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Introduction

Normal tissue injury remains a serious concern of cancer 
treatment with ionizing radiation (IR) and/or chemotherapy 
(1,2). Acute normal tissue injury can lead to dose reductions 
and delays in therapy. Dose reductions and treatment 
delays can compromise the outcomes of cancer therapy 
and decrease overall survival and disease-free survival. In 
addition, due to an improvement in early detection and 
treatment of cancer, the number of cancer survivors in the 
population is increasing. Currently, there are more than 
11 million cancer survivors in the United States and most 
of them are and will be alive five years or more after cancer 
diagnosis. Unfortunately, long-term cancer survivors are 
at increasing risks to develop cancer treatment-related 
late effects that can adversely affect the quality of life, 
contribute to the ongoing burden of illness and costs, and 

decrease length of survival. One of the common cancer 
treatment-related late effects is long-term bone marrow 
(LT-BM) injury resulting from IR- and/or chemotherapy-
induced damage to hematopoietic stem cells (HSCs) (2). 
The goal of this review is to provide a survey of some of 
these recent findings regarding the underlying mechanisms 
by which IR and chemotherapy cause HSC damage, which 
may facilitate the research to develop new therapeutic 
strategies to prevent and mitigate the damage and to reduce 
the long-term effects of conventional cancer therapy on the 
hematopoietic system.

The hierarchy of the hematopoietic system and 
HSC niche

The hematopoietic system is organized in a hierarchical 
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manner (3,4). The hierarchical structure of the system has 
been extensively studied in mice that are widely used as 
a model system to study IR- and chemotherapy-induced 
BM injury (Figure 1). The murine hematopoietic system 
consists of the rare HSCs (CD150+CD48–Lin–Sca1+c-kit+ 
or CD150+CD48–LSK cells), including long-term HSCs 
(LT-HSCs, CD34–CD150+CD48–LSK cells) and short-
term HSCs (ST-HSCs, CD34+CD150+CD48–LSK cells), at 
the top of the hierarchy (5,6). They have the ability to self-
renew, proliferate, and differentiate into different lineages 
of peripheral blood cells through multipotent progenitors 
(MPPs, CD150+/–CD48+LSK cells). HSCs are responsible 
for sustaining hematopoietic homeostasis and regeneration 
after injury for the entire life of an organism. In contrast, 
MPPs and hematopoietic progenitor cells (HPCs) are 
rapidly proliferating cells with limited and no self-renewal 
ability, respectively (4). The proliferation and differentiation 
of MPPs and HPCs not only allow the hematopoietic 
system to replenish various blood cells on a daily basis 
during normal hematopoiesis but also enable the system to 

react swiftly to meet the demand for an increased output 
of mature cells during hematopoietic crisis, such as loss of 
blood, hemolysis, or infection.

The majority of HSCs are quiescent under a hemostatic 
condition (5,7,8). These quiescent HSCs normally reside 
in the osteoblastic niche, which is adjacent to the endosteal 
bone surface (9-13). The osteoblastic niche provides 
HSCs with a special environment that supports their 
self-renewal. This is likely achieved in part by extensive 
interactions between HSCs and the niche via a variety of 
soluble factors, such as Wnt (14), bone morphogenetic 
proteins (15), thrombopoietin (16), interleukin 3 (IL-3),  
and IL-6 (17); various adhesion molecules, including 
CXCL12-CXCR4 and N-cadherin (18); and different 
signaling pathways, for example, stem cell factor/c-Kit, 
Jagged/Notch, and angiopoietin-1/Tie2 (Ang-1/Tie2) (19). 
These intricate interactions promote HSC self-renewal 
in part by keeping them quiescent, because quiescent 
HSCs have low metabolic activities and thus produce less 
reactive oxygen species (ROS) that are capable of causing 
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Figure 1 A hierarchical model of the murine hematopoietic system. LT-HSCs, long-term hematopoietic stem cell; ST-HSCs, short-
term HSCs; LSK cells, lineage negative, Sca1 positive, and c-kit positive hematopoietic cells; MPPs, multipotent progenitors; HPCs, 
hematopoietic progenitor cells; CLPs, common lymphoid progenitors; CMPs, common myeloid progenitors; MEPs, megakaryocyte/
erythroid progenitors (MEPs); and GMPs, granulocyte/monocyte progenitors.
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oxidative damage to HSCs (20). In addition, most endosteal 
osteoblastic niches are considered hypoxic, as they are 
relatively remote from blood flow (21). It is estimated that 
the concentration of oxygen in these niches is below 1%. 
In the mouse BM, HSCs show lower blood perfusion as 
determined by low Hoechst 33342 (Hoe) staining after 
the dye injection (22). In addition, HSCs can be enriched 
in the BM cell populations with the most pimonidazole 
staining after administration of pimonidazole, a chemical 
marker for hypoxia (22). Furthermore, human cord blood 
CD34+ cells became hypoxic and quiescent within a few 
weeks after transplantation into nonobese diabetic/severe 
combined immunodeficient interleukin-2 receptor γ chain 
knockout mice (23). These findings suggest that quiescent 
HSCs likely reside in a hypoxic environment in the BM. 
To cope with hypoxia, HSCs express higher levels of 
hypoxia inducible factor 1α (HIF-1α) (20,24,25). Increased 
expression of HIF-1α alters the metabolism of HSCs by 
upregulating glycolysis while downregulating mitochondrial 
oxidative phosphorylation, leading to reduced production of  
ROS (25). Therefore, HSCs are presumably better protected 
from oxidative stress to maintain their ability to self-renew 
by residing in a hypoxic environment and being a quiescent 
state. However, during hematopoietic stress HSCs can be 
mobilized to the vascular niche made up by the sinusoidal 
endothelial cells (SECs) and several other types of cells in 
the BM and other hematopoietic tissues (26-28), where 
they can undergo rapid proliferation and differentiation 
to generate various hematopoietic cells. Therefore, HSCs 
may use either osteoblasts or endothelial cells as their niche 
under different circumstances to maintain a fine balance 
between quiescence and proliferation or self-renewal and 
differentiation, as well as to respond to stress.

