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Introduction

Irinotecan (CPI-11), a camptothecin analogue and 
topoisomerase I inhibitor, is an important cytotoxic drug 
used in the treatment of advanced colorectal cancer (1). 
It has significant activity against other cancers including 
small cell lung cancer, gastric cancers and gliomas, 
making it one of the most commonly used anti-cancer 

drugs in clinical practice and be listed in the World 
Health Organization’s model list of essential medicines 
(2-5). Irinotecan is associated with significant, but, 
unpredictable myelosuppression and diarrhoea as major 
dose-limiting toxicities. The incidence of severe diarrhoea 
and neutropenia in irinotecan containing regimen has 
been reported up to 40% in published trials (6). Such risk 
for adverse effects is partly attributable to its complex 
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pharmacology (7). Moreover, pharmacogenetic testing for 
UGT1A1 based dosing has been recommended to reduce 
irinotecan related toxicity (8).

Irinotecan is a prodrug that is activated by carboxylesterases 
(CES) in the blood circulation and tumour cells to its active 
metabolite, SN-38 (7-ethyl-10-hydroxycamptothecin), which 
is 10–1,000 fold more active than the parent compound (9).  
Glucuronidation of SN-38 to form SN-38 glucuronide 
(SN-38G) by UGT1A1 results in its inactivation and 
facilitates elimination. Other enzymes, notably UGT1A7, 
UGT1A9 and cytochrome P450 3A4/5 (CYP3A4/5) 
may also contribute to SN-38 metabolism in liver, 
gastrointestinal tract and kidney (10). Enterohepatic cycling of  
SN-38G is known to be associated with delayed diarrhoea, 
a common toxicity in irinotecan treated patients (11).  
Moreover, various transporters (SLCO1B1, ABCB1, ABCC1 
and 2, and ABCG2) are also involved in the clearance of 
irinotecan and SN-38 (12). Polymorphic variants of UGTs 
and transporters lead to high inter-individual variability in 
pharmacokinetics (13,14) .

In current clinical practice, irinotecan is administered 
either alone or in combination with other cytotoxic drugs 
such as 5-fluorouracil or capecitabine. In addition, it has 
been safely and effectively combined with various targeted 
agents such as monoclonal antibodies (15)—bevacizumab, 
cetuximab or panitumumab, but, not with the small-molecule 
kinase inhibitors (KIs). Many KIs have been approved since 
2001 to treat various malignancies, either as monotherapy 
or in combination with chemotherapy drugs (16).  
Despite synergistic activities for the combination of a KI 
with irinotecan, none of the KIs are currently used with 
irinotecan in clinical practice. Possible reasons include 
overlapping toxicity, drug-drug interactions and lack of 
efficacy in human trials.

In this review, we summarize the available evidence 
on the in vitro and in vivo studies addressing the effects 
of the combination of irinotecan with the approved KIs. 
We focused on the anti-vascular endothelial growth 
factor (VEGF) pathway inhibitors (axitinib, pazopanib, 
regorafenib, sorafenib, sunitinib), and epidermal growth 
factor (EGF) pathway inhibitors (erlotinib, gefitinib, 
lapatinib). These two groups of KIs have been commonly 
evaluated in combination with irinotecan in the treatment of 
various cancers. We further summarize the effects of these 
KIs on the in vivo metabolism of irinotecan/SN-38. Finally, 
we address the potential pitfalls to avoid while planning 
future studies that address the feasibility of combining a KI 
with irinotecan.

Methods

We identified the relevant in vitro and in vivo studies from 
Medline and abstracts of the American Society of Clinical 
Oncology annual meetings published from inception until 
June 2017. The following search terms were used for the 
literature search—axitinib, cabozantinib, erlotinib, gefitinib, 
lapatinib, pazopanib, regorafenib, sorafenib, sunitinib, 
vandetanib, irinotecan and SN-38. Data on pharmacodynamic 
and pharmacokinetic (PK) interactions between the KIs and 
irinotecan were extracted from studies published in full or 
abstract only in English language and summarized in cell lines, 
animal models and human clinical trials.

