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Introduction

Gastric cancer (GC) is an aggressive disease that remains 
the third leading cause of mortality worldwide (1). Surgery 
is the main method for treating GC, but the results are 
unsatisfactory (2,3). One reason for this is that GC is often 
diagnosed at an advanced stage, especially in China (4). 

Therefore, there is a need for more effective therapies for 
advanced GC.

Histone deacetylase inhibitors (HDACis) exhibit 
synergistic anticancer effects with many other anticancer 
reagents, which suggest that combining HDACis with other 
antitumor agents may be an attractive therapeutic strategy 
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for using these agents (5). Romidepsin, a Food and Drug 
Administration-approved HDACi, acts as an anticancer 
agent (6). We previously reported that romidepsin acts as a 
potential anticancer agent in hepatocellular carcinoma (7). 

Autophagy is stimulated during various pathological states, 
for example when cells are exposed to chemotherapeutic 
agents (8,9). Autophagy functions as a pro-survival 
pathway that helps tumor cells resist apoptosis triggered by 
chemotherapeutic agents (10). The process of autophagy 
involves multiple steps including initiation, nucleation, 
elongation, closure, maturation and degradation (11).  
The biogenesis of autophagy requires a variety of proteins, 
including LC3-I/II, ATG and beclin-1 (12).

In the present study, we demonstrate that romidepsin 
induced autophagy in GC cells  by regulating the 
extracellular signal-regulated kinase (ERK) and mammalian 
target of rapamycin (mTOR) signaling pathways in vitro and 
in vivo (7). Inhibiting autophagy with hydroxychloroquine 
(HCQ) significantly augmented romidepsin-induced 
apoptosis in GC cells. Thus, our results suggest that 
combining romidepsin and HCQ may represent a novel 
therapeutic strategy in GC.

Methods

Reagents

Romidepsin (FK228, C24H36N4O6S2), 3-methyladenine 
(3-MA) and HCQ were purchased from Selleck Chemicals 
(Houston, TX, USA). The BCA protein assay and 
annexin V–fluorescein isothiocyanate apoptosis detection 
kits were purchased from KeyGen Biotech (Nanjing, 
China). Annexin and 4',6-diamidino-2-phenylindole 
(DAPI) were purchased from GuGe Biotech Co. Ltd. 
(Wuhan, China). Methanol and ethanol were purchased 
from Shanghai LingFeng Chemical Reagent Co. Ltd. 
(Shanghai ,  China) .  Dimethyl  sulfoxide (DMSO), 
Tween 20 and glycine were purchased from Sangon 
Biotech Co. Ltd. (Shanghai, China). Skim milk was 
purchased from Becton, Dickinson and Company (San 
Diego, CA, USA). Primary antibodies against LC3  
A/B (LC3), p62 (also known as SQSTM1), beclin-1, 
ATG7, (c)-caspase-3, c-caspase-9, c-poly (ADP-ribose) 
polymerase (c-PARP), phosphorylated (p)-ERK, ERK, 
p-mTOR and mTOR were purchased from Cell Signaling 
Technology (Danvers, MA, USA); Anti-glyceraldehyde 
3-phosphate dehydrogenase (GAPDH) antibody was 
purchased from Abcam (Cambridge, MA, USA).

Cells and animal model

The MGC-803 and BGC-823 cell lines were obtained 
from the Cell Bank of Type Culture Collection of the 
Chinese Academy of Sciences, Shanghai Institute of Cell 
Biology. MGC-803 and BGC-823 cells were cultured in 
minimum essential medium (Gibco, Carlsbad, CA, USA) 
supplemented with 10% fetal bovine serum.