IR- and chemotherapy-induced BM injury

BM injury is one of the most common dose-limiting side 
effects of conventional cancer therapy. Acute BM injury 
occurs shortly after chemotherapy and/or IR due to 
induction of hematopoietic cell apoptosis (29-32). Because 
the majority of HSCs are quiescent and more proficient in 
repairing DNA damage, they are more resistant to induction 
of apoptosis after exposure to IR and chemotherapy than 
proliferating MPPs and HPCs (33-35). Therefore, the acute 
BM injury has been primarily attributed to the induction 
of apoptosis in the rapidly proliferating MPP and HPC 
populations by IR and chemotherapy (1,36). Under this 
circumstance, HSCs undergo self-renewing proliferation 

and differentiation to repopulate MPPs and HPCs that in 
turn generate mature blood cells to restore the homeostasis 
of the hematopoietic system. Since HSC, MPP and HPC 
proliferation and differentiation can be stimulated by various 
hematopoietic growth factors (HGFs) such as granulocyte-
colony stimulating factor (G-CSF), granulocyte/macrophage-
colony stimulating factor (GM-CSF) or erythropoietin, 
these HGFs have been widely used in clinic to promote the 
recovery of BM hematopoietic function in patients after 
cancer therapy (37-39). As such, the majority of cancer 
patients can recover rapidly from acute BM suppression 
after chemotherapy and/or IR with or without HGF 
treatment. 

However, some patients can develop LT-BM injury 
after chemotherapy and/or IR due to HSC damage (2). 
The occurrence of LT-BM injury is more prevalent both 
in patients and experimental animals receiving treatment 
with carboplatinum, busulfan, bis-chloronitrosourea 
(BCNU) and/or exposed to a moderate or a high dose of 
total body irradiation (TBI) (40-42). Unlike acute BM 
suppression, LT-BM damage is latent. Patients and animals 
with LT-BM injury usually have normal blood cell counts 
under normal homeostatic conditions in spite of a decrease 
in HSC reserves and an impairment in HSC self-renewal 
(1,2). Because of this latency, the clinical implications of 
LT-BM injury have been largely overlooked. Moreover, 
the importance of LT-BM damage is further obscured by 
the seemingly complete recovery of peripheral blood cell 
counts, BM cellularity and the number of colony-forming 
units (CFUs), especially after the use of HGFs. In fact, the 
use of HGFs may worsen chemotherapy- and IR-induced 
LT-BM damage by promoting HSC, MPP and HPC 
proliferation and differentiation at the expense of HSC 
self-renewal (37,38,43). This could lead to an accelerated 
exhaustion of HSCs and further compromise the long-
term recovery of BM hematopoietic function. Although 
LT-BM damage is latent, it is long lasting and shows little 
tendency for recovery, and can lead to the development of 
hypoplastic anemia or a myelodysplastic syndrome at later 
times or following additional hematopoietic stress such as 
subsequent cycles of consolidation cancer treatment or BM 
transplantation.

