
© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2017;6(Suppl 8):S1321-S1330 tcr.amegroups.com

Introduction

Extracellular vesicles (EVs)

EVs are membranous vesicles originating from most 
cells via multivesicular bodies (exosomes), shedding 
from the cell membrane (microparticles), or produced 
by apoptotic cells (apoptotic bodies) (1) and released in 
many body fluids. The nature of the vesicles present in 
the extracellular environment is quite heterogeneous and 
consequently several terms have been applied to classify 
them (2). Discussions regarding the standardization of 
the isolation procedures and the identification of specific 

markers have been ongoing for years, but no consensus has 
been reached on the methods that could be implemented 
to unambiguously discriminate diverse classes of EVs (3,4). 
Therefore, in agreement with a previous report (5), we 
prefer to use the generic term “extracellular vesicles” to 
collectively denote all the vesicles obtained from biological 
samples or cell culture supernatants, regardless of the 
differences in biogenesis and composition.

EVs function as intercellular messengers transferring 
proteins, RNA species (messenger RNA, long noncoding 
RNA,  microRNA) ,  DNAs (mi tochondr ia l  DNA, 
chromosomal DNA), carbohydrates, and bioactive lipids. 
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The content of the cargo packaged into EVs differs from 
that in the originating cells, indicating that the loading 
process is selective (6). Circulating EVs can, therefore, 
represent powerful, minimally invasive, specific diagnostic 
and prognostic biomarkers for numerous diseases, including 
cancer (7,8). On the other hand, delivery of therapeutic 
bioactive molecules, in particular miRNAs, through EVs 
may be an innovative avenue for cancer therapy (9-12). 
In facts, as delivery vehicles, EVs support the release of 
microRNAs, anti-miRNA oligonucleotides and small 
interfering RNAs, protecting them from degradation. Due 
to lack of class I/II MHC molecules expression, EVs isolated 
from mesenchymal cells do not promote immune response, 
thus allowing harvesting also from non-autologous cells 
and repeated administration (13). Moreover, EVs have 
negligible toxicity and can deliver their cargo across the 
blood-brain barrier (14). 

Micro RNAs

Micro RNAs (miRNAs) are a class of approximately 22 
nucleotide-long, non-coding RNAs predominantly involved 
in the regulation of target gene expression, mainly at 
post transcriptional level, by binding to a complementary 
mRNA sequences (15). More than 2,500 miRNAs have 
been identified in eukaryotic cells, and they have been 
demonstrated to play a pivotal role in regulating diverse 
physiological and pathological processes including cancer 
development, metastasis and drug resistance (16,17).

Extracellular miRNAs have been identified in several 
biological fluids (18), protected from RNase degradation by 
association with Argonaute (Ago) proteins (19), in high- and 
low-density lipoprotein particles (20) or by inclusion into 
extracellular microvesicles (10). Up to 99% of circulating 
plasmatic miRNAs are bound to an Argonaute protein and 
are not enclosed within EVs (21). Argonaute are highly 
conserved and ubiquitously expressed proteins which play 
a key role in gene silencing. Ago proteins bind small non 
coding RNAs, including miRNAs, and mediate repression 
of specific target genes promoting mRNA degradation 
or inhibiting translation (22). Circulating miRNAs are 
mainly produced as “trash” RNAs from cells undergoing 
damage, necrosis and apoptosis. The functional role of this 
heterogeneous population of extracellular miRNAs is still 
a matter of debate (23,24). Yet, several lines of evidence 
strongly suggest that functional miRNAs contained into 
EVs can be delivered to, and specifically regulate gene 
expression on distal target cells during viral infection, 

immune response and tumor progression (25,26).
The ability of EVs to naturally and effectively transfer 

genetic information has opened up the perspective 
exploitation of EVs-mediated miRNAs delivery to modulate 
target genes expression for therapeutic purposes (27). EVs 
are less immunogenic and toxic in comparison to other 
gene therapy vectors, making them an ideal tool for local 
and systemic delivery of small RNA-based therapeutic 
molecules (11,28,29). To this end, different strategies have 
been developed for introducing exogenous genetic material, 
including miRNAs and anti-miRNAs, into EVs produced 
by non-tumoral cells (30).