Results

Pharmacodynamic interactions

Pre-clinical studies—cell lines and xenografts
Most of the KIs showed synergistic activities when used in 
combination with irinotecan or SN-38 in cell line studies 
or xenografts in animal models. Tumour cell apoptosis, 
cell proliferation, reduction in tumour size and survival 
of the animals were the common outcomes assessed in 
these studies. One common theme from these studies 
confirmed a schedule-dependent interaction between KIs 
and irinotecan. For example, concurrent administration of 
gefitinib and irinotecan resulted in an antagonistic effect 
in two different lung cancer cell lines (PC-9 and PC-9/ZD  
cells) (17) while sequential administration of gefitinib after 
irinotecan resulted in potent inhibition of various cell lines (18).  
Studies addressing the mechanism responsible for synergism 
identified that KIs caused inhibition of efflux ATP-binding 
cassette (ABC) transporters (ABCB1 and/or ABCG2) 
within tumour cells thereby increasing the intra-tumoral 
concentration of irinotecan and SN-38. Another potential 
mechanism is inhibition of intra-tumoral UGT1A enzymes 
by the KIs (19).

In vitro cell line studies evaluating the combination of 
irinotecan/SN-38 and KIs
Gefitinib exhibited synergistic activities with irinotecan (20-22).  
In gastric cancer cell lines (19), decreased expression of 
UGT1A1 and ABCG2 was detected when the combination 
was tested. Lapatinib restored sensitivity to SN-38 in small 
cell cancer cell lines through ABCB1 inhibition (23), and 
potentiated the activity of irinotecan in colorectal cancer 
cell lines (24). Similarly to gefitinib, lapatinib decreased 
expression of UGT1A1 and ABCG2 in gastric cancer cell 
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lines (19). Moreover, erlotinib (25), gefitinib (26), and 
lapatinib (27) inhibited ABCG2 mediated resistance to 
irinotecan in cell lines by reducing the efflux of SN-38. 

Among the VEGF pathway inhibitors, most KIs had 
synergistic activity with irinotecan; axitinib demonstrated 
activity in pancreatic cancers (28), sunitinib in esophagogastric 
and paediatric brain tumours (29,30), and sorafenib in 
colorectal cancer (31) and paediatric brain tumours (30).

Animal models
Few animal studies were identified evaluating the 
combination of KIs and irinotecan. Erlotinib (32) (in LoVo 
colon cancer models) and lapatinib (in her-2 positive small 
cell cancer mice models as well as in xenografts) increased 
tumour cell kill when used with SN-38 (23,24). Vandetanib 
was synergistic with irinotecan as well as radiation in 
tumour xenografts (33,34).

PK interactions

Irinotecan metabolism is well characterised. UGT1A1-
mediated conversion of the active SN-38 to SN-38G is the 
primary clearance mechanism (10). As described previously, 
other enzymes such as UGT1A7, UGT1A9 and CYP3A4/5 
and the transporters SLCO1B1, ABCB1, ABCC1 and 2, 
and ABCG2 play a role in the elimination and distribution 
of irinotecan and SN-38 (12). Clinically available KIs 
are known to be substrates, inhibitors and/or inducers of 
CYP, UGT enzymes and transporters (35-37), indicating a 
significant potential for drug-drug interactions when used 
with irinotecan.

In vitro studies on the effects of KIs on SN-38 
metabolism by UGT1A1
Many KIs inhibit UGT1A1, although the potency 
of inhibition differs between the individual agents. 
Notably, sorafenib and regorafenib are the most potent 
inhibitors of UGT1A1 identified to date. Sorafenib and 
regorafenib inhibited the human liver microsomal (HLM) 
glucuronidation of the prototypic UGT1A1 substrate 
β-estradiol, with Ki values of 33 and 20 nM, respectively (38).  
Lesser inhibition was observed with lapatinib and 
pazopanib; Ki values ranged from 567 to 2,340 nM. The 
potent inhibition observed with sorafenib and regorafenib 
accords well with the hyperbilirubinemia (arising from 
inhibition of UGT1A1-catalysed bilirubin glucuronidation) 
reported as an adverse effect in patients treated with these 
drugs, and it would be anticipated that sorafenib and 

regorafenib would similarly inhibit the glucuronidation 
of other UGT1A1 substrates (38). Not un-expectantly, 
sorafenib has been reported to inhibit human liver 
microsomal SN-38 glucuronidation (Ki—2.7 μM) (39). 
The Ki for sorafenib inhibition of SN-38 glucuronidation 
is almost certainly over-estimated, probably by an order 
of magnitude, due to the failure to account for the non-
specific binding of sorafenib to the enzyme source in the in 
vitro incubation medium. Indeed, as discussed subsequently, 
co-administration of sorafenib and irinotecan leads to an 
increase in the AUC of SN-38. It is additionally possible 
that sorafenib and sorafenib glucuronide contribute to the 
impairment in SN-38 elimination via inhibition of SLCO1B 
transporters (40) (see below).