HSC senescence—an underlying mechanism 
whereby IR and chemotherapy induce LT-BM 
injury

Several mechanisms have been proposed to explain how 
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IR as well as some chemotherapeutic agents induces  
LT-BM injury, including: (I) induction HSC apoptosis  
and/or differentiation; (II) induction of HSC senescence; 
and/or (III) damage to BM stromal cells or the HSC niche 
(29,32,42,44). Although induction of HSC apoptosis and 
differentiation can contribute to IR- and chemotherapy-
induced acute BM injury, it may play an insignificant 
role in LT-BM damage, because HSC can undergo self-
renewing proliferation to repopulate the depleted HSCs 
if the ability of HSC to self-renew is not impaired by IR 
and chemotherapy. In addition, endosteal osteoblasts, a 
major component of the osteoblastic niche, are relatively 
resistant to IR and chemotherapy and are capable of 
supporting donor cell engraftment after myeloablation 
and HSC transplantation (45). In fact, it was shown 
recently that after BM radioablation, endosteal osteoblasts 
underwent rapid expansion in response to megakaryocyte-
derived mesenchymal growth factors such as platelet-
derived growth factor-β and basic fibroblast growth 
factor to promote HSC engraftment and hematopoietic 
reconstitution after BM transplantation by restoring the 
damaged HSC niche (46). However, it has been shown 
recently that exposure to IR induces BM stromal cell 
senescence (44). It remains to be determined whether 
induction of BM stromal cell senescence and damage to 
other cells in the HSC niche also affect HSC self-renewal 
and contribute to IR- and chemotherapy-induced LT-BM 
injury. Compared to various BM stromal cells and other 
hematopoietic cells, HSCs are relatively more sensitive to 
oxidative stress, probably in part because they normally 
reside in a hypoxic environment in the HSC niche and 
maintain in a quiescent state. Therefore, a moderate 
increase in ROS is capable of impairing the ability of HSCs 
to self-renew via induction of HSC senescence, which 
can cause premature exhaustion of HSCs and LT-BM  
suppression (47-49). Therefore, induction of HSC 
senescence resulting from increased production of ROS 
has been implicated in the pathogenesis of BM suppression 
under various pathological conditions, including LT-BM 
injury induced by IR and chemotherapy (47-49). The first 
evidence that HSCs can undergo senescence was observed 
in Bmi1–/– mice. It was found that mice lacking the Bmi1 
gene developed progressive BM hypoplasia and died early 
(<2 months) after birth (50,51). Although Bmi1–/– mice had 
a normal pool of fetal liver HSCs, transplantation of their 
fetal liver HSCs to a lethally irradiated recipient resulted 
only in a transient reconstitution of the hematopoietic 
system (50,51). This suggests that the mutant fetal liver 

HSCs have the ability to proliferate and differentiate into 
HPCs enabling transient reconstitution of the BM, but 
cannot self-renew and generate HSCs to ensure long-term 
hematopoietic engraftment. Deficiency in self-renewal was 
also found in neural and leukemia stem cells lacking Bmi1, 
indicating that Bmi1 is a general regulator of stem cell self-
renewal (50-52). Bmi1 is a member of the Polycomb group of 
transcriptional repressors. Its downstream targets include 
the gene products of the Ink4a/Arf locus, e.g., p16Ink4a (p16) 
and Arf. HSCs from Bmi1-/- mice express increased levels of 
p16 and Arf (50-52). Enforced expression of p16 and Arf in 
HSCs induces cell cycle arrest and apoptosis, respectively, 
whereas p16 knockout partially restores the ability of  
Bmi1–/– stem cells to self-renew (50-52).

Similarly, it  has been hypothesized that IR and 
chemotherapy cause LT-BM injury primarily by induction 
of HSC senescence which impairs HSC replication and self-
renewal leading to the reduction in HSC reserves (53-55). 
Impairment in HSC self-renewal has been well documented 
in patients and animals after exposure to TBI or treatment 
with various chemotherapeutic agents that can cause LT-BM 
injury (1,55,56). For example, BM HSCs from mice after 
exposure to IR or receiving chemotherapy generated fewer 
colony-forming unit-spleen (CFU-S) and repopulating units 
in lethally irradiated recipients after BM transplantation 
(38,57-60). Similar impairments of HSC self-renewal 
capacity and long-term repopulating ability were observed 
in patients undergoing autologous transplantation after TBI 
and/or dose-intensified chemotherapy. However, direct 
evidence to demonstrate that HSCs undergo senescence 
after exposure to IR or a chemotherapeutic agent was 
lacking until our recent studies. In these studies, we found 
that exposure to IR or busulfan treatment induced HSC 
senescence in vitro and in vivo (41,42,55,61). The senescent 
HSCs induced by IR and busulfan had diminished 
clonogenic activity and expressed increased levels of SA-β-gal, 
p16, and Arf. Interestingly, a shortening of the intrinsic 
replicative capacity of HSCs or loss of HSC self-renewal 
after exposure to IR does not affect HSC differentiation 
to generate various HPCs and more mature progeny prior 
to their final exhaustion. Moreover, HPCs from irradiated 
mice showed neither abnormalities nor did they exhibit 
signs of senescence. These findings indicate that IR can 
selectively induce HSC senescence (42,55).

