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Introduction

There is a growing interest in the use of a minimally 
invasive liquid biopsy to identify biomarkers in several 
cancers, including urologic malignancies (1). Liquid biopsy 
and in particular seminal exosomes (SE) recovered by 
seminal fluid (SF) could represent an important innovation 

in the field of precision medicine. Precision medicine can 
be applied in screening, diagnosis, prognosis, prediction 
of treatment response and resistance, early detection of 
metastasis and biologic cancer stratification (2). 

Prostate cancer (PCa) is the most common cancer in 
men; it is normally diagnosed through the test of serum 
prostate-specific antigen (PSA) and rectal examination. 
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Since PCa is a highly heterogeneous cancer, there are 
currently many conflicting opinions about PSA-based 
diagnosis (3).

There is an urgent need for a non-invasive test to select 
non-metastatic from metastatic PCa. Since 40% of prostatic 
material is SF, using this fluid as source of biomarkers might 
have some advantages in comparison with blood and urine. 
SF, highly enriched in prostatic constituents compared to 
other body fluids (4,5), is composed of gland secretions in 
the male urogenital tract. Other two SF components are the 
seminal vesicles and testes. SF is released from smooth muscle 
contraction following an expulsion into the urethra. Moreover, 
prostate cells and their secretions are released naturally into 
SF by both normal and malignant glands. SF contains cell-
free material released by PCa cells, that could permit to detect 
PCa easier than biopsy (6). For these reasons, SF could be a 
good source of biomarkers for early detection, thus the use of 
liquid biopsy for prostate analyses could improve diagnosis of 
PCa with relevant clinical advantages.

PCa

PCa is the most frequent cancer diagnosed in men (7), but 
for prostate tumor heterogeneity, prostate biopsies analysis 
underestimates the grade of pathology. In order to have 
more information about the prostate status, blood or urine 
biomarkers could be useful. New efficient biomarkers could 
make active PC surveillance less invasive, reduce costs and 
eliminate the complications related to biopsy samples.

Currently, first line blood-derived molecular biomarker 
to diagnose of PCa is PSA, which is a protease, produced by 
prostate epithelial cells to liquefy the semen coagulum. PSA 
is mainly deposited into prostate ducts, but small amounts 
of it can also be detected in the healthy individual’s blood (8).  
Transformed PCa cells increase the release of PSA into 
blood. Nowadays, there are many limitations linked to PSA’s 
usage in clinical application. PSA levels indicate not only 
small, localized, and low-grade malignant tumors, but also 
benign prostatic hyperplasia and prostatitis or urinary tract 
infection. Besides these are highly variable between healthy 
individuals. PSA lacks enough specificity to distinguish 
efficiently differences between benign prostate disease and 
aggressive PCa (9,10). Another molecular biomarker tested 
in PCa is PCa antigen 3 (PCA3). PCA3 is a PCa-specific 
antigen, overexpressed in more than 90% of PCa that can 
also be detected in urine (11). PCA3 is a noncoding RNA 
(ncRNA) that may have higher specificity for the prediction 
of PCa in comparison with PSA, but the sensitivity is 

relatively low (12). 
Furthermore, urine-based tests of the fusion gene 

transcript can be used as PCa markers; chromosomal re-
arrangements that lead to gene fusion are a common 
feature of carcinomas. Frequent gene fusions in PCa are 
androgen-regulated gene transmembrane protease serine 
2 (TMPRSS2) and two ETS transcription factors, ETV1 
and the v-ets erythroblastosis virus E26 oncogene homolog 
(ERG) (13). Unfortunately, the analyses of the fusion gene 
transcript TMPRSS2 and ERG, show high specificity and 
low sensitivity. 

The discovery of new PCa markers in SF, prostate-specific 
blood and urine extracellular vesicles (EVs) are considered as 
non-invasive potential source of biomarkers for PCa. 

