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Introduction

In drug development, late phase clinical trials often aim to 
establish uniform dosing, balancing efficacy and toxicity, 
across the patient population from a limited set of proposed 
dosage schemes (1). Dosing of anticancer drugs has 
traditionally been based on body surface area (BSA) under 
the assumption that there is a relationship between BSA and 

clearance (CL) or volume of distribution (Vd). However, this 
relationship is in many instances poor and may therefore not 
accurately reflect the change in drug exposure seen across 
the population (2-5), meaning variability in drug exposure 
may remain high at the established dosage regimen (5). This 
is particularly true when the drug is dosed in a more diverse 
patient population in clinical practice, such as: complex 
drug-drug interactions (DDIs), pediatric patients, and 
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renally/hepatically impaired or other special populations (6).  
Explicit dosage recommendations are often absent from 
the drug label for most special populations at the time of 
approval (7). These factors contribute to variable clinical 
practices, where clinicians are challenged to make decisions 
based on experience and the many times limited literature. 
Patients with multiple comorbidities/co-medication are 
therefore at risk of suboptimal pharmacotherapy that may 
lead to unacceptable levels of toxicity or reduced efficacy 
(6,8,9). Model-informed precision dosing (MIPD) provides 
a quantitative framework for achieving the accurate 
dose for the individual patient through statistical and/
or mathematical modeling, such as pharmacokinetic (PK) 
modeling, by accounting for inter-individual variability 
(IIV), and other factors that lead to variable drug exposure 
and/or pharmacodynamic (PD) response (10). 

Here we examine the current state of PK modeling in 
dose individualization of anticancer drugs. The comparative 
analysis presented here was based on a sample of 393 peer-
reviewed publications on PK modeling in oncology (see 
Table S1, in supplementary appendix available online). The 
dataset should not be considered an exhaustive list of the 
abundant literature on PK modeling in oncology. Many 
arguments on precision dosing presented here are part of a 
much broader discussion on MIPD across therapeutic areas 
(7,10-12). 

The case for MIPD in oncology

The traditional resolution to dose optimization in special 
populations/DDIs is to carry out dedicated clinical 
studies. This is however not always feasible in oncology 
due to patient recruitment issues around dosing drugs in 
vulnerable populations or patients outside the indicated 
treatment group (13). Statistical nonlinear-mixed effects 
(NLME) modeling (population-PK/PD modeling, or 
pop-PK/PD) aims to describe the IIV in PK parameters 
using compartmental and increasingly mechanistic 
models. Physiologically-based PK (PBPK) modeling and 
simulation (M&S), attribute physiological meaning to PK 
models by mimicking physiology (inter-compartmental 
CLs informed by blood flows, volumes based on organ/
tissue volumes etc.) in an attempt to better understand 
the processes that determine drug ADME (absorption, 
distribution, metabolism and excretion). The combined 
approach (“middle-out”) accommodates physiological 
models where model parameters may account for observed 
IIV in the population sample (see Figure 1) (14). Pop-PK/
PD and PBPK M&S have gained increasing acceptance 
in pharmaceutical research and development (R&D) and 
by regulatory agencies over the last couple of decades to 
a point where dedicated clinical trials may be substituted/
supplemented by modeling, foremost interpolating the 

Figure 1 Pharmacokinetic modeling approaches for precision dosing of oncology drugs. Bars indicate the features of the individual and 
combined techniques.
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effect of metabolic DDIs (15). It is anticipated that M&S 
will gain further utility over the coming years as confidence 
is built in other areas of application, both in pharmaceutical 
R&D, regulatory submission and clinical practice for dose 
individualization (7,10,12).

Dose individualization, personalized dosing or precision 
dosing, may be considered part of the well-recognized 
paradigm of precision medicine. Precision medicine pursues 
to personalize prevention, diagnostics and optimal treatment 
of disease based on individual patient characteristics, e.g., 
genotyping, renal function and other biomarkers (16). 
Similarly, precision dosing strives to account for between-
patient variability in drug exposure and response to optimize 
dosing for the individual. This is not a novel idea, carboplatin 
is the perhaps most famous example in oncology, seeing 
early adoption of renal function guided dosing (Calvert et al.  
formula) to reduce the risk of hematological toxicity (17). 
Similarly, PK-based dose adjustment, using therapeutic drug 
monitoring (TDM), of 5-fluorouracil (5-FU) was shown to 
produce superior treatment response and reduced toxicity 
as compared to BSA-guided dosing alone in metastatic 
colorectal cancer (18).

Precision dosing in cancer therapy is attractive for several 
reasons. Many anticancer drugs display narrow therapeutic 
indices, where suboptimal therapy may lead to severe patient 
outcomes. Clinical study participant recruitment issues 
accentuates the difficulty of patient recruitment in dedicated 
clinical trials for special populations and is perhaps part of 
the reason (as well as accelerated approvals) why there has 
been an above average adoption of PBPK M&S for new 
drug applications (NDAs) in oncology to the U.S. Food and 
Drug Administration (FDA) (19). The relatively high rate 
of non-responders in cancer treatment together with high 
cost of cancer therapies warrants alternative approaches to 
increasing patient benefit and cost-benefit; this may include 
more effective use of approaches that maximize treatment 
outcome, such as PK modeling and MIPD (20,21). 

Application of PK modeling in oncology

Model-informed drug discovery and development has 
become established practice in the pharmaceutical 
industry over the past  decades,  where today it  is 
employed across drug development to inform internal 
and regulatory decisions (15,22). In early discovery and 
pre-clinical development, modeling is used to inform 
candidate selection, ADME characterization, translation 
of exposure and effect and more, this includes pop-PK/

PD, PBPK and more mechanistic systems pharmacology/
biology approaches. Pop-PK/PD is widely used in clinical 
development to investigate efficacy, dose selection and 
dose bridging. PBPK M&S is used clinically for predicting 
metabolic DDIs, impact of genetic polymorphism, 
biopharmaceutics effects and extrapolating to special 
populations (22). 

Analysis of peer-reviewed publications using PK 
modeling in oncology, based on the modeling approach 
(see Figure 2), showed that a majority of studies employed 
population-based approaches in their data analysis (75%), 
a subset of these include traditional pop-PK (45%), 
pop-PK/PD (14%), Bayesian pop-PK (10%) and semi-
mechanistic pop-PK/PD (6%). PBPK M&S accounted for 
8% of identified studies. In terms of areas of application 
of PK modeling (see Figure 3), the most prominent area of 
application was investigation of covariates (49%) to account 
for IIV in PK. This was followed by studies investigating 
dosing issues (22%), including dose finding and practice 
based dosing issues. The most studied special populations 
included pediatric patients (13%), hepatic (3%) and renal 
impairment (2%). Other investigated special populations 
included: pregnancy, elderly, and more. Other areas of 
investigation included: toxicity (18%), dose/PK-efficacy 
studies (response: 8%), metabolite kinetics (8%), metabolic/
transporter genotype/phenotype (6%), DDIs (5%), limited 
sampling strategies (5%) and more.

In PBPK M&S, predictions of metabolic DDIs and 
extrapolation to special populations were the perhaps 
most prominent area of research. This was consistent with 
common areas of application seen in regulatory submissions 
where predictions of DDIs tend to dominate due to more 
well-established body of evidence to support PBPK, 
guidelines and regulatory acceptance (15,19). There is in 
other words wide application of PK modeling to address 
critical questions in dose individualization of oncology 
drugs.

Population PKs and covariate analysis to aid 
precision dosing in oncology

Pop-PK/PD aims to describe the observed IIV in drug 
exposure and response for a given population sample. 
The method allows estimation of the population mean 
(θ) and IIV (η) of PK/PD parameters and the remaining 
residual, or unexplained, variability (ε). The approach 
allows interpolation of drug exposure and response over 
the observed parameter space through identification of 
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Figure 2 Peer-reviewed publications on pharmacokinetic modeling of oncology drugs categorized based on method of approach 
(number of publications: 393, number of drug-publication combinations: 414; see supplementary appendix). PK, pharmacokinetic; PD, 
pharmacodynamic; pop, population-based analysis; semi-mech., semi-mechanistic/semi-physiological; PBPK, physiologically-based 
pharmacokinetics. 

Figure 3 Areas of application of pharmacokinetic modeling in oncology based on a sample of 393 peer-reviewed publications (see 
supplementary appendix). Circle areas are proportional to frequencies. DDIs, drug-drug interactions. 
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covariates (demographics, genetic polymorphism and other 
pathophysiological variables). For example, covariates can 
be included as either dichotomous {Eq. [1]} or continuous 
effects {Eq. [2]} on PK parameters, e.g., (23): 

,
, , ,
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j i j Cov n j iθ θ θ η= × + 	 [1]
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Cov n
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j i j j i
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θ θ η = × + 
  	 [2]

Where mean effect of the nth covariate (θCov,n) and IIV 
of the jth parameter of the ith individual (ηj,i) on population 
mean (θj) determines the individual parameter estimate 
for the jth parameter (θj,i), Covi is the individual observed 
covariate and Cov the central tendency of the sample 
population. Significant covariates account for IIV in 
exposure, meaning that a combined PK-covariate model can 
forecast individual exposure based on individual biomarker 
data prior to dosing and refine predictions following sparse 
PK sampling or TDM. This makes for a powerful tool for 
precision dosing. Covariate significance can be determined 
using, e.g., step-wise inclusion based on a predefined 
statistical criterion (post-hoc ρ-value testing for difference 
in objective function), or alternative approaches. Pop-PK-
covariate modeling has been successfully employed for 
oncology drugs to individualize dosing, as included in drug 
labelling (24,25). Further, there are a number of examples 
of pop-PK-covariate models that have been used to address 
dosing issues in clinical practice with some success (see 
section “PK modeling of anticancer drugs in healthcare”).