ROS and HSC senescence

ROS is a collective term for oxygen species that are more 
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reactive than oxygen molecule. The common ROS in a 
biologic system includes hydrogen peroxide, superoxide, 
and hydroxyl radical. Hydroxyl radical and superoxide also 
are free radicals that have an unpaired valence electron. 
Hydroxyl radical is highly reactive and short lived. It can 
react to a variety of macromolecules to cause oxidative 
damage to a cell and thus is highly toxic. Superoxide can be 
spontaneously converted into hydrogen peroxide or rapidly 
dismutated to hydrogen peroxide by superoxide dismutase 
(SOD). Hydrogen peroxide is less reactive than superoxide 
and thus biologically less toxic. It can be converted into 
highly toxic hydroxyl radicals through acquisition of an 
electron or eliminated by catalase, glutathione peroxidase 
(GPX), or peroxiredoxin. Because hydrogen peroxide is less 
reactive with a longer half-life and membrane permeable, 
it can also function as a signal molecule to regulate various 
biological activities in a cell.

ROS can regulate HSC function in a concentration-
dependent manner. Low levels of ROS appear to be 
required for HSC proliferation, differentiation, and 
mobilization (62-65). For example, it was reported recently 
that HSCs from AKT1/2 double knockout mice exhibit 
a defect in long-term hematopoietic reconstitution after 
transplantation (62). The defect is attributable to the 
reduced production of ROS, as moderate elevation of ROS 
in HSCs by incubation of the cells from the knockout 
mice with low doses of the pro-oxidant L-buthionine-S,R-
sulfoximine (BSO) increased their clonogenicity. This is 
in agreement with another recent observation that ROS-
dependent proliferation of HSCs also plays an important 
role in the early steps of hematopoietic reconstitution after 
HSC transplantation (65).

However,  increased production of ROS can be 
detrimental to HSCs (61,66-73). For example, incubation 
of HSCs with BSO, which induces oxidative stress by 
depleting intracellular reduced glutathione, resulted in 
a dramatic reduction in HSC clonogenicity (62,74). A 
moderate increase in ROS production after deletion of 
the ataxia telangiectasia mutated gene (ATM) can disrupt 
HSC quiescence by stimulating HSC cycling, which 
comprises the ability of HSCs to self-renewal and leads to 
HSC premature exhaustion (67,75). Treatment of ATM–/–  
mice with N-acetyl-cysteine can restore the function of 
HSCs and prevent the development of BM failure (75). 
Subsequently, it was shown that the number of HSCs 
and their long-term repopulating activity were markedly 
reduced in association with an increased production of 
ROS in HSCs after the deletion of the genes encoding the 

O subclass of the forkhead family of transcription factors, 
e.g., FoxOs (FoxO1, FoxO3, and FoxO4) in mice (68). These 
defects were associated with an increased production of 
ROS in HSCs and ameliorated by the treatment with 
N-acetylcysteine (NAC). In addition, increased production 
of ROS is also association with HSC defect in several other 
pathological conditions, including deletion of Bmi1 (71,76), 
the Mouse double minute 2 homolog gene (MDM2) (69) 
and the tuberous sclerosis 1 gene (TSC1) (70), Fanconi 
anemia mutation (77), and aging (66,78-81).

It has been well established that exposure of a cell to 
IR or treatment with certain chemotherapeutic agents 
cause immediate increase in ROS production. This initial 
oxidative stress not only produces direct and acute cell 
damage, but more importantly also perturbs cellular 
metabolism to disturb the balance of reduction/oxidation 
(redox) reactions, leading to a persistent and prolonged 
increase in ROS production (82). The induction of 
chronic oxidative stress by IR and chemotherapy sets in 
motion a self-perpetuating process of late deleterious 
effects, including cellular senescence, genetic instability, 
inflammation and fibrosis (61,82,83). This new concept 
is supported by the observations that: (I) an increase in 
the formation of oxidized products persists in various 
tissues even days, weeks and months after chemotherapy 
or exposure to IR; (II) a non-targeted effect of IR can 
occur in cells that are not themselves irradiated but are 
the descendants of irradiated cells (irradiation-induced 
genomic instability) or in non-irradiated cells that are in 
contact with irradiated cells (radiation-induced bystander 
effects); and (III) a post-irradiation treatment with an 
antioxidant can ameliorate some of the late detrimental 
effects induced by IR (55,61,83). Therefore, chemotherapy- 
and IR-induced late effects that once were viewed as an 
inevitable and untreatable consequence of the initial and 
direct insult of chemotherapy and IR, are now considered 
as dynamic responses of the cells affected by the insult 
and thus, amendable to therapeutic intervention. This 
hypothesis has been extensively examined in several organs 
that are sensitive to chemotherapy- and IR-induced late 
tissue injury, such as fibrotic injury in the lungs and kidneys 
(84,85). However, evidence to support the hypothesis that 
induction of chronic oxidative stress may play an important 
role in mediating IR- and chemotherapy-induced late effects 
on the hematopoietic system was lacking until our recent 
studies. In these studies, we found that exposure of mice to a 
sublethal dose of TBI induced a persistent increase in ROS 
production only in HSCs, but not in their progeny (61). 
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The induction of chronic oxidative stress was associated 
with sustained increases in oxidative DNA damage and 
DNA double strand breaks (DSBs) in HSCs, decreases 
in HSC clonogenic function and long-term engraftment 
ability, and myeloid skewing (55,61,75,86). Treatment 
of irradiated mice with an antioxidant such as NAC or 
the SOD mimetic MnTE-2-PyP after TBI significantly 
attenuated IR-induced LT-BM injury (49,55,61). These 
findings provide the first evidence that TBI causes LT-BM 
damage via induction of chronic oxidative stress selectively 
in HSCs.

