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Background: The reproducibility of radiomic features is a critical challenge facing radiomic models of 
tumor prediction or prognosis. The aim of this study is to evaluate the reproducibility of radiomic features 
with the GrowCut and GraphCut semi-automatic tumor segmentation methods in hepatocellular carcinoma 
(HCC) CT images.
Methods: Computed tomography (CT) data sets (arterial enhanced phase) of 15 patients with HCC were 
randomly selected in this study. To acquire the gross tumor volume (GTV), semi-automatic segmentation 
with the GrowCut and GraphCut methods was implemented in 3D Slicer software by two independent 
observers. Meanwhile, manual delineation of the GTV was implemented by five abdomen radiation 
oncologists in this study. We divided the sample into three groups: the GrowCut group, the GraphCut group 
and manual group. Radiomic features (including tumor intensity histogram-based features, textural features 
and shape-based features) were extracted using the Imaging Biomarker Explorer (IBEX) software. The intra-
class correlation coefficient (ICC) was applied to assess the reproducibility of all radiomic features. 
Results: The radiomic features in the GrowCut group (ICC =0.87±0.19) showed higher reproducibility 
compared with the radiomic features in the GraphCut group (ICC =0.82±0.24, P<0.001) and the manual 
delineations group (ICC =0.80±0.21, P<0.001), respectively. For intensity histograms, semiautomatic 
segmentation tools can yield more reproducible features. GLCM features were more robust in the GrowCut 
group segmentations. Furthermore, no statistically significant difference in the remaining feature categories 
was observed between the manual method and two semiautomatic methods. 
Conclusions: Our study reveals that variations exist in the reproducibility of quantitative imaging features 
extracted from tumor regions segmented using different methods. The 3D Slicer can serve as a better 
alternative to the manual delineation, and care must be taken when selecting segmentation tools to draw the 
tumor region.
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Introduction

Hepatocellular carcinoma (HCC), the sixth most common 
cancer worldwide, is the main type of cancer in liver 
parenchymal cells (1). Medical imaging techniques, such as 
computed tomography (CT), magnetic resonance imaging 
(MRI), positron emission CT (PET-CT), play important 
roles in oncology. Especially in radiotherapy, imaging 
dominates treatment planning and response monitoring (2). 
Several publications have shown that quantitative image 
features have potential applications in providing consistent, 
nonbiased descriptors to the tumor research.

For the past several years, as an emerging individualized 
precision medical technology, radiomics has applied 
advanced computational methodologies to transform the 
image data of the regions of interest into high dimensional 
feature data. Next, quantitative and high-throughput 
analysis of feature data is completed to probe tumor 
phenotype (3-6). Radiomics utilizes noninvasive imaging 
to provide more comprehensive information about the 
entire tumor and can be used in diagnosis, prognosis 
and prediction (6,7). For patients with colorectal liver 
metastases, relative differences of CT textural features 
occurring after treatment were better than RECIST in 
predicting and assessing the pathological response to 
chemotherapy (8). Another, more recent HCC radiomics 
study showed that CT-based radiomics signature was a 
powerful predictor for preoperative estimation of early 
recurrence (9).

The radiomics features must be reproducibility, non-
redundancy and informative (10). Reproducibility, the 
most basic and essential problem in radiomics, refers 
to measurements of radiomic features performed using 
different equipment, different methods or observers, or at 
different sites and times (10,11). The reproducibility may 
be influenced by many factors, such as imaging devices (12), 
repeat CT scans (13-15), tumor volume definition (16-18)  
and feature extraction (19,20). For acquiring accurate 
results, the producible features should be selected in 
building prognostic or predictive models.

Tumor segmentat ion is  crucia l  for  subsequent 
quantitative imaging extraction. Although manual 
delineation by experts is a common method considered as 
a ‘gold standard’, it is time-consuming and suffers from 
inter-observer variability. Recent studies have shown that 
3D Slicer semiautomatic segmentation results were almost 
consistent with the manual contour by expert (21-23). 
3D Slicer (23) is a free and open-source software package 

for medical image analysis in which many extensions are 
available for tumor segmentation on CT images. Since liver 
tumors have indistinct borders, there is high variability in 
radiologists’ determination of tumor outlines, leading to 
increased variation in features extraction (17). However, to 
the best of our knowledge, few studies have investigated the 
stability of radiomic features extracted from tumor regions 
defined by different semiautomatic methods.