SE

SF contains high concentration (about 1012 or more 
purified particles per ejaculate) of subcellular lipid-bound 
microparticles (14) derived from male genital tract such 
as epididymal ducts, vesicular glands, and bulbourethral  
glands (15) and vesicles derived from prostate gland’s 
epithelial cells traditionally termed “prostasomes” (16) 
(Figure 1). Overall, this vesicle population is usually 
denominated SE. SE are similar to exosomes, released by 
other cells, for their morphological features (cup shape and 
diameter size) and canonical biochemical exosomal markers, 
such as HSP70 and CD63 (14). SE have a role in immune-
suppression (17) and affects the complement system (18). 
It was reported that exposure of the female reproductive 
tract to semen results in immune-modulatory events which 
influence the outcome of HIV-1 replication within the 
genital mucosa (19,20). HIV-1 and human papilloma virus 
(HPV) is transmitted primarily through sexual contact and 
semen is the primary vector (21). HPV is the principal factor 
involved in the development of cervical carcinoma. In this 
common cancer, semen is responsible of HPV delivery and 
caused the continuous exposure of the cervix to immune-
suppressive agents. The correlation between SE, immunity 
and HIV-1 transmission have been demonstrated (22).  
SE may either enhance or block replication of sexually 
transmitted pathogens, such as HIV-1 (19,20). Madison 
et al. showed that semen exosomes purified from healthy 
human donors alter HIV-1 replication, through alteration 
in intravirion reverse transcriptase (RT) activity and protein 
composition, drastically decreasing HIV infectivity (23). 
HIV-1 RT is a heterodimer composed from p66 and p51 
kDa subunits. The association of these polypeptides is 
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necessary for RT enzymatic activity, because monomeric 
subunit  lacks polymerase act ivity (24,25) .  I t  was 
demonstrated that p66 RT subunit was absent from virions 
generated in the presence of SE. It was also showed that 
SE contain Apobec3, a potent antiretroviral, mediating 
inhibition of retroviruses (26).

Moreover, neutrophils and monocytes have the 
capacity to undergo phagocytosis and generate oxidative 
burst responses in the female reproductive tract during 
the insemination. Large numbers of natural killer (NK) 
cells have been found in the female reproductive tract; 
they create a hostile environment for spermatozoa. Flow 
cytometric analysis revealed that prostasomes expressed 
high levels of CD48, ligand for the activating CD244 
receptor, expressed on NK cells and mediates non-major 
histocompatibility complex restricted killing. Tarazona  
et al., reported that the interaction between NK-cells and 
target cells, via this receptor, modulate NK-cell cytolytic 
activity. Interactions between NK cells and purified 
prostasomes resulted in a decrease of CD244 expression. 
Moreover, the decreased NK cell activity cultured in the 
presence of prostasomes, suggests that these vesicles may 
immune-modulate the local environment within the female 
reproductive tract, preventing the immune-mediated 
sperm destruction and prolonging the sperms’ survival 
rate (27). It is also suggested that the immune-suppressive 

activity of the human SF components protect inseminated 
sperms in female reproductive tract (28); stimulating pre-
cancerous cells to progress to full carcinoma (29). 

SE cargo includes cytokines, growth factors and 
membrane proteins, as well as messenger RNAs and 
microRNAs (miRs) that affect the recipient cells (30). 
Vojtech et al. suggested that SEs, carry non-coding RNA 
molecules that regulate biological functions through 
degradation or inhibition of specific mRNA targets (14). 

The immunosuppressive effects of SE are partially 
mediated by the activities of these regulatory RNAs. SE 
delivered in high concentration in a limited anatomical 
area of the female genital tract could increase an immune-
modulation mediated by exosomes (14). 