Role of the p38 mitogen-activated protein 
kinase (p38)-p16 pathway in regulation of HSC 
senescence

Although an acute and excessive production of ROS 
occuring shortly after exposure to a high dose of IR can 
cause apoptosis in a variety of cells including HSCs via 
induction of DSBs and activation of the p53 pathway (29), 
chronic oxidative stress (61) induced by chemotherapy and 
IR appears to injury HSCs not by a nonspecific cytotoxic 

effect as previously hypothesized but via induction of 
cellular senescence at least in part through redox-dependent 
activation of the p38-p16 pathway (66).

p38 is a member of the mitogen-activated protein kinase 
(MAPK) family of signal transduction kinases, which can 
be activated in a sequential order [mitogen-activated or 
extracellular signal-regulated kinase kinase (MEKK)-MAPK 
kinase 3/6 (MKK3/6)-p38] after exposure to stress (87). 
Activation of p38 regulates a variety of cellular processes 
such as inflammation, cell cycle arrest and apoptosis in 
a cell type specific manner. It also plays a critical role in 
the induction of senescence in response to a variety of 
stimuli via up-regulating p16 (88-90). For example, it was 
shown that a high level of Ras or Raf activation in human 
normal fibroblasts induced senescence by stimulating a 
sustained activation of p38, which in turn upregulated the 
expression of p16 (89,90). Activation of the p38 pathway 
also contributes to the induction of p16 and cellular 
senescence after DNA damage resulting from exposure 
to genotoxic and oxidative stress and telomere shortening 
due to extensive replication (91) (Figure 2). Furthermore, 
activation of p38 by ectopic transfection of MKK3 and/or 
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Figure 2 Hypothetic mechanisms of cancer therapy-induced HSC senescence and LT-BM injury and potential strategies for therapeutic 
intervention. IR and chemotherapy may increase the production of ROS by NOXs and/or mitochondria via activation of the mTOR-HIF1 
pathway in HSCs. ROS can induce HSC senescence by stimulating the p38 pathway and/or activating the p53-p21 pathway via induction 
of DSBs. Both pathways could converge at p16/Arf for the induction of HSC senescence. Therefore, mTOR and NOX inhibitors and 
selective antioxidants may have the potential to prevent and mitigate cancer therapy-induced HSC senescence and LT-BM injury. HSC, 
hematopoietic stem cell; LT-BM injury, long-term bone marrow injury; IR, ionizing radiation; ROS, reactive oxygen species; NOXs, 
NADPH oxidases; mTOR, mammalian target of rapamycin; HIF1, hypoxic-inducible factor-1; DSBs, DNA double strand breaks.
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MKK6 increases p16 expression and induces senescence. In 
contrast, inhibition of p38 activity or down-regulation of 
p38 expression attenuates the induction of p16 and cellular 
senescence by oncogenic stress, DNA damage and telomere 
shortening (89,91,92).

ROS can activate p38 via the apoptosis signal-regulating 
kinase 1 (ASK1) (93). Normally, ASK-1 forms an inactive 
complex with the repressor protein thioredoxin in a 
cell. The formation of this complex is dependent on the 
presence of a reduced form of an intramolecular disulfide 
bridge between two cysteine residues of thioredoxin. 
Oxidation of thioredoxin by ROS causes dissociation of 
ASK-1 from thioredoxin, resulting in activation of ASK1 by 
oligomerization, interaction with TNF receptor-associated 
factor-2/6, and threonine autophosphorylation (93). It has 
been shown that ROS production from Nox4 can activate 
p38 via activation of ASK-1 (94). Alternatively, ROS can 
activate p38 by inactivation of protein tyrosine phosphatases 
(PTPs) (95,96), because oxidation of the catalytic cysteine 
of PTPs by ROS can reversibly inactivate PTPs (97).

