1 than ADCs, while ADCs harbored 
higher densities of CD3+, CD4+ and CD57+ cells in 
the intratumoral compartment than SCCs. TAMs were 
more prominent in the peritumoral than intratumoral 
compartments in both histologies, but TAMs appeared 
to be more closely associated with tumor cells within 
the intratumoral compartment in ADCs than in SCCs. 
Furthermore, the assessment of both PD-L1 expression 
on tumor cells and TAIC densities in the whole section 
specimen found that the majority of TIL markers, but not 
CD68 (TAM), exhibited a significant positive correlation 
with the PD-L1 expression in both the intratumoral and 
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peritumoral compartments of ADCs, while the correlation 
was less significant in SCCs. These findings suggest that the 
two major histologic types of lung cancer harbor different 
immune microenvironments.

When the tumor microenvironment of the study cohort 
was classified into four types as proposed by Taube et al. 
(Figure 1) (8), however, the similar fractions (1/5 to 1/4) 
of the tumors harbored the immune microenvironment 
considered to be responsive to PD-1/PD-L1 blockade 
in both early stage ADCs and SCCs, although the latter 
may have the responsive microenvironment slightly more 
frequently than the former. In this study, membranous 
staining of any intensity on 5% of the tumor cells was used 
as the cut-off for positive PD-L1 expression and the mean 
density of CD3+ TIL as the cut-off for the presence of 
TILs, and revealed type I (adoptive immune resistance) in 
19% of ADCs and 24% of SCCs, type II (immunological 

ignorance) in 29% of ADCs and 26% in SCCs, type III 
(intrinsic induction) in 3% of ADCs and 7% of SCCs and 
type IV (tolerance) in 48% of ADCs and 43% in SCCs.

Finally it was shown that the densities of TAICs expressing 
several immune markers were associated with NSCLC 
patient outcomes, while PD-L1 expression on tumor cells 
was not significantly associated with the outcomes as much in 
multivariate analysis. In univariate analysis, however, PD-L1 
H-scores on tumor cells higher than the median and greater 
than 5 showed non-significant associations with shorter OS 
in ADCs. Interestingly, SCCs showed significant correlation 
of higher PD-L1 expression on TAMs (> the median H-score) 
with shorter OS and non-significant correlation with 
recurrent free survival (RFS), suggesting that PD-L1+ TAMs 
may contribute to tumor progression as well as response to 
PD-1/PD-L1 blockade (20).

Importantly, the role of TAIC densities predicting 

Figure 1 Four types of tumor microenvironment in association with cancer immunotherapeutic modules. (A) An example of type I (adaptive 
immune resistance) tumor with PD-L1 membranous staining on the vast majority of tumor cells and abundant CD8+ tumor infiltrating 
T cells; (B) a type II (immunological ignorance) tumor showing no PD-L1 expression on the tumor cells and essentially no CD8+ T cells 
associated with the tumor cells; (C) a type III (intrinsic induction) tumor exhibiting PD-L1 membranous expression on the vast majority of 
the tumor cells with very rare CD8+ tumor infiltrating T cells; (D) an example of type IV (tolerance) tumor with abundant CD8+ T cells 
infiltrating on the tumor cells that are negative for PD-L1. A-D, PD-L1 highlighted with a brown chromogen and CD8 highlighted with a 
red chromogen, ×200 magnification. PD-L1, programmed death-ligand 1.
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patient outcomes appears to be different between ADCs 
and SCCs, and between intratumoral and peritumoral 
compartments. In SCCs, abundant CD57+ cells in the 
peritumoral compartment were significantly associated 
with longer RFS and OS, while higher CD68+ TAM 
densities in the intratumoral compartment showed a non-
significant association with shorter RFS. Conversely, higher 
intratumoral CD68+ TMA densities were associated with 
longer RFS in ADCs. Similarly, higher intratumoral CD4+ 
and FOXP3+ cell densities were significantly associated 
with longer RFS and OS, but only in univariate analysis. 
Furthermore, a combined analysis of PD-L1 expression 
on tumor cells (H score >5) and CD4/CD8/CD68+ TAIC 
densities (< the median density) identified a small subset 
of ADC patients with shorter RFS and OS. Thus, it is 
important not only to evaluate TAIC markers and PD-
L1 expression individually, but also to conduct combined 
analyses to predict patient outcomes.

While the study has demonstrated the differences 
in distribution and characteristics of TAICs, their 
association with PD-L1 expressing cells and their 
prognostic significance between ADCs and SCCs through 
comprehensive and objective analyses of PD-L1 and various 
TAIC marker expressions, there are a few shortcomings. 
In particular, a single IHC assay per section was evaluated 
in the study, thus co-expression of multiple TIAC markers 
in a single immune cell and interaction of PD-L1 positive 
tumor cells  and/or TAMs with TAICs expressing 
different markers could not be assessed. For instance, the 
authors encountered a couple of unexpected findings: (I)  
the number of CD4+ and CD8+ cells combined was 
slightly larger than the number of CD3+ cells in both 
tumor types and compartments; (II) the number of cells 
expressing granzyme B was significantly lower than the 
cells expressing CD8. They only hypothesized that the 
presence of CD4+ non-T cells (monocytes/macrophages, 
eosinophils, progenitor cells and NK cells) and double 
CD4/CD8+ T cells (21) were attributed to the former, 
while the decreased proportion of granzyme B expressing 
CD8+ T cells in lung tumors was likely a result of yet-
to-be determined soluble mediators secreted by tumor 
cells (22). In this context, however, multiplex IHC or 
immunofluorescence assays may be able to demonstrate 
the presence of CD4+/CD8+, CD4+/CD68+ and CD4+/
CD57+ dual positive cells, and the expression of other 
markers in CD8+/granzyme B- T cells to gain insights. 
The multiplex assays could also reveal the spatial 
interaction between PD-L1+ tumor cells and/or TAMs 

and various types of TAICs facilitating the prediction of 
response to PD-1/PD-L1 blockade (23), and underscoring 
the biological significance of multiple results that were 
found in the study.

Another issue is the lack of treatment response data. The 
study cohort consisted of stage I–III NSCLCs to utilize 
resection specimens for multiple IHC assays. However, 
the similar assessment on tissue samples from advanced 
NSCLC patients who have been treated with anti PD-1/
PD-L1 agents, preferably using a multiplex assay, would 
further advance our understanding of distinct tumor 
microenvironments in association with response to PD-1/
PD-L1 blockade (24).
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