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World-wide 265,000 people are diagnosed with pancreatic 
cancer each year, of which 74% will die within 1 year. Most 
pancreatic adenocarcinomas (PDACs) are diagnosed at 
an advanced stage with 91% of the patients with regional 
metastatic disease (1). As a result, PDAC has one of the 
worst prognoses among all cancers with a 5-year survival 
of less than 5%. It is one of the few cancers still increasing 
in incidence and by 2030, if current trends continue and 
without the discovery of effective treatments, PDAC will 
be the second leading cause of cancer death in the US (2).  
Despite these alarming statistics, treatments have not 
advanced for decades. Regardless of refinements in adjuvant 
and neoadjuvant therapies, surgical resection for the meager 
20% patient who qualified remains the only chance for 
long-term survival. However, surgically resected patients 
develop recurrence in 80% of cases, and die rapidly of local 
or distant metastatic disease within about 20 months of 
initial diagnosis (3). Nevertheless, over 60% of long term 
survivor patients survive despite having had features of more 
aggressive disease such as lymph node metastases (N1) and 
positive resection margins (R1) (3-5). These statistics reveal 
a large gap in our understanding of the biology of this 
disease and this has a tremendous impact on the treatment 
patients receive. 

Extracellular vesicles (EVs) are a heterogeneous group 
of particles released from normal healthy cells and serve 
a variety of functions ranging from cell signalling to the 
modulation of immune responses; it is therefore no surprise 
that cancer cells both inherit this unique communication 
system and exploit their diverse properties (6). EVs as a 
group contain particles of varying sizes and are derived 

from varying cellular compartments, the smaller group of 
particles i.e., exosomes, range in size from 50–100 nm and 
are the particles which are garnering a great deal of focus 
in the scientific literature. Exosomes are generated in the 
late endosome and contain nucleic acids, lipids, and protein 
contents along with membrane proteins on their surface 
which is a direct reflection of their cell of origin. Exosomes 
are secreted in diverse body fluids and are involved in 
various biological processes, including the intercellular 
exchange of regulatory materials, such as miRNA (6,7). In 
relation to PDAC derived exosomes (PDAC-DEs), there 
is growing evidence of their central role in the tumour 
metastatic potential. The integrins at the PDAC-DE surface 
drive the organotropism displayed by the PDAC-DE (8) 
which is similar to the localisation of PDAC metastasis 
[liver, peritoneum, lung, and abdominal lymph nodes (9)]. 
Once established in the distant site, the PDAC-DE prepare 
a suitable microenvironmental “niche” for the PDAC 
cells to migrate, attach and grow (10) possibly explaining 
why micro-metastases are present in most patients upon 
diagnosis. 

Numerous studies have previously banked on the high 
frequency of KRAS mutation in PDAC and its key role 
in tumour cellular functions to develop targeted PDAC 
treatment with mitigated success (11). These studies, 
including RNA interference-based approach, were faced 
with the selection of an effective system that would 
efficiently deliver its content and not be cleared rapidly 
from the circulation. The exosome homing properties, 
their membrane composition facilitating endocytosis, the 
role they assume as intercellular transporters of cellular 
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information, coupled with the potential of increased drug 
stability and the protection against side-effects, have 
prompted researchers to use them as a delivery system of 
chemotherapeutic agents (12), miRNA (13,14), and gene 
therapy (15) to tumour cells. The article published recently 
in Nature by Kamerkar et al. illustrates such utilisation, 
confirming the exosome potential for a therapy targeting 
KRAS in PDAC mouse models and concluding that they 
can become the carrier of choice for targeted therapy (16). 

Kamerkar et al. conducted in parallel a comparison 
between CD47+ normal foreskin fibroblast culture derived 
exosomes and liposomes. They first demonstrated that 
CD47, a transmembrane protein protecting cells against 
macrophage phagocytosis, exercised the same protective 
role on exosomes and increased their localisation into the 
pancreas. Using electroporation, they inserted siRNA 
or shRNA targeting the KRAS G12D mutant. They 
demonstrated the superior efficacy and specificity of the 
iExosomes in vitro to specifically suppress the activity of 
the targeted KRAS, to impair cell proliferation, and to 
enhance apoptosis. Used as treatment in vivo in nude mice, 
the repeated injection of iExosomes significantly reduced 
tumours to nearly undetectable levels and suppressed the 
tumour growth for 10 days after treatment interruption. 
However, in the advanced stage the treatment lost its 
efficacy. In immunocompetent mice, the treatment 
reduced tumour growth but was not as effective as in the 
nude mouse model. The authors also identified three 
possible mechanisms related to iExosome treatment 
effectiveness in vivo over the liposome: the presence of 
CD47 to elude macrophage clearance, RAS-mediated 
enhanced macropinocytosis, and the presence of proteins 
on the exosome surface to increase uptake by tumour cells. 
Other than increasing survival, the treatment also limited 
metastasis formation and did not show cytotoxicity. The 
authors did an impressive and exhaustive study that is worth 
mentioning on the superiority of exosomal KRAS targeted 
treatment in different mouse models. However, several 
questions still remain concerning its transfer into human 
studies.