Strategies for RNA loading into EVs

Less than 10% of the RNAs present into EVs corresponds 
to the transcripts in the originating parental cells (27), 
suggesting the existence of specific cellular machineries 
for loading RNA into EVs (31,32). The majority of the 
endogenous genetic material present into EVs is highly 
fragmented, with sequences below 700 nucleotides in  
length (33); a similar size limitation cutoff has been observed 
in studies of exogenous DNA packing into EVs (34). 
Therefore, EVs are unsuitable for full coding sequences 
transfer, but they can easily allocate and protect from 
endonuclease degradation non-coding miRNAs and siRNA, 
which are approximately 18–25 base pairs in length (26).  
Mechanisms of selective sorting are currently poorly 
characterized, but the packaging of miRNA into EVs seems 
to be correlated with the presence of a specific GGAG 
sequence, named EXOmotif (35,36).

EVs can be purified from conditional medium collected 
from large-scale in vitro cultures of producing cells such as 
mesenchymal cells (37). The yield, purity and integrity of 
RNA recovered from EVs are influenced by the methods 
of EVs purification (38). Therefore, precise analysis and 
accurate quantification of RNA in EVs is a challenging 
task, further complicated by the lack of specific standards. 
Notwithstanding these limitations, it has been estimated 
that, on average, in a mixed population of purified EVs 
there is less than one molecule of a given miRNA per 
EV (39), suggesting that either only a yet to be identified 
subpopulation of vesicles contains significant amounts of 
miRNAs or very few miRNA molecules are present in a 
single EV (40). At any rate, this level seems inadequate for 
effective target gene modulation (23). On the other hand, a 
single cell may produce up to 30,000 EVs per day and up to 
500 copies of miRNAs can be loaded into a single vesicle (41).  
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Therefore, by re-engineering naturally-derived EVs to 
increase specific miRNA payload, it might be feasible to 
obtain a suitable amount of EVs for clinical anti-tumor 
therapies (42-44). Two main approaches for loading 
miRNAs into EVs have been developed (Table 1) (57): the 
first, referred as preloading or endogenous method, involves 
the genetic modification of the EVs-producing cells; in 
the second, named post-loading or exogenous method, 
miRNAs are loaded into previously purified EVs (58). Each 
loading strategy has its advantages and limitations; the type 
of cells used as EVs source and/or the nature of the genetic 
material to deliver ultimately dictates the method of choice. 
For instance, by the pre-loading approach, using stable 
transfection or viral-mediated gene transfer, it is possible 
to establish genetically modified cell lines as convenient 
and dependable source for the in vitro production of EVs. 
On the other hand, transfection of primary cells with high 
efficiency and low toxicity, either with plasmid DNA, 
synthetic oligonucleotides or viral-mediated gene transfer, 
may represent a challenging task making the post-loading 
approach more suitable.

Pre-loading approach

The preloading approach is based on the observation that 
cellular overexpression of a selected miRNA determines 
the increment of its content into EVs (59). EV-producing 
cells can be either modified through genetic engineering 
using miRNA expressing plasmid or viral vectors or 

by introducing exogenous synthetic oligonucleotides 
that mimic the function of natural miRNAs, which are 
subsequently incorporated into secreted EVs. Possible 
interference of transfection reagents with EVs packaging 
should be taken into account (60). Our understanding of 
the cellular mechanisms of miRNAs sorting into EVs is 
incomplete; therefore, it is not clear whether some families 
of miRNAs might be preferentially packaged into EVs, 
making this method suitable only for some classes of 
miRNAs (61,62). Moreover, it should be pointed out that 
in the cell culture supernatant the majority of miRNAs is 
not associated with EVs (23); consequently, the efficiency of 
miRNA loading into EVs is generally limited. In addition, 
the pre-loading method requires extensive optimization in 
each distinct cell type used as EVs source. 

