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Background: The reproducibility of radiomic features is a critical challenge facing radiomic models of
tumor prediction or prognosis. The aim of this study is to evaluate the reproducibility of radiomic features
with the GrowCut and GraphCut semi-automatic tumor segmentation methods in hepatocellular carcinoma
(HCC) CT images.

Methods: Computed tomography (CT) data sets (arterial enhanced phase) of 15 patients with HCC were
randomly selected in this study. To acquire the gross tumor volume (GTV), semi-automatic segmentation
with the GrowCut and GraphCut methods was implemented in 3D Slicer software by two independent
observers. Meanwhile, manual delineation of the GTV was implemented by five abdomen radiation
oncologists in this study. We divided the sample into three groups: the GrowCut group, the GraphCut group
and manual group. Radiomic features (including tumor intensity histogram-based features, textural features
and shape-based features) were extracted using the Imaging Biomarker Explorer IBEX) software. The intra-
class correlation coefficient (ICC) was applied to assess the reproducibility of all radiomic features.

Results: The radiomic features in the GrowCut group (ICC =0.87+0.19) showed higher reproducibility
compared with the radiomic features in the GraphCut group (ICC =0.82+0.24, P<0.001) and the manual
delineations group (ICC =0.80£0.21, P<0.001), respectively. For intensity histograms, semiautomatic
segmentation tools can yield more reproducible features. GLCM features were more robust in the GrowCut
group segmentations. Furthermore, no statistically significant difference in the remaining feature categories
was observed between the manual method and two semiautomatic methods.

Conclusions: Our study reveals that variations exist in the reproducibility of quantitative imaging features
extracted from tumor regions segmented using different methods. The 3D Slicer can serve as a better
alternative to the manual delineation, and care must be taken when selecting segmentation tools to draw the

tumor region.
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Introduction

Hepatocellular carcinoma (HCC), the sixth most common
cancer worldwide, is the main type of cancer in liver
parenchymal cells (1). Medical imaging techniques, such as
computed tomography (CT), magnetic resonance imaging
(MRI), positron emission CT (PET-CT), play important
roles in oncology. Especially in radiotherapy, imaging
dominates treatment planning and response monitoring (2).
Several publications have shown that quantitative image
features have potential applications in providing consistent,
nonbiased descriptors to the tumor research.

For the past several years, as an emerging individualized
precision medical technology, radiomics has applied
advanced computational methodologies to transform the
image data of the regions of interest into high dimensional
feature data. Next, quantitative and high-throughput
analysis of feature data is completed to probe tumor
phenotype (3-6). Radiomics utilizes noninvasive imaging
to provide more comprehensive information about the
entire tumor and can be used in diagnosis, prognosis
and prediction (6,7). For patients with colorectal liver
metastases, relative differences of CT textural features
occurring after treatment were better than RECIST in
predicting and assessing the pathological response to
chemotherapy (8). Another, more recent HCC radiomics
study showed that CT-based radiomics signature was a
powerful predictor for preoperative estimation of early
recurrence (9).

The radiomics features must be reproducibility, non-
redundancy and informative (10). Reproducibility, the
most basic and essential problem in radiomics, refers
to measurements of radiomic features performed using
different equipment, different methods or observers, or at
different sites and times (10,11). The reproducibility may
be influenced by many factors, such as imaging devices (12),
repeat CT scans (13-15), tumor volume definition (16-18)
and feature extraction (19,20). For acquiring accurate
results, the producible features should be selected in
building prognostic or predictive models.

Tumor segmentation is crucial for subsequent
quantitative imaging extraction. Although manual
delineation by experts is a common method considered as
a ‘gold standard’, it is time-consuming and suffers from
inter-observer variability. Recent studies have shown that
3D Slicer semiautomatic segmentation results were almost
consistent with the manual contour by expert (21-23).
3D Slicer (23) is a free and open-source software package
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for medical image analysis in which many extensions are
available for tumor segmentation on CT images. Since liver
tumors have indistinct borders, there is high variability in
radiologists’ determination of tumor outlines, leading to
increased variation in features extraction (17). However, to
the best of our knowledge, few studies have investigated the
stability of radiomic features extracted from tumor regions
defined by different semiautomatic methods.

In this study, we evaluate the reproducibility of quantitative
imaging features derived from tumor volume segmented using
GraphCut and GrowCut interactive methods in 3D Slicer and
to determine robustness of feature categories to propel clinical
radiomics research of HCC patients.