Figure 4 shows identified PK covariates for anticancer 
drugs based on the peer-reviewed literature. The most 
commonly included covariates were bodyweight (50% of 
drugs in sample set) and other demographic data [sex (28%), 
BSA (26%) and age (21%)]. Other common covariates 
included biomarkers related renal function [creatinine CL 
(19%), serum creatinine (7%) and estimated glomerular 
filtration rate (5%)], drug-binding plasma proteins [albumin 
(17%) and α1-acid glycoprotein (AAG, 2%)], cancer type 
(14%) and concomitant treatment (11%). Other biomarkers 
of liver function were also reasonably prominent as 
model covariates, e.g., alanine amino transferase (ALT, 
9%), aspartate amino transferase (AST, 6%) and alkaline 
phosphatase (ALK, 5%) including more. Metabolic 
genotyping was included for 7% of drugs. 

It has been recognized that there is a disparity between 
the wealth of covariates identified in the literature and the 
limited number pertaining to the dosage recommendation 

in the drug labels of oncology drugs (25). Figure 5 shows 
factors affecting explicit dose recommendations in the FDA 
label for selected drugs compared to additional identified 
PK covariates in the literature. There are many potential 
explanations for this: covariate selection can be biased 
(insufficient power, collinearity, etc.), not all statistically 
significant covariates are clinically relevant, covariates 
may for example be of obscure meaning and have little 
physiological/pharmacological relevance (25,32). Further, 
the identification of significant but low-effect covariates 
may have little clinical implication. Here, cut-off points 
have been proposed where covariates may be considered 
clinically relevant if they explain at least 20% to 30% of 
IIV (25,33). A lack of communication of research between 
academia and industry may also affect the difference in the 
adoption of covariates, suggesting some scope for further 
individualization of dosing of oncology drugs based on 
disseminated research (25). 

PBPK modeling to inform individualized dosing 
of anticancer drugs

By assigning physiological meaning to model parameters, 
PBPK M&S offers a method for quantitative extrapolation 
of drug exposure from in vitro to in vivo (IVIVE), between 
species, across populations and for metabolic/transporter 
DDIs. In oncology, PBPK M&S has been used extensively 
for the prediction of DDIs, special populations (renal/
hepatic impairment and pediatrics) and biopharmaceutics 
effects (absorption, formulation, food effects). In fact, some 
of the earliest examples of PBPK M&S in oncology can 
be traced back to modeling of chemotherapy agents in the 
1970s (34). 

There are several factors that explain the wide usage of 
PBPK in oncology: ethical/safety or recruitment issues, 
many oncology drugs exhibit narrow therapeutic indices 
and/or pose risks of severe toxicity and may therefore 
require more consideration for precision dosing, many 
anticancer drugs are carried forward through accelerated 
regulatory approval meaning that studies that have not been 
carried out in timely fashion may be substituted by PBPK 
M&S (19). Numerous examples of PBPK M&S of oncology 
drugs exist in the literature, including for: pediatrics (35-37),  
biopharmaceutics effects (38), renal impairment (39-41), 
hepatic impairment (42), metabolic phenotypes/genotypes 
(43,44) and adherence (44) metabolic/transporter DDIs  
(45-49), with more examples available in FDA drug labels (50).  
The current view of FDA regarding PBPK-informed 
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Figure 4 Identified pharmacokinetic covariates of oncology drugs based on a literature sample set of 393 peer-reviewed publications (see 
supplementary appendix). Numerical prefixes/suffixes show number of identified covariates for respective drug (and their metabolites 
where applicable), percentage suffixes show frequencies of drugs that identify respective covariate. Erythromycin breath test, as surrogate of 
CYP3A4 activity. AAG, α1-acid glycoprotein; ALK, alkaline phosphatase; ALT, alanine amino transferase; AST, aspartate amino transferase; 
BSA, body surface area; BW, bodyweight; IBW, ideal bodyweight; CLCR, creatinine clearance; DDI, drug-drug interaction; EGF, epidermal 
growth factor; EGFR, EGF receptor; GFR, glomerular filtration rate; eGFR, estimated glomerular filtration rate; HER, human epidermal 
growth factor receptor; IFN-α, interferon-α; LBW, lean bodyweight; LD, lactate dehydrogenase; PDGF, platelet-derived growth factor; 
SCR, serum creatinine; VEGF, vascular endothelial growth factor.
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dosing, is that sufficient evidence exists to employ verified 
models for the prediction of metabolic DDIs where the 
drug is the victim substrate (50). For special populations and 
biopharmaceutics effects, the jury is still out in the absence 
of more evidence to support the ability to prospectively and 
quantitatively predict these effects (50). Here we present 
selected case examples to illustrate the usefulness of PBPK 
M&S for dose individualization of anticancer drugs.

Case examples

Ibrutinib—metabolic DDIs
Ibrutinib (Bruton’s tyrosine kinase inhibitor; Imbruvica®) 
was granted accelerated approval by the FDA in 2013 (51).  
The drug is given orally and undergoes extensive first-
pass metabolism, mainly via CYP3A4 and to a lesser 
extent by CYP2D6, whilst undergoing minimal renal CL. 

Ketoconazole inhibited 96% of ibrutinib’s metabolism in 
human liver microsomes. A PBPK model was developed to 
evaluate CYP3A4 DDIs in healthy volunteers with ibrutinib 
as the victim. The model was validated against clinical DDI 
studies of ibrutinib in the presence of ketoconazole (strong 
inhibitor) and rifampin (strong inducer). The PBPK model 
was then used to interpolate DDI effects of mild, moderate 
and strong CYP3A4 inducers and inhibitors and used to 
inform dose guidance in the drug label (52,53).

Sonidegib—bridging DDIs to cancer patients
Sonidegib (Odomzo®) is an oral anticancer agent for 
the treatment of locally advanced basal cell carcinoma. 
The drug displays low oral bioavailability. In vitro drug 
metabolism studies and clinical DDI trials in the presence 
of ketoconazole and rifampin were carried to elucidate 
the metabolic contribution of sonidegib elimination. Co-

Figure 5 Factors affecting explicit dose recommendations in the FDA drug labels [including contraindications (CI)] of docetaxel (Taxotere®), 
bevacizumab (Avastin®), aflibercept (Zaltrap®), capecitabine (Xeloda®), carboplatin (Teva Pharmaceuticals USA) and busulfan (Busulfex®) 
(blue circles) (26-31). Grey circles indicate additional pharmacokinetic covariates identified in the sampled peer-reviewed literature (see 
Table S1, supplementary appendix). Exposed circle areas are proportional to the number of factors/covariates. Erythromycin breath test, as 
surrogate of CYP3A4 activity; liver function, including AST, ALT and more, excluding albumin. AAG, α1-acid glycoprotein; AIBW, adjusted 
IBW; BW, bodyweight; BSA, body surface area; CLCR, creatinine clearance; DDIs, drug-drug interactions; IBW, ideal bodyweight; IFN-α, 
interferon-α; AST, aspartate amino transferase; ALT, alanine amino transferase. 
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administration of ketoconazole led to a 2.25-fold increase in 
area under the curve (AUC), whereas rifampin produced a 
72% reduction in exposure. A PBPK model was developed 
to bridge the DDI data from healthy volunteers to cancer 
patients at the ratified dose, to extrapolate to steady state 
effects and interpolate the effect of moderate/weak CYP3A 
inhibition/induction. The simulation study showed the 
effect of the DDIs to be slightly reduced in cancer patients 
compared to healthy and the interaction magnitude to 
increase at steady state dosing of sonedegib. The simulated 
DDI magnitudes and alternative dosing schedules informed 
dosing recommendations provided in the FDA drug  
label (54). The study demonstrates the utility of using 
PBPK M&S to bridge the effect of metabolic DDIs from 
healthy volunteers to cancer patients.

Alectinib—biopharmaceutics effects
Alectinib [selective anaplastic lymphoma kinase (ALK) 
inhibitor; Alecenza®] underwent accelerated regulatory 
approval in 2015 because of likely clinical benefit in treating 
ALK-positive non-small cell lung cancer (55). The drug is 
a lipophilic basic (pKa ~6–7) displaying poor solubility and 
moderate oral bioavailability. As alectinib is given orally 
the pH-dependent solubility may be indicative of potential 
impact of biopharmaceutics effects. Parrott and co-workers 
developed a PBPK model to prospectively evaluate food 
effects and increased gastric pH with esomeprazole. The 
model predicted a positive food effect and a lack of impact 
of co-administration of esomeprazole. This was later 
confirmed in clinical trials, although the magnitude of the 
food effect was not accurately predicted, potentially due to 
excipient effects. The absorption model was further refined 
following confirmatory clinical studies and used to inform 
dose recommendations on timing of alectinib administration 
in relation to food intake. Authors stated that these finds 
were used to inform drug labeling (38).

Docetaxel—pediatric dose bridging
Docetaxel  (taxane anticancer drug) is  extensively 
metabolized by CYP3A4, substrate to the efflux transporter 
P-glycoprotein (P-gp),  and active hepatic uptake 
transporters OATP1B1 and OATP1B3. The drug exhibits 
dose limiting toxicity in the form of neutropenia. In a 
retrospective study, a full PBPK model was developed based 
on adult data and validated against adult data in presence 
of ketoconazole. The PBPK model was then scaled to 
pediatrics in order to establish first dose in children 
assuming a similar exposure-response to adults with the 

same indication. A global approach was used where PBPK 
predictions were fitted using a pop-PK model in order to 
carry out optimization of sampling times. PBPK predictions 
of pediatric data gave a reasonable prediction with a 1.4-fold  
overprediction of CL (37). The study shows proof-of-
concept for dose bridging from adults to pediatrics in 
oncology using PBPK M&S coupled with pop-PK, to 
inform first-dose-in-children and optimal sampling design.