Animal experiments were performed in accordance 
with National Institutes of Health guidelines. Cells 
(2×106) were re-suspended in 100 μL phosphate-buffered 
saline, and injected subcutaneously into the lateral 
flanks of immunodeficient mice. After 5 days, the mice 
were assigned to groups treated with DMSO (control), 
romidepsin (0.5 mg/kg), HCQ (60 mg/kg) or romidepsin 
+ HCQ. Romidepsin and DMSO were administered by 
intraperitoneal injection once every 3 days for 21 days. 
HCQ was dissolved in saline solution and administered by 
intraperitoneal injection daily. Tumor volume and body 
weight were measured every 4 days for 21 days. After  
20 days, tumors were harvested. Tumor volumes (V) 
were calculated using the following equation: V (cm3) =  
width2 (cm2) × length (cm)/2.

Transmission electron microscopy (TEM) 

After being treated with romidepsin or DMSO for the 
indicated time, MGC-803 cells were collected and fixed 
with 2.5% phosphate-buffered glutaraldehyde. The fixed 
cells were stained with 1% osmium tetroxide in a buffer 
solution, and then dehydrated using an ascending ethanol 
and acetone gradient. Finally, the cells were embedded in 
epoxy resin and photographed with a Philips TECNAI 10 
transmission electron microscope. 

Western blot assay 

Briefly, after treatment with romidepsin or DMSO 
for the indicated time, GC cells were lysed. Protein 
concentrations were quantified by Bradford assay (Bio-
Rad Laboratories, Hercules, CA, USA) according to the 
manufacturer’s instructions. After denaturation, the proteins 
were separated by gel electrophoresis using 12% SDS-
PAGE and transferred electrophoretically to polyvinylidene 
fluoride membranes. The membranes were incubated in 
blocking buffer for 2 h, then at 4 ℃ with primary antibody, 
then finally at 37 ℃ for 2 h with the appropriate secondary 
antibody.
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CCK8, flow cytometric analysis, tumor histology and 
immunohistochemistry 

Procedures and reagents were as previously described (7).

Statistical analysis

All statistical analyses were conducted using SPSS 22.0 
software. Data are presented as mean ± SD error of the 
mean of 3 independent experiments. P values were derived 
from 2-sided tests. P<0.05 was considered statistically 
significant.

Results

Romidepsin induced autophagy in GC cells

Autophagy can be activated in cells exposed to HDACis, 
including romidepsin. To investigate the effect of romidepsin 
on autophagy in GC, we examined several autophagy-
related proteins. LC3, beclin-1 and ATG7 are upregulated 
during autophagy, and the autophagic substrate p62 is 
degraded. We found that romidepsin induced the conversion 
of LC3-I to LC3-II (Figure 1A), and decreased p62 levels 
in a similar manner (Figure 1A). Moreover, romidepsin 
treatment led to a significant increase in beclin-1 and ATG7 
levels (Figure 1A). These findings suggest that romidepsin 
promotes the initiation of autophagy.

To confirm the initiation of autophagy, we used TEM to 
check for autophagosome formation in romidepsin-treated 
cells. This showed that romidepsin led to the accumulation 
of autophagosomes, visible as double-membraned structures 
containing organelle remnants, whereas only a few 
autophagosomes were observed in control cells (Figure 1B).

Autophagy can be blocked by 3-MA, which inhibits 
phosphoinositide 3-kinase and lysosome function. We used 
3-MA to investigate romidepsin-induced autophagy in GC 
cells. Romidepsin treatment increased LC3-II levels, but this 
increase was attenuated in the presence of 3-MA (Figure 1C). 

Taken together, these findings indicate that as expected, 
romidepsin induced autophagy.

Romidepsin may induce autophagy via the ERK/mTOR 
pathway

Previously, we reported that MAPK signaling pathway 
components (such as ERK, p38 and JNK) are involved in 
cell cycle regulation. Furthermore, the mTOR and ERK 
pathways are known regulators of autophagy in mammalian 

cells. To investigate whether these signaling pathways 
are involved in the romidepsin-mediated induction of 
autophagy in GC, western blot analysis was used to evaluate 
ERK and mTOR activation in GC cells. Consistent with 
previous reports, romidepsin treatment resulted in increased 
concentrations of p-ERK (Figure 2). Meanwhile, romidepsin 
inhibited the phosphorylation of mTOR kinase (Ser2448). 
These results suggest that romidepsin-induced autophagy 
in GC cells may be mediated by activation of the ERK and 
mTOR pathways.