Methods
CT imaging data of HCC patients

The CT imaging data set of 15 patients who have been
diagnosed with primary HCC between December 2015 and
May 2016 were randomly collected. All patients received
abdominal enhanced CT scanning, and a Philips scanner
(Holland, CT Lightspeed 16) was used with an imaging
protocol of tube voltage 120 kV, cube current 300 mA,
thickness 3 mm and in-plane resolution 0.97x0.97. Each
patient has only one lesion (the volume range of tumor
is 5-168 cm’, median 19 cm’). Arterial CT images were
included in this study. This study was approved by the
institutional review board (IRB) and ethics committee of
Shandong Cancer Hospital Affiliated to Shandong University.
The ID/number of ethics approval was 201606021.

Semiautomatic tumor segmentation

3D Slicer is an open-source, publicly available image
analysis platform and was developed for segmentation,
registration and three-dimensional visualization. In this
study, GraphCut (24) and GrowCut (25) were implemented
in 3D Slicer and tumor volume was defined twice by each of
the two independent observers to determine intra-observer
reproducibility. The runl and run2 were first and second
segmentations among different observers to assess inter-
observer reproducibility.

Graph Cut semiautomatic segmentation

The knowledge based star shape prior was incorporated
in the graph cut algorithm in the 3D Slicer GraphCut
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extension. Star shape prior is a generic shape prior that
applies to a wide class of objects to achieve more robust
segmentation. Graph cut turns the image segmentation
into discrete graph optimization (min cut/max flow). First,
this method builds an energy function after mapping the
images to undirected weighed graphs; meanwhile, voxels in
the images are treated as graph nodes. Next, the similarity
of nodes in graph is calculated as the weight of connections
between nodes. Finally, the min cut and energy function
minimized strategy is employed to obtain the optimal
segmentations.

Before GraphCut was activated in 3D Slicer, operators
need to add four fiducials around the tumor after loading
images. Two fiducials on the first slice and last slice where
the tumor begins and ends to show to identify the start-end
of the tumor and two fiducials on the middle slice where
the tumor area is the largest at the diagonal corners of a
rectangle, which can contain the tumor. Thereafter, 2D or
3D star shape constraints can be checked as needed.

GrowCut semiautomatic segmentation

GrowCaut has better performance on accuracy and speed in
tumor segmentation by using a competitive region growing
algorithm (22,24). A set of initial labels needs to be given
by users to mark foreground and background, and cellular
automata automatically segments the remaining image
using a weighted similarity score. The neighbor that results
in the largest weight greater than the given voxel’s strength
confers its label to the given voxel. If there are two or more
tumors in the image to be segmented, the corresponding
class of initial labels was needed.

The GrowCut is executed as follows: first, it defines the
tumor and non-tumor region with different label value;
next, algorithm automatically computes a region of interest.
After that step, GrowCut was activated to label iteratively
all of the voxels in the ROT until all the voxels are labeled or
until no voxel can change its label any more.

If not satisfy with the result, the foreground tumor region
can be edited manually both in GraphCut and GrowCut.

Manual tumor delineation

Five experienced radiologists manually defined the gross
tumor volume (GTV) of primary HCC in MIM software
(www.mimsoftware.com) twice per radiologist using standard
delineation protocol (window width: 200 HU, window level:
40 HU). The radiologists were blind to one another.
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Quantitative imaging feature extraction

Seventy-one quantitative imaging features were extracted
from the information contained in the voxels of the tumor
region segmented by the three strategies. This process was
implemented in IBEX (Imaging Biomarker Explorer, MD
Anderson cancer center, USA), an open-source, easy to use
radiomic software (26). These features were organized into
three categories: (I) intensity histogram; (II) texture; and (I1I)
shape. Seventeen first-order statistical features derived from
the tumor intensity histogram reflect distribution of values
of individual voxels without concern for spatial relationships.
Thirty-eight textural features describe spatial arrangement
of voxels were calculated from different parent matrices,
including gray-level co-occurrence matrix (GLCM), gray-
level run-length matrix (GLRLM), neighbor gray-tone
difference matrix (NGTDM). Sixteen shape based features
provide the geometrical of tumor volume. To reduce the
effect of noise on the textual features, all of the voxel
intensity values within the ROI were rescaled to 8-bit images
using a discrete resampling method before calculating
the GLCM, GLRLM, and NGTDM features (27).
In this study, GLCM features were the average of all
13 symmetric directions in 3D, GLRLM features were
the average of values calculated from 2 directions in
the 2D slice-by-slice, and the NGTDM was defined by
neighborhood in the 3D.