Post-loading approach

In  the  pos t - load ing  approach  synthet ic  miRNA 
oligonucleotides are introduced by electroporation or 
transfection into previously isolated EVs. Potentially, this 
should be a more controlled process compared to the pre-
loading approach, but increased problems related to EVs 
and miRNA integrity and functionality may arise (63). RNA 
precipitation and aggregation in the electroporation buffer 
have been observed during the process of transfer of siRNA 
oligonucleotides into EVs, making difficult to evaluate 
the loading efficiency, estimated to be below 0.05% (64). 
Refinement of the experimental condition permitted to 
achieve a 55% efficiency of miRNA loading into EVs (53). 
In contrast, other researchers have reported inefficient EVs 
loading of miRNA by electroporation and have opted for 
techniques based on transfection (65). Recently, a calcium 
phosphate co-precipitation transfection plus heat shock 
method for introducing miRNAs into isolated EVs has been 
reported (52). Then again, caution should be exercised in 
determining the loading efficiency because of the possible 
presence of complexes between transfection reagents and 
miRNAs not enclosed into EVs. The discrepancy in the 
success rate of miRNA loading reported by different groups 
may be further attributed to differences in EVs producing 
cells and/or in EVs purification methods.

EVs for therapeutic microRNA delivery

The use of EVs-mediated miRNA delivery to modulate 
target genes expression is currently under investigation as a 
beneficial tool for cancer therapeutics (66-68). Expression 

Table 1 Methods for RNA loading into EVs

Methods Ref.

Pre loading strategy

Transfection of miRNA mimics (45-49)

Transfection of plasmidic vector expressing 
specific miRNAs

(50)

Electroporation of plasmidic vector expressing 
specific miRNAs

(51)

Viral mediated transfer of miRNA coding  
sequence with EXOmotif

Baldari (u.r.)

Post loading strategy

Transfection plus heat shock of miRNA mimics (52)

Electroporation of miRNA mimics (53-56)

Virus modified EVs (41)

u.r., unpublished results; EV, extracellular vesicle.
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of miRNAs is aberrant in practically all forms of cancer (17); 
therefore, reversion to normal levels is a potential way for 
therapeutic intervention (69). Targeting specific molecular 
pathways, microRNAs may act both as tumor suppressors or 
oncogenes (70,71); consequently, two alternative strategies 
are intended to reestablish physiological miRNA expression 
in tumor tissues, either by restoring or repressing miRNA 
activity (Figure 1) (72).

miRNA as therapeutic agents: EVs-mediated miRNA 
replacement therapy

Some miRNAs act as tumor suppressors promoting 
cancer development through down regulation of cellular 
oncogenes. The expression of tumor-suppressor miRNAs 
is lower in cancer compared to normal adjacent tissues. 
Therefore, restoring normal levels by miRNA replacement 
strategy may provide therapeutic benefit (73). Exogenous 
administered miRNAs are expected to function as the 
endogenous counterparts, minimizing the risk of off-target 
effects. However, it cannot be ruled out that reaching 
supra physiological levels, exogenously administered 
miRNAs may target also previously unidentified genes (11). 
In addition, exogenous administration of miRNAs may 
lead to the saturation of endogenous miRNA processing  
enzymes, possibly leading to perturbation of miRNAs 
function (72,74). Furthermore, circulating miRNAs, in 
addition to their canonical role as post-transcriptional 
modulators, may act as ligands of toll like receptors, 
resulting in pro-tumoral stimulation (75).

miRNA as therapeutic target: EV-mediated miRNA 
inhibition therapy

The miRNAs overexpressed in cancer are considered as 

oncogenes and are consequently denoted as oncomiRs (71). 
They promote tumor development by down regulating tumor 
suppressive genes or genes implicated in cell differentiation 
or apoptosis. Therefore, the miRNA inhibition therapeutic 
strategy aims at inhibiting oncomiRs’ expression by 
delivery of specific miRNA antagonists, such as anti-
miRNAs, locked-nucleic acids (LNA), or antagomiRNAs 
(76,77).