In this study, we evaluate the reproducibility of quantitative 
imaging features derived from tumor volume segmented using 
GraphCut and GrowCut interactive methods in 3D Slicer and 
to determine robustness of feature categories to propel clinical 
radiomics research of HCC patients.

Methods

CT imaging data of HCC patients

The CT imaging data set of 15 patients who have been 
diagnosed with primary HCC between December 2015 and 
May 2016 were randomly collected. All patients received 
abdominal enhanced CT scanning, and a Philips scanner 
(Holland, CT Lightspeed 16) was used with an imaging 
protocol of tube voltage 120 kV, cube current 300 mA, 
thickness 3 mm and in-plane resolution 0.97×0.97. Each 
patient has only one lesion (the volume range of tumor 
is 5–168 cm3, median 19 cm3). Arterial CT images were 
included in this study. This study was approved by the 
institutional review board (IRB) and ethics committee of 
Shandong Cancer Hospital Affiliated to Shandong University. 
The ID/number of ethics approval was 201606021.

Semiautomatic tumor segmentation

3D Slicer is an open-source, publicly available image 
analysis platform and was developed for segmentation, 
registration and three-dimensional visualization. In this 
study, GraphCut (24) and GrowCut (25) were implemented 
in 3D Slicer and tumor volume was defined twice by each of 
the two independent observers to determine intra-observer 
reproducibility. The run1 and run2 were first and second 
segmentations among different observers to assess inter-
observer reproducibility.

GraphCut semiautomatic segmentation

The knowledge based star shape prior was incorporated 
in the graph cut algorithm in the 3D Slicer GraphCut 
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extension. Star shape prior is a generic shape prior that 
applies to a wide class of objects to achieve more robust 
segmentation. Graph cut turns the image segmentation 
into discrete graph optimization (min cut/max flow). First, 
this method builds an energy function after mapping the 
images to undirected weighed graphs; meanwhile, voxels in 
the images are treated as graph nodes. Next, the similarity 
of nodes in graph is calculated as the weight of connections 
between nodes. Finally, the min cut and energy function 
minimized strategy is employed to obtain the optimal 
segmentations.

Before GraphCut was activated in 3D Slicer, operators 
need to add four fiducials around the tumor after loading 
images. Two fiducials on the first slice and last slice where 
the tumor begins and ends to show to identify the start-end 
of the tumor and two fiducials on the middle slice where 
the tumor area is the largest at the diagonal corners of a 
rectangle, which can contain the tumor. Thereafter, 2D or 
3D star shape constraints can be checked as needed.

GrowCut semiautomatic segmentation

GrowCut has better performance on accuracy and speed in 
tumor segmentation by using a competitive region growing 
algorithm (22,24). A set of initial labels needs to be given 
by users to mark foreground and background, and cellular 
automata automatically segments the remaining image 
using a weighted similarity score. The neighbor that results 
in the largest weight greater than the given voxel’s strength 
confers its label to the given voxel. If there are two or more 
tumors in the image to be segmented, the corresponding 
class of initial labels was needed.

The GrowCut is executed as follows: first, it defines the 
tumor and non-tumor region with different label value; 
next, algorithm automatically computes a region of interest. 
After that step, GrowCut was activated to label iteratively 
all of the voxels in the ROI until all the voxels are labeled or 
until no voxel can change its label any more.

If not satisfy with the result, the foreground tumor region 
can be edited manually both in GraphCut and GrowCut.

Manual tumor delineation

Five experienced radiologists manually defined the gross 
tumor volume (GTV) of primary HCC in MIM software 
(www.mimsoftware.com) twice per radiologist using standard 
delineation protocol (window width: 200 HU, window level: 
40 HU). The radiologists were blind to one another.

Quantitative imaging feature extraction

Seventy-one quantitative imaging features were extracted 
from the information contained in the voxels of the tumor 
region segmented by the three strategies. This process was 
implemented in IBEX (Imaging Biomarker Explorer, MD 
Anderson cancer center, USA), an open-source, easy to use 
radiomic software (26). These features were organized into 
three categories: (I) intensity histogram; (II) texture; and (III) 
shape. Seventeen first-order statistical features derived from 
the tumor intensity histogram reflect distribution of values 
of individual voxels without concern for spatial relationships. 
Thirty-eight textural features describe spatial arrangement 
of voxels were calculated from different parent matrices, 
including gray-level co-occurrence matrix (GLCM), gray-
level run-length matrix (GLRLM), neighbor gray-tone 
difference matrix (NGTDM). Sixteen shape based features 
provide the geometrical of tumor volume. To reduce the 
effect of noise on the textual features, all of the voxel 
intensity values within the ROI were rescaled to 8-bit images 
using a discrete resampling method before calculating 
the GLCM, GLRLM, and NGTDM features (27).  
In this study, GLCM features were the average of all 
13 symmetric directions in 3D, GLRLM features were 
the average of values calculated from 2 directions in 
the 2D slice-by-slice, and the NGTDM was defined by 
neighborhood in the 3D.