Blocking autophagy enhances the anticancer effect of 
romidepsin in GC cells

Appropriate modification of autophagy might enhance the 
anticancer therapeutic efficacy of HDACis. To investigate 
the role of autophagy in romidepsin-induced cytotoxicity, 
GC cells were pre-treated with HCQ for 4 h before 
treatment with romidepsin for 24 h. HCQ prevented an 
increase in the number of apoptotic cells; this result was 
confirmed by western blotting and flow cytometric analysis 
(Figure 3A,B). The combination index was employed to 
investigate whether romidepsin and HCQ act synergistically 
(Figure 3C) (13). The results suggest that HCQ significantly 
enhanced the anticancer effect of romidepsin in GC cells. 

Inhibiting autophagy enhances the anticancer effects of 
romidepsin in vivo

We next investigated whether a combination of romidepsin 
and HCQ would synergistically induce GC cell death  
in vivo. MGC-803 cells were subcutaneously injected into 
nude mice to further probe the tumor-suppressive effect of the 
combination of romidepsin and HCQ in vivo. The nude mice 
were treated with romidepsin (0.5 mg/kg) or DMSO (control) 
intraperitoneally once every 3 days for 21 days. HCQ  
(60 mg/kg) was administered daily thereafter. HCQ alone 
did not have a substantial effect on tumor growth, whereas 
HCQ in combination with romidepsin significantly reduced 
tumor growth compared with romidepsin alone (Figure 4A). 
The results showed there was no significant loss in body 
weight in the combination treatment group (Figure 4B,C).  
Immunohistochemical staining of xenograft tissues 
revealed higher beclin-1 and LC3 levels in the combination 
treatment group (Figure 4D). Moreover, c-PARP and 
c-caspase-3 levels were much higher in the combination 
treatment group (Figure 4D). Thus, inhibiting autophagy 
enhanced the anticancer effects of romidepsin.
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Figure 1 Effect of Romidepsin autophagy related proteins. (A) MGC-803 and BGC-823 cells were treated with Romidepsin for 24 h. 
Western blot analysis of LC3 I-II, Beclin-1, ATG7 and P62 proteins after Romidepsin treatment; (B) MGC-803 cells were treated with 
Romidepsin (10 nM) for 24 h. Electron micrographs show unique double-membrane organelle (red arrows denote autophagosomes). 
Quantitation of autophagosomes from electron micrographs in 15 fields under high resolution; (C) MGC-803 cells were treated with 
Romidepsin (10 nM) alone or in combination with 3MA (5 mM) or HCQ (30 µM) for 24 h. LC3-II was decreased after 3MA treatment. 
Data are shown as mean ± SD. *P<0.05 vs. control group; **P<0.01 vs. control group. Scale bar =0.5 µm.

Figure 2 Romidepsin induced autophagy may via Erk/mTOR pathway. MGC-803 cells were treated with Romidepsin for 24 h. Cells were 
analyzed for phosphorylation or total of Erk and mTOR by western blot analysis. *P<0.05 vs. control group; **P<0.01 vs. control group.
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Figure 3 Suppression of autophagy sensitizes Romidepsin-induced apoptosis. (A) MGC-803 cells were pretreated with HCQ (30 μM), 
then 10 nM Romidepsin was incubated for 24 h. The cell apoptosis were determined by flow cytometry; (B) caspase-9, PARP and caspase-3 
proteins were measured by western blot. *P<0.05 vs. control group; (C) GC cells were treated with different concentrations of Romidepsin 
and HCQ for 24 h, CCK8 assay was employed evaluating the cell viability. CI values less than 1 is considered synergism.