Impact of physiology of oncology patients on exposure 
of anticancer drugs
A number of physiological changes have been reported 
in cancer patients that may impact the PKs of anticancer 
drugs (such as increased levels of inflammation and altered 
levels of plasma proteins) (56). With sufficient information, 
PBPK M&S can facilitate extrapolation of drug exposure to 
a more clinically relevant oncology population. Cheeti and 
co-workers developed an oncology PBPK model by altering 
sex, age, height and weight population distributions, levels 
of drug-binding plasma proteins (albumin and AAG), 
and hematocrit to investigate the effect of plasma protein 
binding on exposure of midazolam (CYP3A probe) and 
saquinavir (CYP3A probe highly bound to AAG) (57). A 
similar PBPK model for oncology patients developed by 
Thai and co-workers was demonstrated to better recover 
variability in PK profiles and CL of docetaxel compared 
to when physiology was assumed to remain the same 
as in healthy (37). In the absence of physiological data, 
PBPK modeling can also be used to make inferences 
about physiological parameters based on clinical PK data. 
Yoshida and co-workers developed a PBPK of irinotecan 
(topoisomerase I inhibitor) and its metabolites to explore 
different PK of the drug in cancer patients. Using 
parameter estimation, the authors could get an indication of 
the feasible parameter space of irinotecan’s CL pathways in 
cancer patients (58).

PK modeling of anticancer drugs in healthcare

Lately, there has been much debate how PK modeling 
can be used to aid precision dosing in clinical practice 
(10,11,59). In an earlier state of the art paper, we proposed 
a categorization to describe implementation of MIPD in 
healthcare based on current practices, these were: real-
time implementation in healthcare systems, mechanistic 
modeling and extrapolation and model-derived dose 
banding (10). 

Real-time implementation in healthcare systems refers 
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to direct implementation of M&S in-line with healthcare, 
e.g., software tools and integration into electronic health 
records (EHR). The approach is particularly well-suited for 
treatments where continuous measurement, such as TDM, 
is carried out routinely throughout the therapy. Bayesian 
modeling approaches are particularly well-suited for this 
approach where feedback-control can be used to update prior 
parameter estimates and refine individual patient predictions 
as more data becomes available (10,11). Mechanistic or PBPK 
models are a powerful tool for allowing extrapolation to for 
example DDIs or special populations. Despite many examples 
of application to address dosing in special populations (60), 
there are few examples of the approach being evaluated in 
clinical practice (61). This may partly be due to PBPK’s 
reliance on drug-specific and physiological information and 
its inferior ability to describe IIV compared to pop-PK. This 
may however change over the coming years, the generation 
of new proteomic data (62), emergence of “middle-out” 
modeling (14), and Bayesian PBPK M&S (63) certainly 
makes PBPK an increasingly viable approach in precision 
dosing. Model-derived dose banding refers to the use of 
PK models to develop dosing strategies based on clinically 
relevant covariates identified during the data analysis. 
This is perhaps the most practical approach although it 
potentially may offer less scope for dose individualization 
compared to other model-based approaches (64-66). Based 
on previous experiences, work streams have been proposed 
for how to develop these model-based approaches from 
conception to implementation in clinical practice. The 
proposed necessary steps to prove clinical effectiveness of 
MIPD include: model development, internal validation—
to diagnose model misspecifications, external validation—to 
test performance against a different but related population 
sample, prospective clinical evaluation—to test the 
performance of the model-informed approach compared 
to standard practice, and an implementation phase—for 
integration into clinical practice (10,67,68). Here follow 
examples of PK modeling applied to answer clinically 
relevant dosing issues in oncology (in addition, see Table 1).  
These illustrate both utility and concepts for clinical 
evaluation and practical implementation in a healthcare.

Case examples

5-FU—metabolic phenotyping
Due to the risk of severe toxicity and a relatively narrow 
therapeutic index, prediction of toxicity has been widely 
sought for treatment using thymidylate synthase inhibitor 

5-FU (see Table S1, supplementary appendix). The drug 
undergoes metabolism by dihydropyrimidine dehydrogenase 
(DPD), where DPD deficiency has been linked to an 
increased risk for toxicity (95). In a retrospective study, 
van Kuilenburg and co-workers developed a Bayesian pop-
PK model, based on population sample of DPD deficient 
patients and controls. The model described 5-FU CL 
using nonlinear Michaelis-Menten PK, where DPD 
deficient patients displayed a 40% reduction in maximum 
velocity (Vmax). Using a limited sampling strategy, the 
DPD phenotype could be determined based on Bayesian 
estimation of individual Vmax, AUC or terminal half-life to 
anticipate the risk of toxicity (69). The approach potentially 
offers advantages to genotyping where misclassification can 
occur due to discrepancies in genotype and phenotype.

Carboplatin—Bayesian forecasting of drug exposure
Despite being safer than cisplatin, carboplatin displays 
dose-limiting bone marrow toxicity. Duffull and co-workers 
developed a bioanalytical method for measuring carboplatin 
serum concentrations and a Bayesian pop-PK model with 
covariates lean bodyweight (LBW) and creatinine CL on 
CL, and LBW on volumes and inter-compartmental CL 
based on data from 12 ovarian cancer patients (78). The 
model was tested prospectively against the Calvert et al. 
formula in an additional 12 patients over two courses. 
During the first treatment course, the Calvert formula 
produced less bias compared to the population methods. 
Following two feedback concentrations the Bayesian 
method showed superior accuracy for AUC predictions. It 
was recognized that an updated model may produce better 
accuracy (79). This was perhaps one of the earliest examples 
incorporating patient data to update individual priors for 
prospective predictions (78,79).

Busulfan—strategies for healthcare implementation
Busulfan (alkylating agent) is widely used in combination 
with cyclophosphamide for conditioning prior to 
hematopoietic stem cell transplantation. The narrow 
therapeutic window of busulfan warrants TDM in 
pediatrics, where up to nine PK samples are taken over the 
course of a single dose to inform dose adjustments. Hence 
numerous PK models have been published to address dose 
individualization of busulfan (see Table S1, supplementary 
appendix). 

Neely and co-workers, developed a nonparametric 
pop-PK model with age (described using a continuous 
polynomial function), and ideal body weight as covariates 
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on CL and Vd based on a population sample of 53 pediatric 
patients. An additional two datasets consisting of a total of 
116 pediatric patients were then used for model validation 
and Bayesian updating of priors. The final model was then 
incorporated into the BestDoseTM software platform and 
blindly tested against an additional 20 patients. The final 
model allowed target concentration achievement with only 
two blood samples per adjustment (73). 

Abdel-Rahman and co-workers carried out a retrospective 
evaluation to examine the performance of five different 
TDM approaches (including non-compartmental and 
compartmental modeling) to estimate the dose of busulfan 
in pediatric cancer patients and found considerable 
discrepancies in dose recommendations (71). Due to 
observed inefficiencies in the workflow for TDM guided 
dosing at Children’s Mercy Hospital (Kansas City, MO), 
a clinician-oriented interface was developed around a 
compartmental model for dose optimization of busulfan 
based on TDM. The software allowed the use of either 
a one- or two-compartment model based on a series of 
quantitative goodness-of-fit criteria implemented within 
the software. The interface could be accessed through the 
EHR and was subject to usability testing by healthcare 
professionals. The research represents a significant step 
towards bringing MIPD into clinical practice and serves 
as a proof-of-concept for practical implementation. 
The authors noted that next steps will focus on quality 
assurance, predictive performance of the software tool and 
investigations of model-refinement, including inclusion of 
covariate effects (72).

Similarly, Long-Boyle and co-workers developed a pop-
PK model for busulfan based on retrospective data of 90 
pediatric and young adult patients. The final model (CL 
covariates: actual bodyweight and age) was then implemented 
in a user-friendly Microsoft Excel-based tool for guiding 
initial dosing in clinical practice and prospectively evaluated 
in 21 children. The healthcare tool showed significant 
improvement in attaining busulfan target concentrations 
compared to conventional dosing guidelines (70).

As previously mentioned, healthcare implementation 
of model-based precision dosing may take on different 
forms; where the previous examples detailed the process of 
incorporating real-time software tools in healthcare. A more 
pragmatic approach is the derivation of dose banding based 
on model optimized dosing regimens. Bartelink and co-
workers, developed a two-compartment pop-PK model for 
busulfan with body weight as a covariate on CL based on 
245 pediatric patients. The model was then used to derive 

a nomogram for dosing busulfan in clinical practice. The 
model was externally validated against an additional 158 
adult and pediatric patients (64,74). A prospective study was 
carried out to assess the performance of the model-derived 
nomogram and the added value of TDM was carried out 
in 50 pediatric patients undergoing hematopoietic stem 
cell transplantation. The study concluded that following 
the model-derived dosing, variability was still significant 
and therefore TDM was still needed to inform dose 
optimization (75). 

Cyclophosphamide—reduced toxicity and healthcare 
implementation
Cyclophosphamide (alkylating agent) is given in two doses 
over two consecutive days as myeloablative preparative 
treatment before hematopoietic stem cell transplantation. 
The drug is metabolized to carboxyethylphosphoramide 
mustard (CEPM) amongst others, where the CEPM is 
linked to liver toxicity and nonrelapse death. A Bayesian 
pop-PK model was developed for cyclophosphamide and 
its metabolites. The model was internally validated and 
incorporated into an open-source code to allow real-
time dose adjustments between the two doses. This was a 
considerable logistical effort considering the time constraint 
for bioanalysis and model-derived dose recommendation. 
A clinical trial was carried out to test the performance of 
the model-based dosing approach. The approach led to an 
average total dose reduction of around 9% and a reduction 
in acute liver and kidney injury with similar overall survival 
(81-84,96). This case illustrates some of the logistic 
challenges of real-time implementation of MIPD in clinical 
practice. 