Few studies have shown that immune-related mRNAs 
are targeted by miRs carried by semen exosomes, 
altering the normal immune response to pathogens. 
It is demonstrated that miR-148a, contained in SE, is 
able to target calcium/calmodulin-dependent protein 
kinase II (CaMKII) in dendritic cells. This process lead 
to the reduction of MHC II expression and secretion of 
cytokines, and inhibition of dendritic cells-mediated T cell 
expansion (31). Let-7 family members are also abundant in 
semen exosomes; these miRs control the IL-10 and IL-13 
expression, in macrophages following pathogenic stimulus, 
as well as IL-13 in T cells (32,33).

Figure 1 Origin, composition and function of cancer exosomes derived from different cells of the genital tract.
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Role of prostasomes in PCa

A m o n g  t h e  v e s i c l e s  i s o l a t e d  f r o m  s e m e n ,  o n l y  
prostasomes (34) is truly derived from the prostatic cells. 
These vesicles are spherical nanoparticles with a diameter 
of 50 to 500 nm, released by prostatic epithelial cells in the 
extracellular media. These vesicles, described for the first 
time in 1982, promote motility of sperm cells (35); regulate 
sperm cell capacitation, acrosome reaction, and immune 
suppression within the female reproductive tract (16,36). 
Prostasomes molecular composition could reflect their 
capacity to influence PCa growth and metastasis. Proteomic 
profile of prostasome isolated from SF identify prostate-
specific membrane proteins (like TMPRSS2), prostate-
specific transglutaminase, and prostate stem cell antigen 
(PSCA), confirmed the prostatic origin of these vesicles 
(16,37,38). The first efforts to identify the prostasomes in 
a PCa patient’s blood was the detection of anti-prostasome 
antibodies (39-41). In healthy individuals, excretory ducts 
form a closed compartment with the basement membrane 
surrounding the prostate epithelial cells, in which 
prostasomes from the immune system hide. The loss of 
cell polarity in PCa (42) allows the release of prostasomes 
into microenvironment and circulation (43,44). This 
process induces the adaptive immune system to produce 
prostasome-directed autoantibodies, which can be isolated 
by PCa patients’ blood (39,41). However, antibodies against 
prostasome cannot be quantified and their correlation with 
PCa grade or metastasis it is not possible (40,45), showing 
the low efficacy of prostasome-specific antibodies as reliable 
prognostic markers for PCa (46). 

Unfortunately, not only neoplastic prostate cells but also 
normal prostate acinar secretory cells have the capacity to 
release and export prostasomes to the extracellular space 
(43,47). Prostasomes can assist the fertilization of the sperm 
cells (48), induce the transition of normal cell to neoplastic 
one and help the poorly differentiated cancer cells to  
survive (29). Prostasomes protein kinases and phosphatases 
control cell proliferation, differentiation and signal 
transduction pathways (49), and regulating cell malignant 
transformation. Literature data showed that protein kinase 
activities are up regulated in prostasomes released from 
malignant cells (50). Other proteins and enzymes related to 
malignant transformation and proliferation are expressed 
on the prostasome surface such as protectin (51) or tissue 
factor (52) and matrix metalloproteinase (53). Moreover, 
prostasomes derived from PCa metastases showed higher 
levels of annexins A1, A3 and especially annexin A5, compared 

to prostasomes derived from non-metastatic PCa (54). In 
mammals, the annexin family consists in 12 calcium ion-
dependent phospholipid-binding proteins that are implicated 
in cell differentiation, immunomodulation and migration. 
Annexin A1 was first identified as a mediator of the anti-
inflammatory activity of glucocorticoids (55). Annexin A3 
promotes tumour growth and angiogenesis inducing vascular 
endothelial growth factor (VEGF) expression (56). Annexin 
A5 is associated with the inhibition of phospholipase A2, a 
membrane-bound prostasome enzyme of human SF (57). 
Furthermore, dimethylarginine dimethylaminohydrolase 1  
(DDAH-1) is observed in prostasomes derived from 
PCa metastasis (54). DDAH-1 induces nitric oxide (NO)  
synthesis (58) that is a crucial regulator of angiogenesis (59). 
These reports indicate that prostasomes have a key role in 
several steps of PCa progression.