Discussion

Because many cases are diagnosed at an advanced stage, GC 
has high incidence and mortality in China (14). Therefore, 
more effective therapies for advanced GC are required (15).  
Several studies have shown that autophagy inhibition 

sensitizes tumor cells to HDACi-induced apoptosis (5,16). 
Targeting autophagy is therefore an attractive potential 
strategy for cancer therapy (8). Hui et al. demonstrated 
that a combination of bortezomib and romidepsin could 
potently induce GC cell death through a mechanism 
involving caspase-independent autophagy (17). However, 
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Figure 4 Inhibition of autophagy enhances the anticancer effects of Romidepsin in vivo. (A) MGC-803 cells were subcutaneously inoculated 
into nude mice. Four groups, treated with DMSO, Romidepsin (0.5 mg/kg) and/or HCQ (60 mg/kg); tumor volumes were measured once 
every 4 days (B) and (C) tumor volume and body weight in each group; (D) the Beclin-1, LC3-II, c-caspase-3 and c-PARP expression in 
tumor xenograft tissues was examined by immunohistochemistry. *P<0.05 vs. control group; **P<0.01 vs. control group. Scale bar =100 μm.
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to date, no studies have explored whether romidepsin alone 
induces autophagy in GC cells. Here, we demonstrated 
that romidepsin induced autophagy in GC. We observed 
that autophagy was cytoprotective during romidepsin-
induced apoptosis. Furthermore, we showed that inhibiting 
autophagy with HCQ sensitized GC cells to romidepsin-
induced apoptosis.

Autophagy is stimulated by various stress conditions, 
for example when cells are exposed to chemotherapeutic 
agents (18). Autophagy functions as a pro-survival pathway 
that helps tumor cells resist apoptosis triggered by 
chemotherapeutic agents (12). The process of autophagy 
involves multiple steps, including initiation, nucleation, 
elongation, closure, maturation and degradation (18). The 

biogenesis of autophagy requires a variety of proteins, 
including LC3-I/II, ATG and beclin-1. Our results 
showed that LC3-I was converted to LC3-II in GC cells 
after romidepsin exposure. Moreover, western blot assays 
revealed that beclin-1 and ATG7 levels synchronously 
increased in romidepsin-treated cells. Romidepsin-treated 
cells exhibited punctate LC3-II staining characteristic 
of autophagy, visualized by confocal microscopy. p62, 
which is a major autophagy substrate, is degraded after 
autophagosome–lysosome fusion. We found that romidepsin 
decreased p62 expression in a dose-dependent manner. 
TEM, a classic autophagy detection method, further 
revealed the vesicular structures were double-membraned 
vesicles, termed autophagosomes, which engulf intracellular 
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components (19). 
The ERK signaling pathway plays an essential role 

in cell autophagy (20), but a link between this pathway 
and the mechanism of action of HDACis has not been 
identified (21). The mTOR pathway also plays important 
roles in regulating autophagy. Evidence has been reported 
to suggest that inhibition of mTOR activity may be the 
link between ERK in several human cell lines (22). Thus, 
we analyzed levels of phosphorylated ERK and mTOR in 
romidepsin-treated GC cells. The results clearly showed 
that romidepsin inhibited mTOR phosphorylation and 
activated the ERK pathway. Our findings suggest that 
romidepsin activates autophagy, possibly by activating the 
ERK and mTOR pathways.

Since the realization that autophagy plays essential roles 
in GC cells, there has been great interest in inhibiting 
autophagy in combination with antitumor agent use for GC 
therapy (23). HCQ, which blocks lysosome function, is a 
clinically relevant autophagy inhibitor and is being widely 
assessed clinically (5,24). We performed median effect 
analysis to investigate whether romidepsin and HCQ act 
synergistically (13). The combination index tended towards 
values of less than one, indicating the combination was 
synergistic. Our results clearly show pre-treatment with 
HCQ strongly enhanced romidepsin-mediated apoptosis in 
GC in vivo and in vitro.

In conclusion, our results revealed that romidepsin 
induced autophagy in GC cells, possibly by regulating the 
ERK and mTOR signaling pathways. Notably, our study 
demonstrates combining HCQ with romidepsin may 
represent a novel chemotherapeutic strategy in GC, and 
possibly other types of solid cancers.
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