Methotrexate—reduced toxicity and healthcare 
implementation
Methotrexate (antimetabolite) is used in the treatment 
of a number of cancers. Due to high IIV in exposure and 
the risk of toxicity in high-dose methotrexate treatments, 
the drug is routinely subject to TDM. Barrett and co-
workers developed a pop-PK model on TDM data from 
240 patients at the Children’s Hospital of Philadelphia 
(Philadelphia, PA), accounting for impaired CL by 
estimating the probability of a patient belonging to one of 
the two subgroups. A software dashboard was developed, 
consisting of a database of patient records, lab data and 
adverse events management system. The data was then used 
for Bayesian forecasting of exposure. A user-interface was 
designed that allowed viewing of TDM data, forecasting 
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of exposure, the potential risk of toxicity and dose 
guidance (88). A retrospective study was carried out in 50 
pediatric and young adult patients to test the ability of the 
dashboard to predict future toxicity events to allow earlier 
recommendations of leucovorin rescue therapy. The study 
concluded that the dashboard gave reasonably accurate 
predictions (precision of 12.9%, bias of 2.2%) and could 
have been used to initiate earlier rescue therapy in 16 of the 
studied patients, seven patients would have received a larger 
dose of leucovorin and 37 patients would have received the 
drug less often. The dashboard can support clinicians in 
monitoring for risk of toxicity and guide decision making of 
initiation of rescue therapy (89).

Pembrolizumab—minimizing excess drug wastage
Infused anticancer drugs are sold in vials with a set volume of 
the drug; however, dosing is often based on body size. This 
leads to excess drug volumes after dosing a patient which 
many times are being discarded at the cost of healthcare 
providers or insurers. It is estimated that the total cost 
incurred by wastage of the top 20 anticancer drugs amounted 
to USA dollar (USD) 1.8bn in 2016 in the U.S. alone (97). 
Pembrolizumab (programmed cell death protein 1 ligand 
antibody) is currently available as 50-mg vial size in the UK 
at a licensed dose of 2 mg/kg every 3 weeks. Ogungbenro 
and co-workers proposed a model-based approach to 
optimize dose banding to maximize target attainment and 
minimize wastage. Cost analysis showed that the model-
derived dosing strategy could save 16% of the cost of drug 
treatment compared to dosing by bodyweight by reducing 
discarded excess volumes of the drug, without altering 
exposure significantly (66). The work provides an example 
of how modeling can improve cost-benefit of anticancer 
treatment.

MIPD in oncology: future challenges

It has been almost 50 years since the first model-based 
dosing strategies for dose individualization were proposed 
(98,99). PK modeling has come a long way in supporting 
dose selection and answering clinically relevant questions in 
oncology and other disease areas (10,11,59). While academic 
groups, in collaboration with healthcare professionals, are 
leading the way for model-based approaches to answer 
bedside dose individualization, pharmaceutical industry 
and regulatory agencies have made great strides in model-
informed dose guidance in the drug label. It is thought that 
modeling will gain wider application in clinical practice over 

the coming years as precision medicine realizes its potential. 
For this to happen, there are a number of challenges that 
need to be met. 

At the moment, there is a lack of clinical effectiveness, 
patient benefit and health economic evidence to support 
MIPD in healthcare. This is crucial for wider acceptance of 
MIPD in clinical care. Too many published modeling efforts 
are concluded following model development, indicating 
areas of clinical application. Without rigorous validation and 
clinical evaluation, these models will not see their full utility. 
Better coordination between academia, industry, healthcare, 
patient groups, and funding bodies are warranted to support 
implementation-based research in healthcare. 

A prerequisite for precision dosing is the availability 
of multiple drug dose formulations. For MIPD to gain 
greater traction, some adjustments to pharmaceutical R&D 
would be required, with focus earlier in development of 
precision dosing. Recently, we illustrated how this could 
work using the “companion tool” approach (10), where a 
MIPD tool can be considered following candidate selection 
and developed alongside the drug. Precision dosing can 
facilitate the advancement of candidate drug that otherwise 
would be abandoned and there is therefore, in our opinion, 
great financial incentives to pursue this approach in 
pharmaceutical industry.

Oncology is an area with a lot to gain from PK modeling 
based dose individualization. There are however some 
specific challenges, such as the lack of exposure-effect/
toxicity relationship for many new drugs coming to the 
market. This is of course a prerequisite for PK modeling 
to be meaningful. The concentration-effect relationship 
for monoclonal antibodies is poorly understood, where 
for many of these the dose-efficacy relationship found in 
clinical trials is flat (100,101). This suggests that current 
dosing of monoclonal antibodies may not be optimal from 
an efficacy-cost perspective. Here lies an optimization 
challenge that can reap financial benefits for healthcare 
providers and payers, and in the end aid pharmaceutical 
industry to improve cost-benefit.

Conclusions 

Here we present the current state of PK modeling in 
precision dosing of anticancer drugs. We have illustrated, 
using published case examples, some of the potential 
benefits the approach may bring in terms of prospective 
dosage guidance for DDIs and in special populations, 
improved attainment of target drug concentration and 
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reduced risk of toxicity, reducing wastage and scope for 
improved patient benefit and cost-benefit. While some great 
progress has been seen in implementation of model-informed 
dosage guidance in the drug labeling, a collaborative effort 
from regulators, industry and academia, the uptake has been 
modest in healthcare. Collaboration between academia, 
healthcare and industry together with greater financial 
support for applied research into patient benefit, cost-benefit 
and clinical effectiveness of model-based dosing approaches 
is warranted for wider adaption in healthcare.
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Supplementary 

Methods

A literature search was carried out using PubMed 
(https://www.ncbi.nlm.nih.gov/pubmed; 1950–March 
2017) to identify a sample set of publications including 
pharmacokinetic (PK) modeling of anticancer drugs. The 
inclusion criteria consisted of PK modeling of oncology 
drugs aimed at either predicting human exposure or 
based on clinical data. Studies based on pre-clinical 
data only or pharmacodynamic modeling only were 
excluded during screening of publications. To capture 
a broad variety of modeling applications in oncology 
the search terms included: “physiologically based 
pharmacokinetic”, “pharmacokinetic”, “PBPK”, “PKPD”, 
and “pharmacodynamic”, and “model”, “modeling”, and 
“modelling”, and “oncology”, “cancer”, “anti-cancer”, 
“tumor”, “tumor”, “anti-tumor” or “anti-tumor”, with 
filtering based on human species. The search yielded 
1,749 publications. Additional publications were identified 
through references in identified publications, review 
articles and key literature. The final dataset included 393 
publications. 

The identified set of publications was categorized based 
on main and secondary study aims, including: 
	 Toxicity: adverse effects/toxicity;
	 Bioequivalence: PK modeling of bioequivalence 

studies;
	 Biopharmaceutics effects: biopharmaceutics effects, 

other than food and formulation effects;
	 Covariates: PK covariates, or otherwise included 

covariates in the model;
	 DDIs: metabolic/transporter drug-drug interactions; 
	 Dose: investigating multiple doses, optimal dose, or 

dose individualization;

	 Efficacy: drug efficacy/response;
	 Ethnicity: differences in PK based on ethnicity;
	 Evaluation/validation: assessment or validation of 

PK model performance;
	 Food effects: impact of prandial state and/or meal 

properties on PK;
	 Formulation: impact of formulation on PK;
	 Genotype: metabolic/transporter genotype (and α1-

acid glycoprotein genotype) effects on PK;
	 Surgery: impact of surgery on PK (including gastric 

and cytoreductive surgery);
	 Hepatic impairment: PK in hepatically impaired 

subjects, assessing impact of hepatic impairment on PK;
	 Investigational: main focus to investigate PK of the 

selected drug;
	 Limited: optimal limited sampling strategies;
	 Metabolite: metabolite PK;
	 Other special populations: PK in other special 

populations (including: elderly, renal replacement 
therapy and postmenopausal women);

	 Pediatrics: pediatric drug exposure;
	 Phenotype: metabolic/transporter phenotype effects 

on PK;
	 Renal impairment: PK in renally impaired subjects, 

assessing impact of renal impairment on PK; 
	 Sex: impact of sex on PK.
Where applicable, identified PK covariates were 

recorded, either including the full covariate model or a 
summary of covariates and the PK parameter the effect was 
modeled on. Additional recording of information included: 
investigated drug, modeling approach used for development 
and/or application, and study population(s). Data was 
analyzed through graphical presentation. 