Statistical analysis

In this study, intra-class correlation coefficient (ICC) as
defined by McGraw and Wong (28) was employed to assess
the reproducibility of radiomic features derived from tumor
volume segmented by three methods. ICC is a descriptive
statistic between 0 and 1, where 0 and 1 indicate null and
perfect reproducibility, respectively. A variety of algorithms
were provided in the literature for the ICC calculation. To
assess the reproducibility of radiomic features extracted
from inter-observer segmentations, we used the definition
of ICC(A,1), and variance estimates were obtained from
two-way mixed effect model of analysis of variance
(ANOVA), given by:

MS, - MS,

ICC(A, 1) = -
MS, + (k - )MS, + ~ (MS, - MS,)
n

Additionally, we used the definition of ICC(C, 1) to

Transl Cancer Res 2017;6(5):940-948



Translational Cancer Research, Vol 6, No 5 October 2017

assess the reproducibility of radiomic features derived from
intra-observer segmentations, variance estimates were
obtained from one-way analysis of variance (ANOVA), with
the following form:

MS, - MS,

ICC(C, 1) =
MS, + (k - 1)MS,,

where MS; = mean square for rows (observations, fixed
factor), MS), = mean square for residual sources of variance,
MS;; = mean square error, MS;= mean square for columns
(observers, random factor), k and n represent number of
observers and number of subjects, respectively. In order to
help readers to better understand the model, we provide
a table of measurements of GLCM-Contrast from all
segmentations as one example. It can be found in 7able S1.
To compare the differences of feature range between
manual and two semi-automatic segmentations, Z-score
normalization was applied to standardize the radiomic
features because different features would have various
ranges. The Z-score normalization was defined as follows:

where 1 and o were the mean value and standard deviation
of radiomic features, respectively.

Wilcoxon rank-sum tests were used to compare the
differences of ICC between manual delineation and two
semiautomatic methods. P<0.05 was considered to be
significant. All data were expressed as the mean = SD. SPSS
version 22.0 (SPSS, Chicago, IL, USA) was used for ICC

and Wilcoxon rank-sum test computation.

Results

The ICC values of the 71 quantitative imaging features
across tumors segmented by three methods was presented
in Figure 1. Noticeably, radiomic features derived
from GrowCut-based segmentation (ICC =0.87x0.19)
had significantly higher ICC values compared to
features extracted from GraphCut-based segmentation
(ICC =0.82+0.24, P<0.001) and manual delineation
(ICC=0.80£0.21, P<0.001). The statistically significant
difference was observed in ICC values for features-based
GraphCut and manual segmentation (P=0.036). For ICCs of
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manual, GraphCut and GrowCut methods, the confidence
intervals were (0.608, 0.954), (0.774, 0.938) and (0.752,
0.967), respectively. Overall, 53 of the radiomic feature
showed higher ICC for GrowCut, and 47 showed higher
ICC values for GraphCut segmentation sets compared to
the manual method (P<0.001). Also, comparing GrowCut
to GraphCut, 52 features with higher ICC values were
extracted from GrowCut segmentations.

For tumor intensity histogram features, no statistically
significant change was observed in GraphCut segmentation
sets ICC =0.77x0.29) compared to the manual method (ICC
~0.7620.26) (P=0.332), but GrowCut (ICC =0.90+0.14)
showed significantly higher reproducibility (P<0.001).
For GLCM features in the textural category, GraphCut
(ICC =0.89+0.11) and GrowCut (ICC =0.91+0.12) has
significantly higher reproducibility than the manual method
(ICC =0.77£0.23) (P=0.010, P=0.004, respectively). For
GLRLM, NGTDM features in textural category and shape-
based features, no statistically significant difference was
observed between the manual and the two semiautomatic
methods. All of the features were divided into four groups
according to their ICC values: excellent (0.73< ICC <1),
good (0.6< ICC <0.75), fair (0.4< ICC <0.6) and poor ICC
<0.4) reproducibility (29). The number of features in each
group is presented in Tuble 1. The excellent reproducibility
of radiomic features for manual, GraphCut, and GrowCut
segmentations were 73% [52], 77% [55], and 81% [58] of
total, respectively. These features can be found in Figure S1.