Preclinical studies

Growing preclinical data support innovative EVs-based 
approaches for cancer therapy (1,42). Here we review the 
most recent preclinical studies which employed miRNAs 
or anti-miRNAs enclosed into EVs as active agents against 
various types of cancers (Table 2).

EVs naturally released by adult liver stem cells may 
inhibit the growth of hepatoma cells in vitro and in vivo via 
miRNAs transfer (80). In addition, several in vitro studies 
have clearly demonstrated that miRNA loading into EVs, 
and subsequent EVs-mediated miRNAs transfer can 
modulate gene expression in distinctive tumor target cells 
including breast cancer cells (45), and osteosarcoma cells (46).  
Unpublished results obtained by our group suggest that 
lentiviral vector-mediated transfer of EXOmotif-containing 
miRNAs into adipose tissue-derived stromal cells may 
represent a suitable strategy to obtain stable production 
of EVs for miRNA replacement therapy. Additional 
studies have provided the proof-of-principle of an effective 
reduction of tumor growth upon treatment with miRNA-
loaded EV in different animal models. For instance, EVs 
harvested from cell culture supernatants of adipose tissue-
derived stromal cells transfected with a plasmid expressing 
miRNA-122 were able to increase hepatocellular carcinoma 
cells sensitivity to Sorafenib both in vitro and in a xenograft 
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Tumor miRNA profiling

miRNA 
replacement

Therapeutic 
Strategy

EV Production 
& Engineering

EV-mediated 
miRNA delivery

miR is repressed  
(tumor suppressive miRNA)

Figure 1 Development of extracellular vesicles-mediated miRNA delivery strategies for cancer therapy.
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Table 2 EV-mediated miRNAs or anti-miRNA delivery for cancer therapy

Cargo EV source EV isolation Tumor target Ref.

MiRNA delivery

MiR-122 AT-MSCs ExoQuick-TC Hepatocellular carcinoma (50)

MiR-134 Hs578Ts cells ExoQuick Breast cancer (45)

MiR-143 BM MSCs Differential centrifugation Osteosarcoma (46)

MiR-146b BM MSCs ExoQuick-TC Glioma (51)

Let-7a HEK293 cells Differential centrifugation Breast cancer (65)

Let-7a Dendritic cells Differential centrifugation Breast cancer (55)

MiR-143 Macrophages – Colon cancer (47)

MiR-125b AT-MSC ExoQuick TC Hepatocellular carcinoma Baldari, u.r.

Anti-miRNA delivery

Anti miR-9 BM MSCs Differential centrifugation; total 
exosome isolation kit

Glioblastoma multiforme (78)

Anti miR-150 HEK293 cells Differential centrifugation Sarcoma (79)

ExoQuick TC, exosome precipitation reagent (System Biosciences, Mountain View, CA, USA); total exosome isolation Kit (Invitrogen, 
Carlsbad, CA, USA). u.r., unpublished results; EV, extracellular vesicle.

model (50). Similarly, EVs isolated from bone marrow-
derived stromal cells overexpressing miR-146, delivered via 
intra-tumor injection, reduced primary brain tumor growth 
in a rat xenograft model (51). Modifications of EVs to 
confer tumor targeting ability have been evaluated, allowing 
for specific therapeutic delivery of microRNA to breast 
cancer cells (55,65).

Al so  EV-mediated  miRNA inhib i t ion  therapy 
has been proven effective in experimental models of 
glioblastoma multiforme (78) and sarcoma (79), specifically 
downregulating the expression of miR-9 and miR-150, 
respectively.

Current challenges to the clinical translation

EVs have been recognized as paracrine mediators of cell-
based therapy, generating interest on their use in clinical 
applications for regenerative medicine purposes (81-83). In 
recent years, the potential of EVs as vehicles for the therapy 
of cancer has also been proposed (84,85), but published 
results of trials using EVs as miRNA carriers are not 
available yet (Table 3). 