Activation of p38 has been implicated in BM suppression 
in various pathological conditions, including aplastic anemia 
and myelodysplastic syndromes (98,99). Furthermore, 
recently it was shown that mutation of the ATM gene and 
knockout of the FoxO3 gene induced premature senescence/
exhaustion of HSCs (67,68,72). The induction of HSC 
senescence/exhaustion was associated with an elevated 
production of ROS, a selective activation of p38, and an 
upregulation of p16 in HSCs. Pharmacological inhibition of 
p38 activity rescued the defects of HSCs from ATM mutants 
and FoxO3 knockout mice (67,68,72). These findings 
indicate that p38 plays an important role in regulation of 
HSC self-renewal and its activation by oxidative stress can 
mediate the induction of HSC senescence via regulation 
of p16 (66). Therefore, we recently examined whether 
IR causes hematopoietic suppression in part by inducing 
hematopoietic cell senescence through activation of the p38 
pathway and whether pharmacological inhibition of p38 
can attenuate IR-induced residual BM injury (100-102). In 
this study, we found that p38 was selectively activated in 
irradiated hematopoietic cells and this activation sustained 
up to five weeks after IR in a LT-BM cell culture assay. 
Inhibition of p38 activity with a specific inhibitor, e.g., 
SB203580, attenuated IR-induced suppression of BM 
hematopoietic cell function in association with a significant 
reduction in p16 expression and SA-β-gal activity. 
Moreover, our in vivo data shows that inhibition of p38 
attenuated IR-induced LT-BM suppression. These results 

suggest that p38 activation plays a role in mediating IR-
induced hematopoietic cell senescence and BM suppression 
and that pharmacological inhibition of the p38 pathway 
with a specific inhibitor can be further exploited for 
amelioration of IR-induced residual BM injury (100-102). 

The Ink4a-Arf locus encodes two tumor suppressors, 
p16 and Arf (103-105). The transcripts for these proteins 
have different first exons (α for p16 and β for Arf), but 
share exons 2 and 3. However, there is no amino acid 
sequence similarity between these two proteins due to 
the use of alternative reading frames for their translation. 
p16 is a potent cyclin-dependent kinase (CDK) 4/6 
inhibitor. By inhibiting CDK4/6 activity, p16 causes Rb 
hypophosphorylation and suppresses the expression of 
E2F-dependent genes, resulting in restriction of G1/S cell 
cycle progression and formation of senescence-associated 
heterochromatic foci (SAHF) (103,104,106). Once SAHF 
are formed after the engagement of the p16-Rb pathway, the 
cells become permanently growth arrested and senescent. It 
has therefore been suggested that diverse stimuli can induce 
cellular senescence via various upstream signal transduction 
cascades, including the p38 and p53-p21 pathways, but 
converge on the p16-Rb pathway, whose activation provides 
an inescapable barrier preventing senescent cells from re-
entering the cell cycle. This suggestion is supported by 
the finding that activation of p53 and induction of p21 in 
cells undergoing senescence are transient events that occur 
during the onset of senescence and then subside when the 
expression of p16 starts rising (107-109). Inactivation of 
p53 prior to upregulation of p16 can prevent senescence 
induction. However, once p16 is highly expressed, cell 
cycle arrest becomes irreversible by downregulation of p53, 
indicating that activation of the p53-p21 pathway plays an 
important role in the initiation of senescence, but induction 
of p16 is required for the maintenance of senescence 
(107,110). In agreement with this suggestion, we found that 
IR induced p53 activation and p21 expression in HSCs prior 
to the induction of p16 (41). While p53 activation and p21 
upregulation gradually declined within a few weeks after 
IR, p16 expression in irradiated HSCs remained elevated 
and the cells subsequently became senescent, exhibiting 
positive SA-β-gal staining. In contrast, the biological action 
of Arf relies on the p53 pathway. This is because Arf can 
directly bind to MDM2 and cause the accumulation of p53 
by segregating MDM2 from p53 and by inhibiting MDM2’s 
E3 ubiquitin protein ligase activity for p53 (103,104,111). 
Therefore, activation of p53 by Arf can induce not only 
cellular senescence but also apoptosis, depending on which 
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gene down-stream of p53 is induced following its activation. 
Upregulation of p16 and Arf has been implicated in 