To evaluate the effect on robustness with multiple
algorithmic initializations, we analyzed the ICC of
features extracted from inter-observer and intra-observer
segmentations. In Figure 24, we observed higher ICC values
in GrowCut inter-observer segmentation groups (average
ICC =0.87+0.18). In Figure 2B, higher ICC values were also
observed in GrowCut intra-observer segmentations (average
ICC =0.90+0.11). There are distinct differences of ICC in
GraphCaut for both inter- and intra-observer segmentation
(P<0.001, P=0.008, respectively). Figure 3 depicts the Z-score
normalized feature range of all of the 18 segmentation sets (10
manual, 4 GraphCut and 4 GrowCaut). Overall, the range of
feature based GrowCut segmentations was smaller than that
of GraphCut (P<0.001) and manual (P<0.001). GraphCut
showed no significant difference compared to manual method
(P=0.062). These data are available in Figure S2.

Discussion

Medical imaging is now routinely used and is playing an
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Figure 1 Feature comparison of intra-class correlation coefficient (ICC) between manual delineation and two semi-automatic segmentations.

(A) Intensity histogram based features; (B) shape based features; (C) textural features.

Table 1 Number of features in four reproducibility groups across essential role in clinical oncology. As an emerging field in
three segmentation strategies precision medicine, radiomics utilizes quantitative imaging
Reproducibility groups Manual ~ GraphCut ~ GrowCut features to assess the characteristics of tumor phenotype
Poor (ICC <0.4) 7 5 2 and has potential applicability in treatment planning and
, monitoring. For example, the changes of radiomic features
Fair (0.4< ICC <0.6) 4 5 7 .
extracted from post-treatment CT images can serve as
Good (0.6<1CC <0.75) 8 6 4 early indicators of progression to local recurrence within
Excellent (0.75< ICC <1) 52 55 58 six months after SABR in early-stage lung cancer (30). In
ICC, intra-class correlation coefficient. another study, 440 imaging features extracted from CT data
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Figure 3 Comparison of normalized feature range between manual and two 3D Slicer segmentations.

of 1,019 patients with lung or head-and-neck cancer can
capture intratumor heterogeneity and are associated with
gene expression patterns, TNM staging and prognosis of
patients (6).

Tumor segmentation is an essential step in the workflow
of radiomics. Many semi-automatic and automatic
segmentation algorithms have been developed for tumor
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delineation. Therefore, the GraphCut and GrowCut
semiautomatic methods were used in liver tumor
segmentation in this study. The detailed workflow of these
two semiautomatic segmentation tools can be found in
Figure S3. These methods yield more stable segmentation
and need less time compared with manual delineation, as
manual delineation is time-consuming and prone to higher
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inter-observer variability. Parmar ez a/. concluded that the
quantitative imaging feature extracted from semiautomatic
tumor segmentations showed significantly higher
reproducibility than manual delineations (18). However,
there were few reports in the literature about the effect
on the stability of radiomic features derived from tumors
segmented using different semiautomatic algorithms.

In this study, 71 commonly used quantitative imaging
features were selected and organized into three categories
(17 tumor intensity histogram based features, 38 textural
features and 16 shape based features). We analyzed the
robustness of these features when they were extracted
from tumor regions segmented using three methods.
In all 71 radiomic features, GrowCut segmentations
showed significantly higher ICC values than GraphCut
segmentations and manual delineations (P<0.001). While
GraphCut is not as significant as GrowCut, GraphCut
had slightly better robustness than manual delineations
(P=0.036), indicating that 3D Slicer tumor segmentation
tools can extract more reproducible quantitative imaging
features. These results can be explained by the fact that
semiautomatic tumor segmentation algorithms require no
more manual intervention since algorithm initialization was
performed, then the tumor was segmented by an efficient
algorithm. There is too much underlying uncertainty in
the manual tumor delineation because of the inter-observer
variability may be accumulated through slice-by-slice
manual delineation.