In particular, clinical trials investigating EVs delivery for 
cancer treatment has mainly focused on the use EVs derived 
from dendritic cells for tumor immunotherapy (86,88). 
Additional studies have investigated EVs for delivery 

Table 3 Clinical trials investigating extracellular vesicles delivery in cancer therapy

Indication EVs source Phase Ref.

Metastatic melanoma Dendritic cells pulsed with antigen peptides Phase I (86)

Colon cancer Ascites Phase I (87)

NSCLC Dendritic cells pulsed with antigen peptides Phase I (88)

NSCLC Dendritic cells Phase I-II NCT01159288* (89) 

Malignant ascites and pleural effusion Tumor cell derived EVs loaded with chemotherapeutic drugs Phase II NCT01854866*

Colon cancer Plant exosomes conjugated with curcumin Phase I NCT01294072*

*, ClinicalTrials.gov Identifier. NSCLC, non-small cell lung cancer.
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of chemotherapeutic drugs (Table 3). Collectively, these 
phase I and II trials provided evidences on the feasibility 
of producing clinical grade EVs and on the safety of their 
administration with no adverse effects observed (90).

Several clinical trials using microRNAs as therapeutic 
agents are currently under investigation (91,92); successful 
clinical application requires the development of an 
effective and safe delivery system (29). EVs are naturally-
adapted transporters of miRNAs with negligible toxicity, 
low immunogenicity, high stability, and which are also 
amenable to modifications aimed at conferring tropism as 
well as at improving the loading of specific cargoes (84,93).  
Nonetheless, several issues need to be addressed before 
clinical use of EVs as therapeutic tools (58). Crucial 
problems are: (I) identification of the most proficient 
EVs cellular source suitable for clinical application; (II) 
optimization of the methods for obtaining high yields 
of pure EVs; (III) definition of the requirements for 
the characterization of purified EVs; (IV) setting of a 
regulatory framework for using EVs for therapeutics as 
advanced therapy medicinal products (58). Additional 
specific problems arise for the clinical translation of EVs-
mediated miRNA delivery for cancer therapy (85). In 
particular, methods for miRNA/antagomiRNA loading into 
EVs (94) and for precisely defining the yield of the loaded 
cargo should be optimized (38). A better understanding of 
the molecular mechanisms by which miRNAs are sorted 
into EVs and subsequently released by different cell types 
is needed (95). Purified EVs loaded with miRNAs/anti-
miRNAs can be delivered either systemically or through 
local injection into the tumor (72). For therapeutic 
intervention on easily accessible primary tumors such as 
melanoma or breast cancers, EVs can be delivered by local 
administration, reducing the risks of dissemination, off-
target effects and toxicity. However, for other tumors and 
for metastatic cancers, EVs should be delivered systemically. 
Though, preclinical studies suggest that exogenously 
EVs administered by systemic administration are rapidly 
cleared by the macrophages of the mononuclear phagocyte  
system (81,96). A deeper understanding in biodistribution and 
pharmacokinetics profiles of EVs administered by different 
routes and modalities (acute vs. repeated administration) is 
required before clinical translation (56,81). Interestingly, 
some preclinical studies have provided evidence that EVs 
can be engineered to enhance their targeting capability to 
tumor tissues (65). Cellular uptake of EVs is likely to be 
cell type-specific, however the mechanisms involved in the 
process are not completely elucidated (97). In addition, dose 

escalation studies of exogenously administered EVs loaded 
with miRNAs should be performed in order to define the 
therapeutic window and the maximal dose permitted without 
saturating the endogenous miRNA processing machinery in 
non tumoral cells (72).

Conclusions

EVs represent a safe vehicle for efficient delivery of 
therapeutic miRNAs. Strategies to further promote 
the therapeutic efficacy of EVs, such as methods for 
loading specific miRNAs/anti-miRNAs and to provide 
for targeted uptake by tumor cells have been proven 
effective in preclinical studies. Processes of pharmaceutical 
manufacturing of EVs suitable for clinical application 
are currently under investigation (98). However, before 
clinical application of EVs mediated miRNA delivery as a 
therapeutic strategy in cancer, a better understanding of EV 
biogenesis and functions is needed.
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