It has similarly been reported that erlotinib, gefitinib, 
lapatinib and sunitinib variably inhibit the  in vitro 
glucuronidation of SN-38. Erlotinib was found to be a potent 
non-competitive inhibitor of SN-38 glucuronidation in pooled 
HLMs (Ki of 0.68±0.04 μM) and recombinant UGT1A1 
(0.81±0.05 μM) (41). An increase in the area under the curve 
(AUC) of 24–46% for irinotecan was predicted when used with 
erlotinib (42). The polymorphic variant, UGT1A1*28, was 
also inhibited by erlotinib (42). Fujita et al reported IC50 values 
for KI inhibition of SN-38 glucuronidation for other KIs—
lapatinib (1.47 μM), and gefitinib (3.50 μM) while sunitinib did 
not inhibit glucuronidation at clinically relevant concentrations 
(>10 μM) (43).

In vitro studies on the effects of KIs on Irinotecan/ 
SN-38 metabolism by CYP enzymes
CYP enzymes play a relatively minor role in the metabolism 
of irinotecan. There has been only a single study that 
evaluated the effect of a KI on CYP mediated metabolism of 
irinotecan (44). Gefitinib inhibited HLM CYP3A4 catalyzed 
formation of NPC [7-ethyl-10-(4-amino-1-piperidino) 
carbonyloxycamptothecin] (2.8 folds) while it stimulated 
the formation of APC {7-ethyl-10-[4-N-(5-aminopentanoic 
acid)-1-piperidino] carbonyloxycamptothecin} (1.9 folds) (44).  
This interaction was considered unlikely to be of clinical 
relevance.

In vitro studies on the effects of KIs on Irinotecan/ 
SN-38 transport
Ir inotecan and SN-38 are substrates  of  the ABC 
transporters ABCB1, ABCC2, ABCG2, whereas SN-38 is 
a substrate of SLCO1B1 (12). Most KIs appear to be either 
substrates and/ or inhibitors of ABC transporters (45-47).  
Among the several KIs evaluated by Zimmerman et al, 
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most of the anti-VEGF inhibitors including sorafenib, 
pazopanib, sunitinib and vandetanib were substrates of 
SLCO1B1 and SLCO1B3 (40). However, the inhibition 
of SLCO1B1 by KIs is not well characterised except for 
pazopanib (IC50 of 0.79 μM) (48). Thus, the concentrations 
of irinotecan and SN-38 in the plasma, gut lumen and 
within tumour cells could potentially be increased by KI 
inhibition of transporters. While this complex interplay 
between KIs and irinotecan results in increased efficacy 
of irinotecan (in terms of tumour cell kill), there is a 
simultaneous increase in toxicity (neutropenia and diarrhoea 
from high concentrations of SN-38 in plasma and gut 
lumen respectively). This was confirmed for gefitinib in vivo 
studies where an increased bioavailability of SN-38 was seen 
in rats and mice (49,50).

KI and irinotecan combination in human clinical trials

A substantial number of phase I and II trials evaluating 
the safety and efficacy of the combination of a KI with 
irinotecan in cancer patients have been published (Table 1).  
There were no phase III studies assessing the KI and 
irinotecan combination, except for one trial that was 
prematurely stopped due to futility (68). The identified 
studies included both paediatric and adult population with 
different types of cancers. Gefitinib and sunitinib were 
tested in six different combination studies each while, 
sorafenib in four, erlotinib and vandetanib in two each, 
axitinib, lapatinib pazopanib, and regorafenib in one each 
trial. Several irinotecan based regimens were used in 
clinical trials. Irinotecan was either given as monotherapy 
or as poly-chemotherapy regimen with folinic acid and  
5 fluorouracil as FOLFIRI and/or monoclonal antibodies 
such as bevacizumab and cetuximab. 