mediating the induction of cellular senescence in a variety 
of cells including HSCs. For example, increased expression 
of p16 and Arf was found in HSCs from Bmi1–/– mice (50). 
However, it appears that p16 but not Arf plays an important role 
in mediating the induction of Bmi1–/– HSC senescence (50). In 
addition, it has been found that knockout of both the p16 
and Arf genes in mice significantly increases the clonal 
expansion of HSCs in vitro but modestly promotes HSC 
self-renewal in vivo (51,112). However, knockout of the Arf 
gene alone does not provide any advantage for HSC/HPC 
expansion and self-renewal (113). In contrast, knockout p16 
increases the life-span of HSCs by promoting HSC self-
renewal (113,114). Furthermore, mutation of the ATM 
gene also results in up-regulation of p16 and Arf in HSCs 
(67,115). Inactivation of the p16-Rb pathway by retroviral 
transfection of human papillomavirus (HPV) E7 proteins 
restores the reproductive function of ATM-/- HSCs, while 
inhibition of the Arf-p53 pathway by E6 transfection has 
no such effect (75). These findings suggest that p16 plays 
a more significant role than Arf in regulation of HSC self-
renewal and induction of HSC senescence, even though 
both proteins are over-expressed in senescent HSCs. 
Increased expression of p16 and Arf has been found in IR-
induced senescent LSK (Lin–Sca1+c-kit+) cells that are 
enriched with HSCs (42). However, their roles in mediating 
IR-induced HSC senescence and LT-BM suppression 
remain to be investigated. 

ROS cellular origines and regulation of ROS 
production in HSCs

During normal homeostasis, the levels of intracellular ROS 
in a cell are tightly regulated by a fine balance between 
ROS production and expression of cellular antioxidant 
defense enzymes and molecules (116). Therefore, 
increased production of ROS and/or reduced expression of 
antioxidant enzymes and molecules can perturb the balance, 
leading to oxidative stress in HSCs (48,116). For example, 
ATM has the ability to regulate the activities of several 
antioxidant enzymes at the levels of transcription and post-
translation (117). The cells including HSCs from ATM–/– 
mice produced increased levels of ROS due to dysregulation 
of SOD, catalase, and GPX (117). FoxOs can regulate the 
expression of SOD and catalase at the level of transcription. 
Knockout of FoxOs in mice induces oxidative stress in HSCs 
and HSC senescence (68,72). This is mainly attributed 

to the reduction in SOD and catalase expression (68). In 
addition, there is a mechanistic link between ATM and 
FoxO3 in regulation of ROS production in HSCs as FoxO3 
is essential for ATM expression (73). 

ROS is one of the by-products of mitochondrial 
respiration, and mitochondria have been considered the 
main source of cellular-derived ROS in most cells (82). Cells 
from Bmi1–/– mice produce increased levels of ROS due 
to impairment in mitochondrial function (71). However, 
compared to their progeny and other somatic cells, HSCs 
are dormant, have fewer mitochondria, and primarily utilize 
glycolysis rather than oxidative phosphorylation for ATP 
production (118,119). Therefore, HSCs are unique and may 
depend less on mitochondria for the production of ROS. 
Recently, an increasing body of evidence demonstrates 
that cells can also actively produce ROS through a family 
of tightly regulated NADPH oxidases (NOXs) that are 
homologues of the phagocyte oxidase (Phox or NOX2) 
(120,121). ROS produced by NOXs participate in 
regulation of many cell functions and have been implicated 
in the pathogenesis of different diseases. HSCs in humans 
express NOX1, NOX2, and NOX4, as well as various 
NOX regulatory subunits (118,119). In addition, NOX-
mediated extramitochondrial oxygen consumption accounts 
for an estimated one-half of endogenous cell respiration in 
human HSCs. These findings suggest that NOXs, but not 
mitochondria, may be the main cellular origins of ROS in 
HSCs (118,119). This suggestion is supported by a recent 
finding showing that IR-induced persistent increase in ROS 
production in human CD34+ cells has a non-mitochondrial 
origin (122). More importantly, our recent studies showed 
that even though HSC-enriched LSK cells from mouse 
BM expressed NOX1, NOX2, and NOX4, their progeny 
including BM HPCs, Lin– cells, and monocytes expressed 
NOX1 and NOX2, but not NOX4, suggesting that NOX4 
expression is downregulated upon HSC differentiation 
and that NOX4 may play an important role in regulation 
of HSC function (61). More important, it was found that 
NOX4 expression was upregulated, whereas NOX1 and 
NOX2 expression was unchanged in HSCs after TBI. 
Because NOX4 is constitutively active and ROS production 
by it is regulated at the transcriptional level (120,121,123), 
the finding that IR upregulates NOX4 in HSCs implies that 
NOX4 may primarily mediate the IR-induced increase in 
ROS production in HSCs. This suggestion is supported by 
the finding that diphenyl iodonium (DPI), but not apocynin, 
inhibits IR-induced elevation of ROS production in HSCs, 
because NOX4 is not sensitive to apocynin inhibition, 
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whereas other NOXs are (61,120,121,123). In addition, our 
recent results showed that resveratrol, a potent antioxidant 
and a putative activator of Sirtuin 1, could ameliorate TBI-
induced LT-BM injury by inhibiting radiation-induced 
chronic oxidative stress and senescence in HSCs in part by 
downregulation of NOX4 expression (49). These findings 
suggest that NOX4 is likely one of the main cellular sources 
of ROS in HSCs after TBI. However, it has yet to be 
determined whether other ROS production enzymes (such 
as cyclooxygenases and lipoxygenases) also play a role in 
contributing to the increased production of ROS in HSCs 
induced by IR and chemotherapy. 