Role of pharmacokinetic modeling and simulation in precision 
dosing of anticancer drugs

https://www.ncbi.nlm.nih.gov/pubmed


Table S1 The summary information of the literature search on pharmacokinetic (PK) modeling of anticancer drugs

Drugs Study population Modelling approach Identified pharmacokinetic covariates Main/secondary aims of study References

2-[1-hexyloxyethyl]-2-devinyl 
pyropheophorbide-a (HPPH)

Esophageal cancer, basal cell cancer, lung cancer Pop-PK/PD CL: age Toxicity, covariates (102)

111In-260F9 Breast cancer PK – Investigational (103)

3-aminopyridine-
2-carboxaldehyde 
thiosemicarbazone (3-AP)

Advanced metastatic tumors Pop-PK CL (L/h) =25.0; CL in patients receiving one cycle only =17.0; V2  (L)—female =19.0, male =34.8 Covariates (104)

4'demethylepidodophyllotoxin 
9-(4,6-O-ethylidene-Beta-D-
glucopyranoside)

Advanced cancer PK – Investigational (105)

5,6-dimethylxanthenone-4-
acetic acid (DMXAA)

Solid tumors Pop-PK/PD Vm (µmol/L/h) =112× [1+0.474× (2− sex*)], V1 (L) =8.19× (BSA/1.8)0.857 Efficacy, covariates (106)

5-fluorouracil Cancer (N/S) Semi-mech. PK – Investigational (107)

Colorectal cancer PK – Investigational (108)

Metastatic colorectal cancer Bayesian pop-PK CL (L/h) =60.2× female +65.0,  
circadian rhythm (cosine model)

Investigational, covariates (109)

Cancer (N/S) PK/PD – Efficacy, dose (110)

Dukes’ colorectal adenocarcinoma PK – Limited sampling (111)

Colorectal cancer Bayesian pop-PK V (L) =0.266× BW, CL (L/h) =1.210× IBW Covariates (112)

Cancer (N/S) Pop-PK – Metabolite (113)

Breast cancer Semi-mech. pop-PK/PD Vmax (mg/L/h) =94.8; CLCR: 0.24; Km (mg/L) =21.2; albumin: 1.87; V (L) =23.2; BSA <1.74: 0.377; BSA 
>1.74: 1.32

Toxicity, covariates (114)

Breast cancer Pop-PK – Investigational (115)

Colorectal cancer Pop-PK Caution when dosing BSA in women Metabolite, covariates (116)

Mixed cancer Bayesian pop-PK – Metabolic genotype (DPD) (69)

6-mercaptopurine Acute lymphoblastic leukemia Pop-PK FM3 =0.019×2.56TPMT mutation; CL6-TGNs (h
−1) =0.00914× BSA1.16 Pediatrics, metabolic genotype (TPMT), 

Metabolite, covariates
(117)

9-aminocamptothecin Solid tumors PK – Investigational (118)

Abexinostat Solid tumors, lymphoma Pop-PK/PD – Dose, toxicity (119)

Abiraterone Prostate cancer Pop-PK CL/F (L/h) =2,240× [1+ healthy × (−0.308)]; fed state/meal properties Food effects, covariates (120)

ABT-767 High grade severe ovarian cancer, primary peritoneal cancer, fallopian 
tube cancer

Pop-PK CL/F (L/h) =7.34× (albumini/albuminmedian)
0.651; ka (h

−1) =1.45×0.54fed Covariates (121)

ABT-806 Head and neck squamous cancer, non-small cell lung cancer, 
colorectal cancer

Pop-PK CL (L/day) =0.011× (albumini/albuminmedian)
−0.924; V1 (L) =3.47× (BWi/BWmedian)

0.542 Dose, covariates (122)

Actinomycin D Cancer (N/S) PBPK – Pediatrics (35)

Cancer (N/S) Pop-PK – Pediatrics (123)

Afatinib Solid tumors Pop-PK CL/F =42.3× (BW/62)0.595 × [1+0.00484× (CLCR −120) ×0.871female × [1−0.00436× (total protein −72)]; 
F1 =1× (dose/70)0.485× dose <70 mg × 0.739food × θECOG × [1+0.000331× (lactate dehydrogenase −241)] × [1+ 
θalkaline phosphate × (alkaline phosphate −251)] × cancer type; V2/F (L) =456× (BW/62)0.899

Food effects, covariates (124)

Aflibercept Advanced solid tumors Pop-PK CLi (L/day) = CL × (COV i/COVmedian)
β − continuous variables or CLi (L/day) = CL × eβ·COVi – 

dichotomous variables
Covariates, dose (125)

CLf =0.85; βfemale: −0.15; BW: 0.33; CLCR: 0.18; albumin: −0.39; alkaline phosphate (ALK): 0.10; 
alanine amino transferase (ALT): −0.06; gemcitabine: 0.09

CLb =0.18; β—age: 0.18; CLCR: 0.09; albumin: −0.13; ALT: −0.08; irinotecan/5-FU/LV: −0.13; 
docetaxel: 0.06

V (L) =3.87; βfemale: −0.21; BW: 0.39; CLCR: 0.10

Km (µg/mL), βfemale: −0.23, ALT: 0.26, aspartate amino transferase: −0.26, gemcitabine: 0.60

Healthy volunteers Semi-mech. pop-PK – Investigational (126)

Alectinib Healthy volunteers, cancer (N/S) PBPK – Food effects, Biopharmaceutics effects (38)

All-trans-retinoic acid Cancer (N/S) PBPK – DDIs (45)

Alvespimycin N/A PBPK – Inter-species extrapolation (127)

Amatuximab Malignant pleural mesothelioma Pop-PK – Dose (128)

AMD3100 Healthy volunteers Pop-PK/PD – Efficacy (129)

AMG 386 Advanced solid tumors, advanced ovarian cancer Pop-PK/PD CL (L/h) =0.0722+0.502× CLCR; Vc (L) =3.74× (BWi/BWreference) ×0.502; sex: 0.83 Efficacy, covariates (130)

Amrubicin Small cell and non-small cell lung cancer Pop-PK – Limited sampling (131)

Anastrozole Healthy volunteers Pop-PK – Bioequivalence (132)

Anti-CD66 antibody Acute leukemia PBPK – Investigational (133)

Acute leukemia PBPK – Investigational (134)

Cancer (N/S) PBPK – Investigational (135)

Apatinib Healthy volunteers, solid tumors Pop-PK CL/F (L/h) =57.8, disease state: −0.390; ka (h
−1) =0.0848, disease state: −0.517 Covariates (136)

AT9283 Solid tumors, relapsed or refractory leukemia Pop-PK CL (L/h) =32.2·(BWi/BWreference)
0.75 × (GFRi/GFRreference)

0.452; Vc (L) =58.5× (BWi/BWreference)
1 Pediatrics, covariates, dose (137)

Axitinib Non-small cell lung cancer Pop-PK CL (L/h) =20.1, female: −0.349; Vc (L) =56.2, BW: 0.933; F =0.663, food: −0.263; Ka (h−1) =1.26, food: 
−0.653

Food effects, covariates (138)

B72.3 Colon cancer PK – Investigational (139)

Barasertib Solid tumors Pop-PK/PD – Toxicity, dose (140)

Belinostat Peripheral T-cell lymphoma Pop-PK/PD θi = θ × (COVi/COVmedian)
β·COV; CL (L/h) =106.03, CLCR: 0.3799, UGT genotype: 0.8475, albumin: 

−0.3897; V1 (L) =31.82, BW: 0.3848
Metabolic genotype (UGT1A1), toxicity, 
covariates

(141)

Bendamustine Relapsed/refractory acute leukemia Pop-PK/PD – Pediatrics, toxicity, covariates (142)

Bevacizumab Colorectal cancer Pop-PK – Covariates (143)

Metastatic colorectal cancer Pop-PK – Investigational (144)

Solid tumors, non-small cell lung cancer, hormone refractory prostate 
cancer, breast cancer, renal cell cancer, pancreatic cancer, metastatic 
colorectal cancer

Pop-PK CL (mL/h) =8.6× (BWi/70)0.589 × (albuminii/39)−0.473 × [ln (alkaline phosphatase)i/ln (109)]0.312 × (1.14 for 
males) × (0.844 for interferon-alpha); V1 (mL) =2,678× (BWi/70)0.470 × (1.18 for males)

Covariates (145)

Refractory sarcomas, primary CNS tumors, osteosarcoma, metastatic 
soft-tissue sarcoma

Pop-PK CL (mL/h) =9.9× (BWi/70)0.75 × (albuminii/39)−0.3 × (1.11 for males) × (0.725 for CNS tumours); V1 (mL) 
=2,850× (BWi/70)0.701 × (1.14 for males) × (0.854 for CNS tumours)

Pediatrics, dose, covariates (146)

Gastric cancer Bayesian pop-PK CL: BW, gastrectomy, albumin Covariates (147)

Cancer (N/S) Semi-mech. PK – Investigational (148)

BI 2536 Advanced non-resectable and/or metastatic refractory solid tumors Semi-mech. pop-PK/PD – Toxicity, dose, covariates (149)

Non-small cell lung cancer Semi-mech. pop-PK/PD – Evaluation/validation, toxicity (150)

BI 893923 N/A Pop-PK/PD – Inter-species extrapolation, dose (151)

Bortezomib Leukemia Pop-PK CL, Q3: BSA Pediatrics, covariates (152)

Brentuximab vedotin Hematological malignancies Pop-PK CLM (L/day) =55.7, Q5 (L/day) =65.0, BW: 0.75 fixed exponent; V4 (L) =79.8, V5 (L) =28.1, BW: 1 fixed 
exponent

Investigational, dose, covariates (153)

Busulfan Hematopoietic cell transplant Pop-PK – Pediatrics, dose (154)

Hematopoietic cell transplant Bayesian pop-PK kel: ideal body weight, age; V: ideal body weight, age Pediatrics, Limited sampling, covariates (73)

N/A PBPK – Pediatrics (36)

Hematopoietic cell transplant Pop-PK CL (L/h/20 kg) =3.03, BW: 0.742 (power); Vd (L/h/20 kg) =12.8, BW: 0.843 (power) Pediatrics, dose, covariates (155)

Hematopoietic cell transplant Pop-PK CL: leukemia Pediatrics, covariates (156)

Hematopoietic cell transplant Bayesian pop-PK CL: BSA Limited sampling, covariates (157)

Hematopoietic cell transplant Bayesian pop-PK CL/F (L/h) =2.63× (age/18)0.376 × (aspartate aminotransferase/29)−0.161×0.787cancer type; V/F (L) =9.26× 
[1+0.0734× (BW −10)]; ka (h

−1) =1.26× (dose/1.0) −1.15×2.49formulation

Pediatrics, dose, covariates (158)

Cancer (N/S) Pop-PK CL: BSA, BW Pediatrics, dose, covariates (159)

Hematopoietic cell transplant Pop-PK CL: BW, day; V1: BW Pediatrics, dose, covariates (74)

Mixed disease Pop-PK – Evaluation/validation, pediatrics (64)

Hematopoietic cell transplant PK – Evaluation/validation, pediatrics (71)

Hematopoietic cell transplant PK – Evaluation/validation, pediatrics (72)