The individual doses of KI or irinotecan in the 
combination varied across trials. As expected, most trials 
had dose escalation strategies with lower starting doses of 
the KIs or irinotecan. A consistent theme from the trials 
was that the maximum tolerated dose (MTD) was lower 
than either drug alone (Table 1). For example, the MTD of 
sorafenib was 200 mg twice daily (a 50% reduction in dose 
compared to monotherapy) for 8 days out of the 14-day 
cycle when combined with FOLFIRI and bevacizumab in 
the Hubbard et al. trial (59). Similarly, the dose of sunitinib 
in combination with FOLFIRI was 37.5 mg daily for 4 out 
of 6 weeks which is 75% of the usual monotherapy dose 
(68,69). 

On the contrary, none of the trials demonstrated 

increased efficacy when the KI was combined with 
irinotecan based chemotherapy regimen. The combination 
was highly toxic with an increased incidence of grade 3 
or 4 toxicities especially neutropenia (range, 5–96%) and 
diarrhoea (range, 4–100%). Sunitinib combination studies 
were particularly toxic with very high incidence of diarrhoea 
and neutropenia (69,71,72).

PK assessment confirmed an increase in AUC, 
bioavailability and decreased clearance for irinotecan and 
SN-38 when co-administered with different KIs (Table 1).  
Majority of the KIs affect AUC (range, 16–100% increase) 
or clearance of SN-38 (range, 10–600% decrease). 
However, irinotecan or SN-38 induced increase in the 
plasma concentration of the KIs was uncommon. For 
example, there was 50% increase in the AUC of gefitinib 
when given with irinotecan (55). Such bi-directional 
changes in PK parameters suggest a complex drug-drug 
interaction involving transporter-metabolism interplay. 

Discussion

Historically, combination cytotoxic chemotherapy regimens 
have resulted in the cure of various malignancies such 
as germ cell tumours, lymphomas and leukemias. Such 
combinations were developed empirically when pre-
clinical and clinical studies showed synergistic activity with 
minimal overlapping toxicity (76). Recent advances in the 
understanding of the molecular underpinnings of cancer 
have led to the development of many targeted agents such as 
monoclonal antibodies and KIs that has improved survival 
outcomes of hard-to-treat cancers including melanoma, 
renal cell cancers and thyroid cancers (16). However, 
resistance to targeted agents is common with treatment. 
One approach to prevent resistance is by combination 
therapy with one or more cytotoxic chemotherapy drugs.

There is evidence demonstrating that combination 
therapy with cytotoxic chemotherapy and targeted drugs has 
proved to be effective for certain cancers. The combination 
of cytotoxic drugs with monoclonal antibodies has markedly 
improved outcomes of cancers, particularly non-Hodgkin’s 
lymphomas, breast, colorectal, head/neck cancers and 
cervical cancers (77). However, the combination of KIs 
with chemotherapy drugs has been shown to be ineffective 
and/or poorly tolerated in clinical trials. Lapatinib with 
capecitabine for her-2 positive breast cancers and erlotinib 
with gemcitabine for pancreatic cancers are the only 
exceptions approved for clinical practice (78,79). The 
failure of most trials that combine a KI with chemotherapy 
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Table 1 Human clinical trials with KIs and irinotecan

Drug Combination Outcomes
Toxicity

Neutropenia Diarrhoea

Gefitinib

Horiike et al. (51); 
phase I 

Gefitinib 250 mg; irinotecan  
50–150 mg/m2

MTD was not reached 37% 15%

Furman et al. (52); 
phase II

Two courses of irinotecan  
[15 mg/m2/day (daily ×5)] were 
combined with 12 daily doses of 
gefitinib (112.5 mg/m2/day)

N/R N/R 40%

Furman et al. (53) As above PK study with one oral 
dose of irinotecan

Bioavailability of irinotecan increased by  
4 folds; 2-fold decrease in Clearance; SN-
38—Clearance decreased by 6 times; 
↑bioavailability

N/R N/R

Sontoro et al. (54); 
phase II randomized 

FOLFIRI vs. FOLFIRI/gefitinib No difference in outcomes between the 
two arms

35.3% 33.3%

Chau et al. (55); 
phase I/II 

Irinotecan 225 mg/m2 3 weekly with 
gefitinib 250 mg/day

50% ↑gefitinib AUC; no effect on 
irinotecan

15.4% 35.9%

Meyerhardt et al. (56); 
phase I

Gefitinib + IFL MTD gefitinib 250 mg/day, irinotecan 
100 mg/m2, bolus 5-FU 400 mg/m2, and 
leucovorin 20 mg/m2