We observed that GLCMs-based features were more
robust to semiautomatic tumor segmentations, GrowCut
and GraphCut has significantly higher reproducibility
compared to manual delineations (P=0.001, P<0.001,
respectively). Additionally, the tumor intensity histogram
features were more reproducible when they were extracted
from GrowCut segmentations. However, there was no
significant difference in reproducibility of other feature
categories. These results indicate that CT textural features
derived from semiautomatic segmentations are highly
reproducible for HCC patients.

To evaluate the performance of three segmentation
strategies, we analyzed inter- and intra-observer
reproducibility. We found that features derived from
GrowCut had higher ICC values in both inter- and intra-
observer, indicating that it was able to extract more
reproducible features against the different algorithm
initializations. We also observed that reproducible features
extracted from GraphCut-based segmentations were
unstable for inter-observer. The feature range that we
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observed was significantly smaller in GrowCut compared
with other two segmentation methods.

Our findings demonstrate that stable and reproducible
radiomic features can be extracted from semiautomatic
tumor segmentations and that textural features extracted
using these segmentation tools are more suitable. However,
inter-observer initialization differences result in various
segmentations due to different principles of semiautomatic
methods. We can apply these methods that were evaluated
in radiomics studies to yield reproducible results. In this
study, tumor segmentation based on GrowCut presented
great performance on the feature extraction both inter- and
intra-observer.

A limitation of this study is that although clinical data
for these patients are available, the small patient cohort
prevented prediction/prognosis models from being devised.
The conclusions drawn from this study should be applicable
to predict outcomes in HCC patients. This work will be
done when we have collected large prospective patient
cohorts. Another limitation is that tumor size could also be
an important factor related to feature reproducibility and
prognostic value. These volume-dependent features will be
involved in future research. Furthermore, many software
packages are available for use in radiomics research (31).
The increased usage of these computational resources will
bridge the gaps between radiomics and clinical oncology.

Conclusions

Our study reveals that variations exist in the reproducibility
of quantitative imaging features extracted from tumor region
segmented using different methods. For HCC radiomics
studies, tumor intensity histogram-based features and textural
features were more reproducible when they were extracted
from GrowCut semiautomatic segmentations. Therefore,
3D Slicer can serve as a better alternative to the manual
delineation method, and care must be taken when selecting
segmentation tools to draw tumor regions.
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Reproducible radiomic features of three segmentation groups
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Figure S1 Reproducible radiomic features of three segmentation groups.
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Figure S2 The intra-class correlation coefficient ICC) of (A) radiomic features, (B) inter-observer and (C) intra-observer.




Part|  Workflow of GraphCut segmentation tool in 3D Slicer
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Step 4 The final segmentation result.

= Date Probe: C:/Vaers/Mdninistrator/D. . 2C17-08-14-Soene mnl

[ (RS47, PAL7, T15%25) ksl S5 3.0

L303: Unnened....ped-label (67, 44, )0 (0)
Fone
B303: Unnamed...s cropped (67, 44, 695

£ 3D slicer 4.7.0-2017-08-04
Fle Bt Vie Hlp

8 B & e . G 3] = O

B sosiicer

b Help & Acknonledganent

~ Puransters

Trgut Velume 303 Uhmanad Series z
Segnant fron Herkups: [1 N
3D Star Shape ¥ Vaing 30 Star Shape Constraint
20 Star Shape Vsing 2D Star Shape Constraint
Output Velume z
Biiting Tine >

Crop

¥ Data Probe

Shor Zoomed Slice

L
r
B

£ 30 Slicer 47.0-2017-08-04
Fle Eit Ve Ky

8 8 fa [oiie O (Beanmimse]s] ™ EPOQ & & <|AIt-8w |+ @A

[B) wosicer

> Help & Acknorledgenent

~ rar
Taut 303 Unnned Series :
Segnent. fron Merkups: [F :
3D Star Shape ¥ Veing 3D Star Shape Constraint
20 Star Shape Using 20 Star Shape Constraint
Outpat Velume ES
Bditing Tine: )

Crop

soply

Rearly

Bezet

¥ Data Probe

1ol (11656, P 186, 15940)  Adial Sp: 3.0
L1303 Unnamed ..ped-Label (156, 77, 5)0ut of Frame -
Flone d-label (100%)
303 Unnamed Series (109, 203, 54) 411

Step 3 The final segmentation result.

Figure S3 (Part I) Workflow of GraphCut segmentation tool in 3D Slicer and (Part II) workflow of GrowCut segmentation tool in 3D

Slicer.