Hematopoietic cell transplant Bayesian pop-PK CL: BW, age Pediatrics, dose, covariates (70)

Hematopoietic cell transplant Pop-PK CL: adjusted IBW, ALT; V: adjusted IBW Covariates, limited sampling, dose (160)

Hematopoietic cell transplant Pop-PK/PD – Covariates, dose, efficacy, toxicity, 
pediatrics

(76)

Hematopoietic cell transplant Pop-PK/Bayesian pop-PK/
PD (based dosing)

– Pediatrics, dose, evaluation/validation (161)

BYL719 Advanced solid malignancies Pop-PK/PD – Efficacy, dose (162)

Cabazitaxel Advanced solid tumors Pop-PK CL (L/h) =48.6× BSA/1.84× (1−0.536× breast cancer tumour type) Covariates (163)

Cabozantinib Advanced malignancies, recurrent/progressive glioblastoma 
multiforme, unresectable locally advanced or metastatic medullary 
thyroid cancer

Pop-PK CL/F (L/day) =106; BMI: −0.0244, sex: −0.219 Dose, covariates (164)

Medullary thyroid cancer Pop-PK/PD CL/F (L/day) =108.5, BMI: −0.0276, sex: −0.216, participant population: −0.408 Efficacy, covariates (165)

Capecitabine Breast cancer, colorectal cancer Pop-PK ka (h
−1) =1.86×0.45age group; k40 (h

−1) =77.1×0.77day of PK evaluation Other special populations (elderly), 
covariates

(166)

Metastatic cancer Pop-PK CL10 (L/h) =218, total bilirubin: 0.32; K34 (h
−1) =5.30, total bilirubin: −0.36 Metabolite, covariates (167)

Breast cancer, other Pop-PK CL of 5'-DFUR (L/h) =70.3, bilirubin: 1.3, BSA: 1.1; CL of FBAL (L/h) =22.7, CLCR: 0.5 Metabolite, covariates (168)

Colorectal cancer Pop-PK CL of 5-FU (L/h) =1,190, alkaline phosphatase: 2; CL of FBAL (L/h) =27.5, CLCR: 0.5;  
V of FBAL (L) =72.6, CLCR: 0.5, BSA: 1.3

Metabolite, toxicity, covariates (169)

Carboplatin Advanced non-small cell lung cancer Pop-PK – Dose (170)

Advanced ovarian cancer Pop-PK CL (L/min) =0.101+0.011× (BW −62.35) −0.0658× (SCR-0.65); V1 (L) =15.5+0.163× (BW−62.35);  
Q (L/min) =0.0132−0.0103× (albumin −3.65); V2 (L) =7.07−3.61× (albumin −3.65)

Limited sampling, covariates (171)

Ovarian cancer Bayesian pop-PK CL (L/h) =0.15× LBW0.75+0.78×CLCR; Vss (L) =0.38×LBW; V1 (L) =0.26×LBW; CLic (L/h) =0.15× LBW0.75 Dose, covariates (78)

Germ cell cancer Pop-PK/PD CL (mL/min) =110.0, CLCR, 24h: 0.408, height: 1.05; Vc (L) =19.8, BW: 0.091; k12 (h
−1) =0.042, BW: 

04.7×10−4, height: 7.5·10−4, age: −6.4×10−4, CLCR, 24h: −8.1×10−5

Dose, toxicity, covariates (172)

Mixed Pop-PK – Renal function (173)

Cancer (N/S) Bayesian pop-PK – Pediatrics, limited sampling (77)

Cancer (N/S) Pop-PK CL (mL/min) =114.2× (CLCR/103.1)0.34× (BW/70)0.75× (1+infusion duration) Dose, pediatrics, covariates (174)

Metastatic germ cell cancer Bayesian pop-PK CL: BW, age, sex, SCR; V1, V2: BSA Limited sampling, dose, covariates (80)

Mixed cancer Bayesian pop-PK – Dose, evaluation/validation (175)

Carfilzomib Multiple myeloma Pop-PK CL: BSA Covariates (176)

Carlumab Refractory tumors Pop-PK/PD – Efficacy, dose (177)

CC49 (mAb) Cancer (N/S) PBPK – Inter-species extrapolation (178)

Cediranib Cancer (N/S) Pop-PK CL/F (L/h) =26.3× (age/59)−0.409× (BW/73)0.517; Vc/F (L) =489× (BW/73)0.65 DDIs, covariates (179)

Ceritinib Cancer (N/S) Pop-PK CL/F (L/h) =24.6, BW: 0.642, baseline albumin: 0.254, albumin: 0.285, baseline alanine 
transaminase: −0.0859, alanine transaminase: −0.0792; kout (h

−1) =0.148, Japanese: 6.84
Hepatic impairment, covariates (180)

Cetuximab Metastatic colorectal cancer Pop-PK θi =θ × (COVi/COVmedian)
β·COV; CL (L/day) =0.497, initial serum albumin: −0.0244; V1 (L) =2.96, BSA: 0.42; 

V2 (L)=4.65, BSA: 0.56; k0 (mg/day) =8.71, BSA: 1.58
Covariates (181)

Head and neck squamous cell cancer Pop-PK θi = θ × (COVi/COVmedian)
β·COV; CL (L/day) =3.18, chemotherapy: −0.45; V1 (L) =3.18, BSA: 1.28; V2 (L) 

=5.40, BSA: 5.54; k0 (mg/day) =6.72, chemotherapy: 1.2
Covariates (182)

Chloroquinoxaline 
sulphonamide

Non-small cell lung cancer Pop-PK – Dose (183)

Cilengitide Solid tumors Pop-PK – Pediatrics (184)

Cisplatin Malignant solid tumors Pop-PK CL (L/h) =5.17+26.3× (BSA −1.855); V (L) =41.4+24.6× (BSA −1.855) Covariates (185)

Ovarian cancer PK – Investigational (186)

Lung, stomach, colon, mediastinal tumor, indistinct, cancer Pop-PK/PD CL: BSA, dose schedule; V: BSA Toxicity, covariates (187)

Testicular cancer Bayesian pop-PK – Dose (188)

Cancer (N/S) Pop-PK CL: BSA Metabolite, covariates (189)

Ovarian cancer PK – Investigational (190)

Breast, ovarian cancer PK – Investigational (191)

Breast, ovarian cancer PK – Investigational (192)

Ovarian, ovarian and cervical cancer, small cell lung cancer PK – Other special populations (elderly) (193)

Advanced ovarian cancer receiving chemotherapy Bayesian pop-PK – Investigational (194)

Advanced non-small cell lung cancer Pop-PK (with gemcitabine) – Transporter genotype (SLC28A1), 
metabolic genotype (GST, CDA, 
deoxycytidine kinase), toxicity, covariates

(195)

Cancer (N/S) PBPK – Pediatrics (196)

CKD-602 Cancer (N/S) Semi-mech. pop-PK/PD – Toxicity (197)

Clofarabine Acute leukemia Pop-PK CL (L/h) =32.8× (BW/40)0.75; V1=115× (BW/40)1.00× white blood cell count/10×103)0.128; Q2 =20.5× 
(BW/40)0.75; V2 =94.5× (BW/40)1.00

Pediatrics, covariates (198)

Cobimetinib Solid tumors Pop-PK θi = θ × (COVi/COVreference)
β·COV; CL/F (L/day) =322, age: −0.217; V2/F (L) =511, BW: −0.217 Covariates (199)

Crizotinib Cancer (N/S) PBPK Suggests no dose adjustment in renal mild/moderate renal impairment Renal impairment (39)

Mainly advanced non-small cell lung cancer Pop-PK/PD – Dose, efficacy (200)

Non-small cell lung cancer Pop-PK CL/F (L/h) =136× {0.46× (day −1)/[1.17+(day−1)]} × (1−0.23× Asian) × (1−0.112× female) × (BW/65)0.20 
× (CLCR/91.6)0.16 × (total bilirubin/0.41) −0.07; V2/F (L) =3,520× (1−0.23×Asian) × (1−0.23× female)

Renal impairment, hepatic impairment, 
covariates

(201)

Healthy volunteers, cancer (N/S) PBPK – DDIs (CYP3A4) (48)

Healthy volunteers, cancer (N/S) PBPK – DDIs (CYP3A4) (49)

Custirsen Mixed cancer Pop-PK θi = θ × (COVi/COVreference)
β·COV; CL (L/h) =2.36, age: −0.190, BW: 0.355, SCR: −0.159; Q3 (L/h) =0.0573, 

age: 0.224
Covariates (202)

Cyclophosphamide Neuroblastoma Pop-PK – Pediatrics (85)

Hematopoietic cell transplant Bayesian pop-PK – Dose (83)

Hematopoietic cell transplant Pop-PK – Dose (81)

Hematologic malignancy Bayesian pop-PK CL: age Dose, covariates (82)

Hematologic malignancy Pop-PK CL: CYP2B6; V: BW, sex Metabolic genotype (CYP2B6, CYP2C9, 
CYP2C19), covariates

(203)

Metastatic breast cancer PK – Investigational (204)

Breast cancer Semi-mech. pop-PK – Investigational (205)

Cancer (N/S) PK/PD – Efficacy, dose (110)

Breast cancer Semi-mech. pop-
PK/PD (4-hydroxy-
cyclophosphamide)

CL (L/h) =255, albumin: 2.61, BSA: 56.3; V1 (L) =1,970, ALT:−21.5, BW: 1.45; V2 (L) =645, BW: 1.45 Toxicity, covariates (114)

Breast cancer Pop-PK (4-hydroxy-
cyclophosphamide)

– Investigational (115)

High-risk/advanced breast cancer, germ-cell cancer, ovarian cancer Semi-mech. Bayesian pop-
PK

– Metabolite, DDI (ThioTEPA) (206)

Cytarabine Acute myeloid leukemia Pop-PK CL: baseline white blood cell count Covariates (207)