Statistical analysis

In this study, intra-class correlation coefficient (ICC) as 
defined by McGraw and Wong (28) was employed to assess 
the reproducibility of radiomic features derived from tumor 
volume segmented by three methods. ICC is a descriptive 
statistic between 0 and 1, where 0 and 1 indicate null and 
perfect reproducibility, respectively. A variety of algorithms 
were provided in the literature for the ICC calculation. To 
assess the reproducibility of radiomic features extracted 
from inter-observer segmentations, we used the definition 
of ICC(A,1), and variance estimates were obtained from 
two-way mixed effect model of analysis of variance 
(ANOVA), given by:

ICC(A, 1) =
+ ( 1) + ( )

-

- -

R E

R E C E

MS MS
kMS k MS MS MS
n

Additionally, we used the definition of ICC(C, 1) to 
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assess the reproducibility of radiomic features derived from 
intra-observer segmentations, variance estimates were 
obtained from one-way analysis of variance (ANOVA), with 
the following form:

ICC(C, 1) =
+ ( 1)

-

-
R W

R W

MS MS
MS k MS

where MSR = mean square for rows (observations, fixed 
factor), MSW = mean square for residual sources of variance, 
MSE = mean square error, MSC= mean square for columns 
(observers, random factor), k and n represent number of 
observers and number of subjects, respectively. In order to 
help readers to better understand the model, we provide 
a table of measurements of GLCM-Contrast from all 
segmentations as one example. It can be found in Table S1.

To compare the differences of feature range between 
manual and two semi-automatic segmentations, Z-score 
normalization was applied to standardize the radiomic 
features because different features would have various 
ranges. The Z-score normalization was defined as follows:

z = - µ
σ

x

where μ and σ were the mean value and standard deviation 
of radiomic features, respectively.

Wilcoxon rank-sum tests were used to compare the 
differences of ICC between manual delineation and two 
semiautomatic methods. P<0.05 was considered to be 
significant. All data were expressed as the mean ± SD. SPSS 
version 22.0 (SPSS, Chicago, IL, USA) was used for ICC 
and Wilcoxon rank-sum test computation.

Results

The ICC values of the 71 quantitative imaging features 
across tumors segmented by three methods was presented 
in Figure 1 .  Noticeably, radiomic features derived 
from GrowCut-based segmentation (ICC =0.87±0.19) 
had signif icantly higher ICC values compared to 
features extracted from GraphCut-based segmentation 
(ICC =0.82±0.24, P<0.001) and manual delineation 
(ICC=0.80±0.21, P<0.001). The statistically significant 
difference was observed in ICC values for features-based 
GraphCut and manual segmentation (P=0.036). For ICCs of 

manual, GraphCut and GrowCut methods, the confidence 
intervals were (0.608, 0.954), (0.774, 0.938) and (0.752, 
0.967), respectively. Overall, 53 of the radiomic feature 
showed higher ICC for GrowCut, and 47 showed higher 
ICC values for GraphCut segmentation sets compared to 
the manual method (P<0.001). Also, comparing GrowCut 
to GraphCut, 52 features with higher ICC values were 
extracted from GrowCut segmentations.

For tumor intensity histogram features, no statistically 
significant change was observed in GraphCut segmentation 
sets (ICC =0.77±0.29) compared to the manual method (ICC 
=0.76±0.26) (P=0.332), but GrowCut (ICC =0.90±0.14) 
showed significantly higher reproducibility (P<0.001). 
For GLCM features in the textural category, GraphCut 
(ICC =0.89±0.11) and GrowCut (ICC =0.91±0.12) has 
significantly higher reproducibility than the manual method 
(ICC =0.77±0.23) (P=0.010, P=0.004, respectively). For 
GLRLM, NGTDM features in textural category and shape-
based features, no statistically significant difference was 
observed between the manual and the two semiautomatic 
methods. All of the features were divided into four groups 
according to their ICC values: excellent (0.73≤ ICC ≤1), 
good (0.6≤ ICC <0.75), fair (0.4≤ ICC <0.6) and poor (ICC 
<0.4) reproducibility (29). The number of features in each 
group is presented in Table 1. The excellent reproducibility 
of radiomic features for manual, GraphCut, and GrowCut 
segmentations were 73% [52], 77% [55], and 81% [58] of 
total, respectively. These features can be found in Figure S1.