NOX4 expression is regulated by a variety of factors 
(124-130). Two of the major factors inducing NOX4 
expression, angiotensin II (Ang II) and transforming growth 
factor-β (TGFβ), have been implicated in mediating various 
late effects of IR (39,131,132). Both of them may regulate 
NOX4 expression via activation of the mammalian target of 
rapamycin (mTOR) because Ang II and TGFβ can activate 
mTOR via induction of TR3 (or Nur77, a member of the 
steroid/thyroid/retinoid receptor family) and suppression 
of DEPTOR (an intracellular mTOR inhibitor) through 
Smad3, respectively (127-130). mTOR is a serine/threonine 
kinase that senses and integrates a variety of environmental 
cues, including nutrients, growth factors, and intracellular 
energy status, to regulate metabolism and cell growth. It 
also plays a critical role in regulation of HSC quiescence, 
self-renewal, and function. Overactivation of mTOR by 
deletion of Pten or Tsc1 in mice impairs HSC self-renewal 
and causes HSC exhaustion in association with increased 
production of ROS (70,133-137). Treatment with rapamycin 
or NAC can rescue HSC defects in Tsc1 knockout mice, 
demonstrating that ROS are responsible for mediating 
mTOR overactivation-induced HSC dysfunction (70). It 
was hypothesized that hyperactivation of mTOR elevates 
ROS production by mitochondria because activation of 
mTOR increases mitochondrial biogenesis (138,139). 
However, evidence to support this hypothesis has not been 
presented. In contrast, it was recently shown that mTOR 
activation increased NOX4 expression and ROS production 
in epithelial cells (140,141). mTOR may upregulate 
NOX4 expression via HIF1, because mTOR can activate 
HIF1 and NOX4 is a new target gene of HIF1 (142-145). 
These findings suggest that activation of mTOR may 
increase ROS production primarily via NOX4 rather than 
mitochondria. Our recent studies showed that mTOR could 
be activated in HSCs after mice were exposed to a sublethal 
dose of TBI and that inhibition of mTOR with rapamycin 

could attenuate TBI-induced increase in ROS production 
in HSCs (unpublished observation). Therefore, it will be of 
a great interest to determine whether activation of mTOR 
mediates IR-induced upregulation of NOX4 in HSCs and 
whether inhibition of mTOR with an mTOR inhibitor can 
inhibit IR-induced expression of NOX4 in HSCs. These 
studies will help identify additional novel molecular targets 
and therapeutics to inhibit IR-induced HSC senescence and 
LT-BM injury. 

Summary

LT-BM injury is a common cancer treatment-related late 
effect caused by IR- and chemotherapy-induced damage 
to HSCs. Although LT-BM damage is latent, it is long 
lasting, shows little tendency for recovery, and can lead to 
hypoplastic anemia and predispose individuals treated with 
IR and chemotherapy to therapy-related myelodysplastic 
syndrome and acute myeloid leukemia (37,38,53,146). 
However, neither the mechanisms by which IR and/or 
chemotherapy induce HSC damage have been clearly 
defined, nor has an effective treatment been developed 
to ameliorate LT-BM injury. In this review, we have 
summarized a number of recent findings regarding the role 
of oxidative stress in mediating IR- and chemotherapy-
induced HSC senescence and LT-BM. These findings 
provide not only new insights into the molecular 
mechanisms whereby IR and chemotherapy induce HSC 
senescence but also potential novel therapeutic strategies 
that can be exploited to prevent and mitigate IR- and 
chemotherapy-induced LT-BM injury in cancer patients 
(Figure 2). Such strategies have the potential to significantly 
reduce the long-term adverse effects of conventional 
cancer therapy on the hematopoietic system, increase the 
compliance of cancer patients to subsequent consolidation 
cancer treatments, facilitate the long-term engraftment 
and recovery of hematopoietic function after autologous 
and allogeneic BM transplantation, and reduce the risk of 
developing therapy-related myelodysplastic syndrome and 
acute myeloid leukemia.
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