Daunorubicin Acute lymphoblastic leukemia Pop-PK – Pediatrics (208)

Acute myeloid leukemia Pop-PK Vc: baseline white blood cell count Covariates (207)

Degarelix Healthy volunteers Pop-PK/PD – Efficacy (209)

Healthy volunteers Pop-PK – Investigational (210)

Denosumab Cancer (N/S) Pop-PK/PD – Efficacy (211)

Solid tumors with bone metastases Bayesian pop-PK CL (mL/h/66 kg) =3.25, Hispanic/Caucasian: 1.27, breast cancer/healthy: 1.10, prostate cancer/
healthy: 1.29, solid tumours/healthy: 1.37, giant cell cancer/healthy: 1.19; V1 (mL/66 kg) =2,620, 
Black/Caucasian: 0.769; ka (h

−1) =0.0107, age power: −0.509, reference: 53.6

Covariates (212)

Diflomotecan Advanced malignant tumors Semi-mech. pop-PK/PD – Toxicity (213)

Dinutuxumab Neuroblastoma Pop-PK – Investigational (214)

Docetaxel Breast cancer Pop-PK CL (L/h) =32.6, age: 1.24 Sex, covariates (215)

Cancer (N/S) PBPK, Pop-PK – Limited sampling, dose, pediatrics (37)

Cancer (N/S) Pop-PK CL (L/h) =43.8, gestational effect: 1.19; Vc (L) =8.63, gestational effect: 1.07; Vp1 (L)=7.19, 
gestational effect: 1.37; Vp2 (L)=359, gestational effect: 0.903

Other special populations (pregnancy), 
covariates

(216)

Advanced cancer Pop-PK CLnormal (L/h) =470; CLimpaired (L/h) =317; CL: AAG, erythromycin breath test Hepatic impairment, covariates (217)

Solid tumors Pop-PK/PD CL: BSA, AAG, albumin, ethnicity, sex Toxicity, ethnicity, metabolic genotype 
(CYP3A), transporter genotype (ABCB1), 
covariates

(218)

Non-small cell lung cancer Pop-PK/PD CL (L/h) =32.5, BW normalized, albumin; V1 (L) =6.67, BW normalized; V2 (L) =7.61, BW normalized; 
V3 (L) =175, BW normalized

Toxicity, covariates (219)

Non-small cell lung cancer Pop-PK/PD CL—BSA: 38%, transaminases & alkaline phosphatase: 27%, AAG: −19%, albumin: −8%,  
elderly: −7%

Toxicity, covariates (220)

Advanced cancer Pop-PK CL (L/h) =21.51+217× (1/erythromycin breath test_tmax) −0.13× ALT Covariates (221)

Mixed cancer Semi-mech. pop-PK/PD – Toxicity, covariates (222)

Solid tumors Pop-PK/PD – Toxicity, covariates (223)

Breast cancer, non-small cell lung cancer, head and neck cancer, 
other

Pop-PK – Hepatic impairment, dose (224)

Metastatic breast cancer Semi-mech. pop-PK/PD – Dose, toxicity (86)

Cancer (N/S) Pop-PK – DDIs (ritonavir) (225)

Non-small cell lung cancer Pop-PK/PD (with cisplatin) – Other special populations (elderly), 
covariates, toxicity

(226)

Cancer (N/S) PK/PD (with epirubicin) – Toxicity, dose (227)

Mixed cancer Bayesian pop-PK CL (L/h) = BSA × (22.1−3.55× AAG −0.095× age +0.225× albumin × (1−0.334× hepatic function) Covariates (228)

Solid tumors Pop-PK CL (L/h) = BSA × (56.4×1.05heterozygous ABCB1-C1236T ×0.719homozygous ABCB1-C1236T + θ10 × AAG + θ11 × age + θ12 

× albumin) × (1− hepatic function)
Transporter genotype (ABCB1), metabolic 
genotype (CYP3A), covariates

(229)

Cancer (N/S) Pop-PK CL (L/h) = BSA × (34.5−0.254× age)/35.6 Covariates (230)

DOTATATE Cancer (N/S) PBPK – Investigational (231)

Doxorubicin Cancer (N/S) Pop-PK Vc (L) =9.83, gestational effect: 1.23; Vp1 (L) =674, gestational effect: 1.32 Other special populations (pregnancy), 
covariates

(216)

Breast cancer Pop-PK/PD CL (L/h) =47.6× (BSA/1.8)1.4 × (aspartate transaminase/21)−0.24 × (AGE/56)−0.54 Toxicity. covariates (232)

Cancer (N/S) Pop-PK CL—BSA: 1.30 (linear scaling), age: 0.286 (power); V1, Q2, V2, V3, V3, CLM, VM—BSA: 1.30 (linear 
scaling)

Pediatrics, covariates (233)

Advanced breast cancer PK – Investigational (234)

Cancer (N/S) PK/PD – Efficacy, dose (110)

Mixed cancer Pop-PK – Pediatrics, obesity, covariates (235)

Breast cancer Pop-PK – Overweight, dose (236)

Breast cancer Pop-PK CL (L/h) =53.5, age: −0.393 (power) Metabolite, covariates (237)

Cancer (N/S) Pop-PK – Pediatrics, metabolite (238)

Metastatic breast cancer Pop-PK – Toxicity, covariates (239)

Breast cancer Pop-PK/PD – Metabolite, toxicity, covariates (240)

Mixed cancer PK – Investigational (241)

Cancer (N/S) PBPK – Inter-species extrapolation (242)

Solid tumors PBPK – Investigational (243)

E7080 Advanced malignancies Pop-PK/PD – Toxicity (244)

E7820 Malignant solid tumors, lymphoma Pop-PK – Food effects (245)

Elotuzumab Relapsed/refractory multiple myeloma Pop-PK θi = θ × (COVi/COVreference)
β·COV; CL (L/day) =0.0895, BW: 1.16, lenalidomide/dexamethasone: 0.666;  

VC (L) =4.04, BW: 0.332, female: 0.796, Asian: 0.861, 2-microglubilin >3.5: 1.13; Q (L/day) =0.676, 
BW: 0.75; VP (L) =2.22, BW: 0.75; Vmax (µg/mL/day) =9.21, M-Protein: 0.178 

DDIs, covariates (246)

Enzalutamide Healthy volunteers PBPK – DDIs (247)

Epacadostat Advanced solid malignancies Pop-PK/PD CL/F (L/h) =49.3× (BW/83)0.90; Vc/F (L) =152× (BW/83)0.56 Efficacy, covariates (248)

Epirubicin Cancer (N/S) Pop-PK CL (L/h) =83.4, gestational effect: 1.10; Vc (L) =9.83, gestational effect: 1.55; Vp1 (L) =10, gestational 
effect: 2.08

Other special populations (pregnancy), 
covariates

(216)

Metastatic breast cancer PK – Investigational (249)

Breast cancer Semi-mech. pop-PK/PD CL (L/h) =71.7, albumin: 1.33, bilirubin: −0.575 Toxicity, covariates (114)

Breast cancer Pop-PK – Investigational (115)

Eribulin mesylate Breast cancer, prostate cancer, solid tumors, non-small cell lung 
cancer

Semi-mech. pop-PK/PD – Toxicity, dose, covariates (250)

Erlotinib Cancer (N/S) PK/PD – Investigational (251)

Non-small cell lung cancer Pop-PK CL (mL/h) =43+0.356× CLCR; Vc—BW, sex Toxicity, covariates (252)

Ewinia asparaginase Acute lymphoblastic leukemia Pop-PK – Pediatrics (253)

Etoposide Non-Hodgkin’s lymphoma, Hodgkin’s lymphoma Pop-PK CL (L/h) =0.0019× (CLCR/91.7)0.245 × (bilirubin/7)−0.161 Covariates (254)

Acute leukemia PK – Pediatrics (255)

Mixed cancer Bayesian pop-PK – Limited sampling (256)

Multifocal hepatocellular carcinoma, advanced non-small cell lung 
cancer, gastric cancer, breast cancer, other

Pop-PK/PD CL (L/h) =114, CLCR; V (L) =6.0, BSA, protein binding; k12 (h
−1) =0.14, protein binding; k21 (h

−1) =0.06, 
CLCR

Efficacy, toxicity, covariates (257)

Mixed cancer Semi-mech. pop-PK/PD – Toxicity, covariates (222)

Small cell lung cancer Pop-PK/PD CL: CLCR, ifosfamide Efficacy, covariates (258)

Metastatic breast cancer PK – Limited sampling (259)

Acute myeloid leukemia Pop-PK CL: baseline white blood cell count, CLCR; V: sex Covariates (207)

Primary breast cancer, Cancer (N/S) PBPK – Pediatrics (260)

Everolimus Progressive unresectable recurrent or metastatic thyroid cancer, 
metastatic breast cancer

Semi-mech. pop-PK/PD – Efficacy (261)

Progressive, unresectable or metastatic thyroid cancer Pop-PK F=1, TTT haploid ABCB1: 0.792 Transporter genotype (ABCB1), Toxicity, 
Covariates

(262)

Solid tumors PBPK-PD – Inter-species extrapolation, dose (263)

Metastatic head and neck squamous cell cancer Pop-PK (with cetuximab & 
carboplatin)

– Investigational (264)

Exatecan mesylate Metastatic gastric cancer Pop-PK CL, Vc, Vp, Q, CL—BSA Covariates (265)

Farletuzumab Epithelial ovarian cancer Pop-PK θi = θ × (COVi/COVreference)
β·COV; CL (L/h) =0.00784, BW: 0.715; Vc

 (L) =3.00, BW: 0.629 Covariates (266)

Foretinib Cancer (N/S) Pop-PK θi = θ × (COVi/COVreference)
β·COV; CL/F (L/h) =79.3, age: −0.381, aspartate amino transferase: −0.217;  