To evaluate the effect on robustness with multiple 
algorithmic initializations, we analyzed the ICC of 
features extracted from inter-observer and intra-observer 
segmentations. In Figure 2A, we observed higher ICC values 
in GrowCut inter-observer segmentation groups (average 
ICC =0.87±0.18). In Figure 2B, higher ICC values were also 
observed in GrowCut intra-observer segmentations (average 
ICC =0.90±0.11). There are distinct differences of ICC in 
GraphCut for both inter- and intra-observer segmentation 
(P<0.001, P=0.008, respectively). Figure 3 depicts the Z-score 
normalized feature range of all of the 18 segmentation sets (10 
manual, 4 GraphCut and 4 GrowCut). Overall, the range of 
feature based GrowCut segmentations was smaller than that 
of GraphCut (P<0.001) and manual (P<0.001). GraphCut 
showed no significant difference compared to manual method 
(P=0.062). These data are available in Figure S2.

Discussion

Medical imaging is now routinely used and is playing an 
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essential role in clinical oncology. As an emerging field in 
precision medicine, radiomics utilizes quantitative imaging 
features to assess the characteristics of tumor phenotype 
and has potential applicability in treatment planning and 
monitoring. For example, the changes of radiomic features 
extracted from post-treatment CT images can serve as 
early indicators of progression to local recurrence within 
six months after SABR in early-stage lung cancer (30). In 
another study, 440 imaging features extracted from CT data 

Figure 1 Feature comparison of intra-class correlation coefficient (ICC) between manual delineation and two semi-automatic segmentations. 
(A) Intensity histogram based features; (B) shape based features; (C) textural features.
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Table 1 Number of features in four reproducibility groups across 
three segmentation strategies

Reproducibility groups Manual GraphCut GrowCut

Poor (ICC <0.4) 7 5 2

Fair (0.4≤ ICC <0.6) 4 5 7

Good (0.6≤ ICC <0.75) 8 6 4

Excellent (0.75≤ ICC ≤1) 52 55 58

ICC, intra-class correlation coefficient.
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Figure 2 Box-plot comparing (A) inter- and (B) intra-observer reproducibility of radiomic features. Run1 and run2 are different 
segmentation sets defined by different observers.

Figure 3 Comparison of normalized feature range between manual and two 3D Slicer segmentations.
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of 1,019 patients with lung or head-and-neck cancer can 
capture intratumor heterogeneity and are associated with 
gene expression patterns, TNM staging and prognosis of 
patients (6).

Tumor segmentation is an essential step in the workflow 
of radiomics. Many semi-automatic and automatic 
segmentation algorithms have been developed for tumor 

delineation. Therefore, the GraphCut and GrowCut 
semiautomatic methods were used in l iver tumor 
segmentation in this study. The detailed workflow of these 
two semiautomatic segmentation tools can be found in 
Figure S3. These methods yield more stable segmentation 
and need less time compared with manual delineation, as 
manual delineation is time-consuming and prone to higher 
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inter-observer variability. Parmar et al. concluded that the 
quantitative imaging feature extracted from semiautomatic 
tumor segmentations showed significantly higher 
reproducibility than manual delineations (18). However, 
there were few reports in the literature about the effect 
on the stability of radiomic features derived from tumors 
segmented using different semiautomatic algorithms.

In this study, 71 commonly used quantitative imaging 
features were selected and organized into three categories 
(17 tumor intensity histogram based features, 38 textural 
features and 16 shape based features). We analyzed the 
robustness of these features when they were extracted 
from tumor regions segmented using three methods. 
In all 71 radiomic features, GrowCut segmentations 
showed significantly higher ICC values than GraphCut 
segmentations and manual delineations (P<0.001). While 
GraphCut is not as significant as GrowCut, GraphCut 
had slightly better robustness than manual delineations 
(P=0.036), indicating that 3D Slicer tumor segmentation 
tools can extract more reproducible quantitative imaging 
features. These results can be explained by the fact that 
semiautomatic tumor segmentation algorithms require no 
more manual intervention since algorithm initialization was 
performed, then the tumor was segmented by an efficient 
algorithm. There is too much underlying uncertainty in 
the manual tumor delineation because of the inter-observer 
variability may be accumulated through slice-by-slice 
manual delineation.