20.8% 16.6%

Veronese et al (57); 
phase II 

Gefitinib + FOLFIRI Gefitinib 250 mg; Irinotecan dose reduced 62% 54%

Sorafenib

Azad et al. (58); 
phase I

Sorafenib + cetuximab + irinotecan RP2D was irinotecan 100 mg/m2 i.v. days 
1, 8; cetuximab 400 mg/m2 i.v. days 1 and 
250 mg/m2 i.v. weekly; and sorafenib  
400 mg orally twice daily 

11% 17%

Mross (39); phase I Sorafenib + irinotecan Sorafenib 400 mg twice daily + irinotecan 
125 mg/m2 or 140 mg/m2. 120% ↑—AUC 
SN-38. AUC— sorafenib ↑68%

5% 40%

Hubbard et al. (59); 
phase I 

Sorafenib + FOLFIRI + bevacizumab MTD for sorafenib—200 mg twice daily on 
days 3–6 and 10–13 of each cycle; rest—
standard doses

47% grade 3 
or 4

35% grade 
3 and 4

Samalin et al. (60); 
phase I 

Sorafenib + irinotecan MTD of irinotecan 180 mg/m2 every  
2 weeks; sorafenib 400 mg bid

37% grade 3 35% grade 
3 and 4

Axitinib

Bendell et al. (61) Axitinib + FOLFIRI Axitinib 5 mg bid + FOLFIRI NR 28%

Pazopanib

Deslandes et al. (62) Pazopanib + cetuximab + irinotecan MTD—250 mg/m2 weekly Cetuximab,  
150 mg/m2 biweekly Irinotecan +  
400 mg daily pazopanib; Cmax—
irinotecan ↑16%; no effect on SN-38

30% grade 4 5%

Table 1 (continued)
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Table 1 (continued)

Drug Combination Outcomes
Toxicity

Neutropenia Diarrhoea

Bajetta (63) et al.; 
phase I

MTD RP2D: erlotinib 100 mg per day, irinotecan 
180 mg/m2 and capecitabine 1,500 mg/m2 
per day for 14 days

66% 4/9

Messersmith  
et al. (64) ; phase I

FOLFIRI + erlotinib. No PK effect; 
stopped after six patients

100 mg/day erlotinib and dose-reduced 
FOLFIRI (150 mg/m2 i.v. day 1 irinotecan, 
200 mg/m2 i.v. folinic acid, 320 mg/m2 i.v. 
bolus days 1 to 2 5-FU, and 480 mg/m2 i.v. 
5-FU infusion over 22 hours, days 1 to 2) 

50% 50%

Lapatinib

Midgley et al. (65); 
phase I

Lapatinib
FOLFIRI 108 mg/m2 40% dose 
reduction of 5-FU & irinotecan

41% ↑ in AUC—SN-38 77% 23%

Regorafenib

Schultheis et al. (66); 
phase I

Regorafenib 160 mg/day 4–10 + 
FOLFIRI

AUC: 28%↑ for irinotecan. SN-38—44% ↑ 45% grade 3 
or 4

10% grade 
3 or 4

Ma et al. (67);  
phase I

Regorafenib 120 mg/day + 
FOLFIRI—irinotecan dose adjusted 
based on UGT genotyping

No PK data 30% 30%

Sunitinib

Carrato et al. (68); 
phase III

Sunitinib (37.5 mg 4 weeks on, 2 
weeks off)  + FOLFIRI

Stopped due to futility

Tsuji et al. (69); 
phase II

Sunitinib (37.5 mg 4 weeks on, 2 
weeks off) + FOLFIRI

Stopped early 96%

Reardon et al. (70); 
phase I 

MTD was 50 mg of sunitinib 
combined with 75 mg/m2 of 
irinotecan

Moderate toxicity 32% 4%

Starling et al. (71); 
phase I

Sunitinib + FOLFIRI MTD—sunitinib (37.5 mg 4 weeks on, 2 
weeks off) + FOLFIRI

83.3%; 
47.6% at 

MTD

33.3%; 
14.3% at 

MTD

Boven et al. (72); 
phase I: solid 
tumours

MTD: sunitinib 25 mg per day (days 
1–14) with irinotecan 250 mg /m2  
(day 1)

