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Prostate cancer (pCa) is the second most common non-
cutaneous malignant neoplasm in men worldwide, with 
an estimated incidence of 1.1 million new cases per year. 
Furthermore, it is the fifth leading cause of cancer-related 
death, representing 6.6% of total male mortality (1). 

New cases of pCa mostly show a localized disease at first 
presentation diagnosis and they are potentially curable, 
unfortunately relapses occur in 20% to 30% of these 
patients despite a curative intent therapy. Moreover, the 
current incidence of lethal pCa metastatic evidence at the 
time of diagnosis has declined to 5% approximately (2,3).

Androgenic deprivation therapy (ADT) is a standard of 
care against pCa. This therapy reduces at first the tumor 
burden and/or circulating PSA to low or undetectable  
levels (4). However, the response duration should be 
variable from months to years with unavoidable disease 
progression in patients with metastatic disease (5). The pCa 
growing despite adequate ADT is defined as castration-
resistant prostate cancer (CRPC) (5).

Several new agents have been developed in metastatic 
CRPC (mCRPC) treatment, leading to the ability of 
androgen receptor (AR) signaling inhibition. These 
strategies include those drugs interfering with androgenic 
stimulation as abiraterone and enzalutamide, already 
approved in mCRPC disease over the last decade (6-9).

Despite a survival related improvement due these 
second-generation AR targeted therapies, acquired or 
inherent resistance may occur in all patients so that 
metastatic pCa currently remains incurable. Failure of ADT 
and chemotherapies (docetaxel and cabazitaxel) is the major 

cause of death in patients with CRPC (10,11).
New strategies will be necessary to improve cancer 

management. In order to assess an adequate process of 
anticancer therapy, targeting immune system represent a 
promising option. Checkpoint blockade immunotherapies 
have shown exciting results in several tumor types as 
NSCLC, melanoma and renal-cell cancer (12). 

The presence of inflammatory cells and T-cell infiltrates 
in pCa tissues provides the activity of a host immune-
response towards this neoplasm (13,14). Potential benefit 
from immunotherapeutic strategies in patients with CRPC 
is further suggested by preclinical studies achievements in 
experimental pCa models and the clinical activity results of 
sipuleucel-T (15-17). 

Despite that premises, current data demonstrates failures 
of various immune system targeting agents in mCRCP. 
Two phase III clinical trials assessing ipilimumab versus 
placebo after progression to docetaxel-chemotherapy and 
ipilimumab versus placebo in chemotherapy-naïve mCRPC 
setting showed no significant difference between the 
ipilimumab group and the placebo group in terms of overall 
survival (18,19).

Resistance towards immune checkpoint blockade (ICB) 
in pCa has to be still identified.

Myeloid-derived suppressor cells (MDSCs) play 
an important role in immunotherapy failure as well as 
pCa promotion and progression. In healthy subjects, 
immature myeloid cells (IMCs) generated in bone marrow 
differentiate into mature macrophages, granulocytes or 
dendritic cells. In cancer patients appears a partial blockade 
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in IMCs differentiation, which produce an expansion of 
this population. Moreover, among this pathological context 
there are evidences of upregulated expression of immune 
suppressive factors (ARG1, NOS2, NO, ROS) resulting 
in IMC population spreading with immune suppressive 
activity; these cells are known as MDSCs (20,21). A high 
amount of circulating MDSCs are associated with prostate-
specific antigen levels and higher risk of metastasis in  
pCa (21). Furthermore, a better knowledge of the immune 
infiltrate composition and interactions between cancer and 
immune system would help to identify proper candidates 
for immunotherapy (22).

In this clinical scenario Lu and co-workers hypothesized 
that the combination of target therapy against mCRPC-
infiltrating MDSCs with ICB agents may improve the 
response to immunotherapy (23). 

They conducted a preclinical trial using a novel chimeric 
mouse model of mCRPC, engineered with signature genes 
mutations implicated in the genesis of human pCa. The 
genetically engineered mice exhibited autochthonous tumor 
evolution among an intact immune system (23). 

Traditionally, preclinical studies have largely used 
xenograft models of human pCa, using cell lines of prostate 
tumor implanted into immune-deficient mice. However, 
xenograft models have several important limitations due to 
heterologous microenvironment and absence of endogenous 
immune response. Thus, the study of combination therapy 
using xenograft models appears to be inappropriate (24). 