We observed that GLCMs-based features were more 
robust to semiautomatic tumor segmentations, GrowCut 
and GraphCut has significantly higher reproducibility 
compared to manual delineations (P=0.001, P<0.001, 
respectively). Additionally, the tumor intensity histogram 
features were more reproducible when they were extracted 
from GrowCut segmentations. However, there was no 
significant difference in reproducibility of other feature 
categories. These results indicate that CT textural features 
derived from semiautomatic segmentations are highly 
reproducible for HCC patients.

To evaluate the performance of three segmentation 
strategies ,  we analyzed inter- and intra-observer 
reproducibility. We found that features derived from 
GrowCut had higher ICC values in both inter- and intra-
observer, indicating that it was able to extract more 
reproducible features against the different algorithm 
initializations. We also observed that reproducible features 
extracted from GraphCut-based segmentations were 
unstable for inter-observer. The feature range that we 

observed was significantly smaller in GrowCut compared 
with other two segmentation methods.

Our findings demonstrate that stable and reproducible 
radiomic features can be extracted from semiautomatic 
tumor segmentations and that textural features extracted 
using these segmentation tools are more suitable. However, 
inter-observer initialization differences result in various 
segmentations due to different principles of semiautomatic 
methods. We can apply these methods that were evaluated 
in radiomics studies to yield reproducible results. In this 
study, tumor segmentation based on GrowCut presented 
great performance on the feature extraction both inter- and 
intra-observer.

A limitation of this study is that although clinical data 
for these patients are available, the small patient cohort 
prevented prediction/prognosis models from being devised. 
The conclusions drawn from this study should be applicable 
to predict outcomes in HCC patients. This work will be 
done when we have collected large prospective patient 
cohorts. Another limitation is that tumor size could also be 
an important factor related to feature reproducibility and 
prognostic value. These volume-dependent features will be 
involved in future research. Furthermore, many software 
packages are available for use in radiomics research (31). 
The increased usage of these computational resources will 
bridge the gaps between radiomics and clinical oncology. 

Conclusions

Our study reveals that variations exist in the reproducibility 
of quantitative imaging features extracted from tumor region 
segmented using different methods. For HCC radiomics 
studies, tumor intensity histogram-based features and textural 
features were more reproducible when they were extracted 
from GrowCut semiautomatic segmentations. Therefore, 
3D Slicer can serve as a better alternative to the manual 
delineation method, and care must be taken when selecting 
segmentation tools to draw tumor regions.
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Figure S1 Reproducible radiomic features of three segmentation groups.

Reproducible radiomic features of three segmentation groups



Figure S2 The intra-class correlation coefficient (ICC) of (A) radiomic features, (B) inter-observer and (C) intra-observer. 

Intra-class correlation coefficient (ICC) value of radiomic features Inter-observer reproducibility of radiomic features (ICC) Intra-observer reproducibility of radiomic features (ICC)A B C



Figure S3 (Part I) Workflow of GraphCut segmentation tool in 3D Slicer and (Part II) workflow of GrowCut segmentation tool in 3D 
Slicer. 

Part I      Workflow of GraphCut segmentation tool in 3D Slicer Part II     Workflow of GrowCut segmentation tool in 3D Slicer

Step 1 (A) Load the CT images and add four fiducials around the tumor. Two fiducials on the first slice and last slice 
where the (B) tumor begins and (C) ends to show, at the center of the tumor. Two fiducials on the middle slice where 

the (D)tumor area is the largest, at the diagonal corners of a rectangle which can contain the tumor.

Step 1 Load the CT images.

Step 2 Define the tumor (green labels) and non-tumor (yellow labels) region in different label value. A set 
of initial labels need given by users to mark foreground and background.

Step 3 The GrowCut algorithm automatically computes a region of interest by using cellular automata 
with a weighted similarity score. If not satisfy with the result, the foreground tumor region can be edited 

manually both in GrowCut and GraphCut.

Step 4 The final segmentation result.

Step 2 2D or 3D star shape constraints can be checked as needed.

Step 3 The final segmentation result.