But no activity; 12% AUC ↑—irinotecan; 
20% AUC ↑—SN-38

73% 100%—all 
grades

Qvortrup et al. (73); 
phase I 

Sunitinib continuous-dosing with 
cetuximab and irinotecan every 
other week 

25 mg daily—sunitinib 18% 
leukopenia

7%

Vandetanib

Meyerhardt et al. (74); 
phase I

Vandetanib with cetuximab/
irinotecan 150 mg/m2 weekly

MTD for vandetanib 200 mg QT 
prolongation; 
11% > grade 
2 neutropenia 

Diarrhoea 
grade 3 or 
4: 29.6%

Saunders et al. (75); 
phase I

Vandetanib + FOLFIRI in CRC Vandetanib—100/300 mg; AUC of:  
SN-38—↑25%; irinotecan—↑14%

19% 95%—all 
grades

FOLFIRI, folinic acid, infusional 5-fluorouracil, irinotecan; IFL, irinotecan, leucovorin and 5-fluorouracil; MTD, maximum tolerated dose; 
RP2D, recommended phase II dose; bid, twice daily; PK, Pharmacokinetics; N/R, not reported.
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highlight the difficulties in optimizing the dosing 
schedule and reducing the overlapping toxicities due to 
pharmacokinetic and pharmacodynamics interactions. The 
efficacy/safety profile of the combination demonstrated 
in vitro and in vivo studies have not translated into clinical 
practice. 

Individually, irinotecan and KIs are effective anti-
cancer agents. However, as indicated earlier, when 
combined together the regimen is poorly tolerated with 
increased neutropenia and diarrhoea. Significant changes 
in pharmacokinetic profiles of irinotecan, its metabolite 
SN-38 as well as the KI, were commonly seen in phase I 
trials leading to lower MTDs. Moreover, frequent dose 
reductions and interruptions make the combination 
ineffective and impractical. 

There are more than a hundred kinase inhibitors in 
different phases of development for the treatment of 
various cancers. Combination of KIs with chemotherapy 
or immunological agents may be useful to prevent drug 
resistance. To reduce the failure rate in future clinical 
trials, the rational design of combination regimens that 
includes KIs and cytotoxic drugs supported by strong pre-
clinical information will be required. Although the success 
demonstrated in pre-clinical in vitro studies and animal 
models are often not reproduced in human clinical trials, 
these studies provide useful in vivo information that are of 
great relevance to predict possible risks and benefits during 
clinical trial conduct (80,81).

Based on the potential for strong pharmacokinetic 
interactions, a complete evaluation of metabolic pathways 
including interactions with CYP and UGT enzymes and 
transporters resulting transport-metabolism interplay is 
warranted before the new KIs could be combined with 
existing cytotoxic chemotherapeutic drugs especially 
irinotecan. Prior to embarking on expensive, large sample 
size Phase III trials with highly toxic combination therapies 
with potentially life threatening toxicities, well conducted 
good quality animal studies with the combination of a KI 
and irinotecan will be essential. 

Moreover, there is an argument to include participants 
with various pharmacokinetic variants of UGT1A1 in the 
study population in early phase trials involving irinotecan 
with KI combination. A recently published single arm 
study with irinotecan dose escalated based on UGT1A1 
genotyping along with a lower dose of regorafenib at  
120 mg per day in a series of 13 patients demonstrated 
clinical efficacy with manageable toxicities (67). In this trial, 
the combination of irinotecan and regorafenib resulted in 

lower rates of severe neutropenia (30%) and diarrhoea (30%).

Conclusions

Combining a KI and irinotecan to treat various cancers 
has been challenging due to increased toxicity. While the 
admittedly limited preclinical studies show impressive anti-
cancer activities, replicating the results in human trials 
has been hampered by the dose modifications required 
both for the kinase inhibitors and irinotecan due to the 
pharmacokinetic and pharmacodynamics interactions. 
Future trials would need to incorporate dose escalation 
strategies based on genotyping of metabolising enzymes 
and transporters in the early phase clinical trials to define 
optimal doses for further development of the combination.
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