The use of exosomes as a delivery system is an area of in 
depth research (17), but the current state of the technology 
leaves many open questions particularly as to its scalability 
to a human model and their potential for immunogenic 
recognition. Kamerkar et al. utilize the BJ foreskin 
fibroblast cell line as the source of the exosomes; this line 
is unusual since it grows far longer than normal for normal 
human fibroblasts with up to 72 population doublings (18). 

The potential for the exosomes from these cells to transmit 
unwanted cargo is a concern, given the very nature of 
exosome cargo i.e., RNA and proteins of the producer cell, 
these could potentially transmit growth promoting cargo. 
Therefore, the technology needs to develop to ensure 
that the source cells for exosome based therapy convey 
no risk. The scalability to the human model may also give 
rise to manufacturing issues since Kamerkar et al. use 108 
iExosomes per injection into the mice with localized disease. 
In humans the number required to get a therapeutic effect 
is likely to increase significantly and may lead to a need for 
far higher numbers of iExosomes in patients with advanced 
metastatic disease, this again reflecting back on the source 
cells used to generate the iExosomes.

The current manuscript by Kamerkar et al.  also 
noted a decreased efficacy of the iExosomes in the 
immunocompetent mouse, the fact that EV’s as a group 
have MHC-I and II (19) may be responsible for their 
reduced effect in the immunocompetent mouse; with the 
mice likely mounting responses to the presence of human 
MHC-I on the iExosomes sourced from the BJ human 
fibroblasts. The role of immunity to EV’s in general can 
be gleaned from ongoing research in the field of organ 
donation where acute rejection of allografts may be linked 
to the presence of donor derived EVs present within the 
graft itself (20,21). The current predominate bias of the use 
of human derived exosomes into immune deficient mice 
models is likely to be a major barrier moving forward to 
the use of exosomes from a none matched MHC-I human 
source into an immune competent human.

Through the efforts of the large-scale sequencing projects 
over the past 6 years, we now understand the genomic 
alterations contributing to PDAC in unprecedented detail 
(22-26). These studies have confirmed the initiating 
role of KRAS activation in PDAC with the detection of 
hotpoint mutations at codons 12, 13, or 61 in over 90% 
of cases (23) but they have also identified tumours with 
clonal heterogeneity in KRAS mutations (26). Moreover, 
through multi-omics studies we are also coming to a better 
understanding of the diverse processes driving pancreatic 
metastasis (27). The result is that we have a dramatically 
improved understanding of the somatic genetics of PDAC 
tumorigenesis and of its complexity. We are now aware of 
the presence and genetic make-up of tumour sub-clones 
with different metastatic potential and have identified 
several PDAC subtypes based on gene expression and 
prevalent disturbed pathways (22-26). Over the last 
decade, the avalanche of mutation data for other tumours 
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has prompted pharmaceutical companies to develop an 
armamentarium of agents to attack various protein targets. 
Today scores of targeted agents (mainly small molecular 
inhibitors and monoclonal antibodies) are in use, and 
more are in clinical trials or in the industry’s development 
pipeline. The disappointing fact is that most patients with 
advanced cancers treated with these new agents recur 
eventually with metastasis that are resistant to treatment. 
Will a treatment, even with the use of exosome as a delivery 
system, using a single target, the oncogenic KRAS, be more 
efficient for PDAC? The complexity of the disease that has 
been revealed and the heterogeneity of the tumour and even 
clonality in KRAS mutation, question the use of a single 
approach as treatment. Moreover, as demonstrated in the 
KRasG12D;Pdx1-Cre (KC) mouse model, KRAS activation 
initiates the formation of precancerous lesions but is not 
sufficient in 90% of cases to induce transformation and 
require the inactivation of TP53, SMAD4, and CDKN2A for 
PDAC to develop (11). This implies that KRAS inactivation 
in a transformed tumour might not be sufficient to induce 
its complete destruction. This might be one of the reasons 
why Kamerkar et al. failed to totally eradicate the tumours. 
In all their mouse models, the KRAS targeted treatment 
slowed the tumour growth and prolonged life but was 
never a cure, whilst also requiring continuous treatment to 
control tumour growth. Following studies should analyse 
the effect of combine exosome targeted KRAS therapy with 
conventional therapy or even other targeted therapies. This 
might be the way to circumvent the weakness of each of 
these treatments. One such example resides in the key role 
that the PDAC microenvironment plays in fibrosis, hypoxia, 
and hypovascularisation (28,29) which hamper the transport 
of the drugs through the tumour and might affect also 
exosome transport. A combined treatment that could target 
PDAC stroma might also be beneficial (30). Other examples 
of combined targeted therapies could include PARP-
inhibition, platinum based chemotherapy and would require 
that these therapies be personalized based on the make-up 
of each patient tumour (26). 

In this time of broad and deep knowledge one should 
not ignore what we have learned from previous work. The 
use of a one-track approach which favours the expansion 
of aggressive clones resistant to therapy is not a valuable 
strategy any longer. It might not be practical or possible to 
use excessive amount of iExosomes but we might be able to 
design multiple target integrated therapies to induce a chain 
reaction of tumour destruction that may also harness the 
patient immune system in the fight.
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