Clinical application of SE 

Among the SE, prostasomes contain PCa-specific 
molecular  f ingerpr ints  that  could  represent  the 
status of their originating cells. The presence of EVs 
from many other sources makes the detection of 
prostasomes in blood even more difficult. Nevertheless, 
it was also reported that tumor suppressor PTEN was 
approximately 10-fold higher in EVs isolated from 
PCa patients compared with normal subjects (60).  
Considering the interest in the application of exosomes as 
non-invasive cancer biomarkers, recently it was developed 
ExoDx™ Prostate (IntelliScore), a FDA-approved non-
invasive urine test to analyse the expression of three 
exosomal RNAs associated with high-grade PCa. This test 
is used with PSA to distinguish high grade (Gleason score 
≥GS7) from low grade cancers (61). Despite tests on blood 
samples already developed, the advantage of collecting EVs 
from urine is the enrichment in prostasomes rather than 
other constituents. The presence of prostatic fluid into 
urine and prostasomes in EVs fractions isolated from urine 
was confirmed by detection of prostate-specific proteins 
like prostate-specific membrane antigen (PSMA), prostatic 
acid phosphatase, and prostate transglutaminase (62-65). In 
a recent study, protein compositions of EVs, isolated from 
preoperative urine samples of PCa patients was compared 
to the samples of healthy individuals. Mass spectrometry 
revealed that among the differentially expressed proteins, 
the transmembrane protein TM256 displayed the highest 
sensitivity (66). TM256 could be used as biomarkers to 
select PCa patients. Conversely, the limit to use urine-
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derived EVs is the variability of their concentration; they 
are strongly influenced by external factors such as prostate 
massage, the timing, frequency, and volume of urination.

SE can be used, in the liquid biopsies scenario, in order 
to provide a new tool for early diagnosis of tumors of the 
urogenital tract. Furthermore, these vesicles could be 
used to monitor the efficacy of the therapy or as shuttle of 
therapeutical compounds. 

Regarding these last aspects, it is important considered 
long-term stability of SE components. A recent study 
showed that prolonged semen freezing has no significant 
effect on the recovery of semen exosomes, but the levels of 
specific SE cargoes may be altered, as indicated by decreased 
AChE activity. AChE is a plasma membrane protein 
incorporated into exosomes during exosome biogenesis. 
The enzymatic activity of AChE as commonly used as 
exosome marker (67). AChE inhibition downregulates 
HIV1-induced T cell activation and T cell proliferation in 
chronically infected HIV-1 patients (68). Thus, decreased 
AChE activity in semen’s exosomes after prolonged frozen 
storage of the semen may have important biological effects 
in clinical application of these exosomes. Nevertheless, 
prolonged freezing of semen has no effect on exosomal 
CD63 and CD9 at protein and mRNA levels. CD63, CD9 
and other tetraspanin proteins play multiple important 
roles in HIV-1 infection (69,70). CD63 are incorporated 
into released HIV-1 particles. Although the role of CD9, in 
HIV infection, has not been extensively studied. It has been 
demonstrated that overexpression of CD9 can also reduce 
HIV-1 infectivity (70,71). 

Conclusions

In the era of precision medicine, the goal of new therapeutic 
approaches is to eliminate the “one size fits all” model 
of patient management. Liquid biopsy is a promising 
non-invasive tool for molecular profiling, to allow the 
evaluation of circulating molecules, in several biological 
fluids and in particular in EVs for biomarker discovery (1). 
Overall, the reports discussed in this review indicate that 
SE could represent a new tool for diagnosis, prognosis 
and monitoring of urogenital cancers. Other studies are 
necessary to improve the knowledge about SE to highlight 
the role of SE as biomarkers in urogenital cancers. 
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