Lu and his colleagues employed novel non-germline 
mCRPC model availing mouse embryonic stem cell clones 
(JH61 and JH58) derived from PB-Cre+ PtenL/L p53L/L 
Smad4L/L mTmGL/+ LSL-LUCL/+ (CPPSML) genotypes 
which exhibited age-dependent green fluorescent protein 
(GFP+) LUC+ pCa growth (23).

Mice that developed GFP+ cancer cells at 3 months, 
with a dissemination of cancer cells also to lung and lymph 
nodes, underwent to androgen deprivation therapy protocol 
(castration followed by enzalutamide-admixed diet) in order 
to induce CRPC. Then, CPPSML chimaeras with MRI 
documented mCRCP were assigned to therapeutic trials (23).

The selected target agents were the tyrosine kinase 
inhibitors dasatinib (Dasa) and cabozantinib (Cabo), and 
the phosphoinositide 3-kinase PI3K/mTOR dual inhibitor 
BEX235 (BEZ). Moreover, a combination of anti-CTLA-4 
and anti-PD1 was used for ICB. 

CPPSML chimaeras were randomized to receive 
single agent or combination treatment for 4 weeks. The 
combination CABO + ICB and BEZ + ICB showed a synergic 

efficacy to bring a significant burden disease reduction. On 
the contrary, administration of target single agents, dual ICB 
cocktail or DASA + ICB had minimal impact on prostate 
tumor mass and metastasis reduction (23).

Furthermore ,  authors  exp lored  tumor  micro-
environment modifications using CyTOF analysis of mouse 
prostate tumors (23). 

They demonstrated that Cabo + ICB and BEZ + ICB 
treatment was not associated with significant reduction 
of tumor-infiltrating T cells, but showed a reduction of 
Gr-MDSCs and an increase of CD8+/Treg ratio. Cabo or 
BEZ in combination with ICB mitigated the suppressive 
activity of intratumoral MDSCs on CD4+ and CD8+ T-cell 
proliferation (Table 1) (23).

Moreover, as parallel evidence, CD4+ and CD8+ T-cell 
proliferation was entirely blocked by Dasa. A significant 
reduction of tumour-infiltrating T cells was associated with 
Dasa treatment, related to T cell depletion into tumor 
microenvironment, probably due to the small impact of 
Dasa + ICB.

Cabo and BEZ combination treatment with ICB 
induced downregulation of pEGFR, pErbB2, pErbB3, pAxl 
and pPDGFRα, and reduced phosphorylated MET and 
VEGFR2. Finally, these combinations affected cytokine 
production in primary CRPC, with CCL5, CCL12, CD40, 
HGF reduction and IL-1ra, CD142 and VEGF increase. 
These cytokines modifications, less pronounced in Dasa + 
ICB treatment, may influence the activity of myeloid cells 
and upregulate the gene expression responsible of MDSC-
induced immune suppression (Arg1, Cybb, Ncf1, Ncf4) 
(Table 1) (23).

In conclusion, it appears reasonable believing that synergic 
effects of ICB and target therapies against mCRCP-infiltrating 
MDSCs, might be related to the selective MDSCs depletion 
and tumor microenvironment changes. 

Lu and colleagues confirmed the immunosuppressive 
T  c e l l s  a c t i v i t y  c a u s e d  b y  M D S C s  i n t o  t u m o r 
microenvironment, generating resistance to ICB. Whereas 
treatment with targeted agents against MDSCs enforced T 
cells, enhancing ICB.

On top of that, this paper highlights the importance 
of longitudinal immune-response study approach. In fact, 
the dynamicity of the immune system prevents conduction 
of data analysis extrapolated from a specific time point. 
Thus, exploring the microenvironment tumor changes and 
MDSCs levels appear incredible interesting.

Genetically optimization of an engineered mouse model 
of pCa leaded to significant advances to understand cellular 
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pathways from cancer initiation to castration resistance, 
through observation of disease progression. 

The development of a CPPSML chimeric mCRPC 
model in mice, looking for an efficient combinatorial 
immunotherapy, plays a promising approach in order to 
understand the relationship between novel therapies and 
microenvironment modifications. Probably, this model will 
provide important insights into pCa mechanisms. 

Based on these preclinical trials results, future clinical 
studies in human mCRCP patients should explore 
molecular mechanisms causing immunotherapy de novo 
resistance in pCa, in order to achieve the best combination 
therapy, identifying the most effective schedule protocols.
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