Vc/F (L) =2150, BW: 0.661; F1-capsule: 1.37, F1-gablet: 1.20
Covariates (267)

Ftorafur Advanced breast cancer Pop-PK – Metabolite (5-fluorouracil) (268)

Fulvestrant Advanced breast cancer PK – Dose (269)

Postmenopausal women with HER-positive advanced breast cancer Pop-PK – Dose (270)

GDC-0917 N/A Pop-PK – Inter-species extrapolation (271)

GDC-0980 N/A PK/PD – Inter-species extrapolation (272)

Gefitinib Malignant solid tumors Pop-PK CL/F: midazolam clearance (CYP3A activity) Toxicity, metabolic phenotype (CYP3A), 
covariates

(273)

Healthy volunteers, solid malignant tumors of non-small cell lung 
cancer, colorectal cancer, head and breast cancer

PBPK – Inter-species extrapolation (274)

Gemcitabine Ovarian cancer Pop-PK/PD – Toxicity, dose (275)

Solid malignancies Pop-PK CLdFdu/F (L/min) =0.04× (1+0.48× CLCR/70); CvdFdU/F (L) =46× (BSA/1.73)0.93 ×0.65gemcitabine oxaliplatin 
×0.54oxaliplatin gemcitabine ×1.24non-small cell lung cancer

Metabolite, DDI (oxaliplatin), covariates (276)

Urothelial cancer PK – Metabolite, Renal impairment/other special 
populations (renal replacement therapy)

(277)

Pancreatic cancer, lung cancer, methothelium cancer Pop-PK CL (L/h) =73.70× BSA × (1−0.639× CDA*3homo) × (1−0.171× CDA*3hetero) × (1+0.0749× number 
of CDA − 31delC) × (1+0.191× co-administration of S-1 ); CLm1 (L/h) =11.00× BSA × [1−0.00855× 
(age −62.67)] × [1−0.732× (SCR −0.70)]; Vm1 (L) =15.00× BSA × [1−0.00806× (age −62.67)] × (1+0.239× 
male)

Metabolic genotype (cytidine deaminase, 
deoxycytidine), transporter genotype 
(SLC29A1), metabolite, covariates

(278)

Non-small cell lung cancer Pop-PK/PD (with 
carboplatin)

– Efficacy, dose (279)

Advanced non-small cell lung cancer Pop-PK CL: CDA Transporter genotype (SLC28A1), 
metabolic genotype (GST, CDA, 
deoxycytidine kinase), toxicity, metabolite, 
covariates

(195)

Herceptin Cancer (N/S) PK/PD – Efficacy, dose (110)

HuCC49-Delta-CH2 Colorectal cancer Pop-PK CL, Q—BW: 0.75 (exponent); V1, V2—BW: 1 (exponent) Covariates (280)

Hydroxyurea Lymphoma, brain tumors, acute myelocytic leukemia, lung cancer, 
melanoma, renal-cell carcinoma

Pop-PK – Investigational (281)

Hypoxoside Lung cancer Pop-PK – Investigational (282)

Ibrutinib B-cell malignancy Pop-PK F1: prandial state; D1: prandial state, antacids; V2/F, V3/F: BW DDIs, biopharmaceutics effects, ethnicity, 
covariates

(283)

Healthy volunteers PBPK – DDIs (CYP3A4) (53)

Idarubicin Leukemia PK – Pediatrics, metabolite (284)

Idasanutlin Cancer (N/S) PBPK – DDIs (46)

Idelalisib Healthy volunteers, hematologic malignancy Pop-PK CL (L/h)—healthy: 19.69, patient: 14.88; CL/F (L/h) = CL/Fi × (BWi/BWreference)
0.245; Q/F (L/h)—healthy: 

7.846, patient: 11.82; F1—dose: −0.262
Covariates (285)

Ifosfamide Resistant small cell lung cancer Pop-PK – Metabolite, investigational (286)

Imatinib Gastrointestinal stromal tumors Bayesian pop-PK – Investigational (287)

Chronic myeloid leukemia, gastrointestinal stromal tumors Pop-PK Vd: AAG Covariates (288)

Soft tissue and bone cancer Pop-PK – Other special populations (smoking) (289)

Hepatocellular cancer PK/PD – Efficacy, hepatic impairment (290)

Solid tumors, gastrointestinal stromal tumors Pop-PK CL (L/h) =7.29× (BW/54)0.56 × (AAG/1.13)−0.65 × (albuminemia/38)0.66; V (L) =202× (BW/54)0.79 × 
(AAG/1.13)−1.01; CLmetabolite/fm (L/h) =52.2× (BW/54)−0.62 × (AAG/1.13)−0.81 × 0.70study day

Pediatrics, metabolic genotype 
(CYP3A4/5), transporter genotype (ABCB1, 
ABCG2), AAG genotype, metabolite, 
covariates

(291)

Chronic myeloid leukemia Pop-PK CL/F (L/h) = (13.8−3.81× occasion) × (BW/80)0.301 × (hemoglobin/13)0.897 × (white blood cell count/16) 
−0.105; V/F (L) = (252−7.82× occasion) × (BW/80)0.405 × (hemoglobin/13)0.676 × (white blood cell 
count/16) −0.070

Covariates (292)

Advanced gastrointestinal stromal tumors Pop-PK/PD CL (L/h) =7.97× (AAG/1.15) −0.52; CLm/fm (L/h) =58.6× (AAG/1.15) −0.60×0.55occasion Metabolite, toxicity, covariates (293)

Mixed cancer Bayesian pop-PK CL/F (L/h) =10.8× (BW/70)0.75; V/F (L) =284× (BW/70); CLmetabolite/F (L/h) =9.65× (BW/70)0.75; V1, metabolite/
F (L) =11.6× (BW/70); V2, metabolite/F (L) =256× (BW/70); Q2, metabolite (L/h) =2.9× (BW/70)0.75

Metabolite, pediatrics, covariates (294)

Indicine N-oxide Malignant solid tumors PK – Pediatrics (295)

Indisulam Cancer (N/S) Semi-mech. pop-PK/PD – Toxicity (213)

Cancer (N/S) Semi-mech. pop-PK (with 
irinotecan, capecitabine, 
carboplatin)

CL (L/h) =46, Caucasian: 3.36; Vmax (mg/L/h) =4.19, BSA: 2.29; QIF-TIS =1,190, Caucasian: 2.26; Bmax-TIS 
=9.42, Caucasian: 0.70

Covariates (296)

Mixed cancer Pop-PK Vmax: CYP2C9*3/2, CYP2C19*3 Metabolic genotype (CYP2C9/19), toxicity, 
dose, covariates

(297)

Interferone-Alpha, interferone-
Gamma

Healthy volunteers Pop-PK/PD – Response (298)

Iodine, 131I Post-surgical thyroid carcinoma PK – Renal impairment, dose (299)

Ipilimumab Advanced melanoma Pop-PK θi = θ × (COVi/COVreference)
β·COV; CL (L/h) =0.015, BW: 0.642, lactate dehydrogenase: 1.13; V (L) =4.15, 

BW: 0.708
Covariates (300)

Irinotecan Bile-duct cancer, other cancer PBPK – Physiology (58)

Malignant solid tumors Pop-PK/PD Supports flat dosing (w/o BSA) Toxicity, Dose (301)

Malignant solid tumors Pop-PK – Investigational (302)

Cancer (N/S) PBPK – Toxicity, metabolic genotype (UGT1A1), 
transporter genotype (OATP1B1)

(303)

Gastric cancer Pop-PK CL4—AGE; V5—BSA; V6—AGE; V7—CLCR Covariates (304)

Malignant solid tumors Bayesian pop-PK – Limited sampling (305)

Metastatic digestive cancer Bayesian pop-PK – Limited sampling, metabolite, covariates (306)

Refractory solid tumors Pop-PK CL, Q—BW: 0.75 (exponent); Vc, Vp—BW: 1 (exponent); CLAPC—BW: 0.75 (exponent); VAPC—BW: 1 
(exponent); CLSN38—bilirubin, BW: 0.75 (exponent), age; Vc, SN38, Vp, SN38—BW: (exponent); QSN38—BW: 
0.75 (exponent); CLSN38G—BW: 0.75 (exponent); VSN38G—BW: 1 (exponent)

Pediatrics, metabolite, covariates (307)

Cancer (N/S) PBPK – Renal impairment, metabolite (40)

Glioblastoma, recurrent glioma Pop-PK – DDIs, metabolite (308)

Irofulven Malignant cancer Pop-PK – Covariates (309)

Irosustat Breast cancer Pop-PK – Other special populations 
(postmenopausal women)

(310)

Ixazomib Cancer (N/S) Pop-PK/PD – Toxicity (311)

Kahalalide F Malignant solid tumors Pop-PK – Covariates (312)

Lapatinib Healthy volunteers PBPK – Inter-species extrapolation (313)

HER2-positive locally advanced or metastatic breast cancer Pop-PK – Dose, covariates (314)

Lenvatinib Healthy volunteers, thyroid cancer Pop-PK – Hepatic impairment, dose (315)

Letrozole Healthy volunteers (postmenopausal women) Pop-PK CL/F (L/h) =1.03× (2CYP2A6 alleles + 1CYP2A6 allele ×0.843+ 0CYP2A6 alleles ×0.448) × (SCR/0.70) 
−1.27× (aspartate transaminase/17.5)−0.793; V/F (L) =94.2× (BW/51.1)1.12

Metabolic genotype (CYP2A6), covariates (316)

Leuprolide Prostate cancer Semi-mech. Pop-PK/PD – Efficacy, covariates (317)

Linifanib Mixed cancer Pop-PK CL/F (L/h) =2.82, colorectal cancer: 1.41, sex: 0.75; Vc/F (L) =50.75, BW: 0.52, hepatocellular 
cancer: 1.63, renal cell cancer: 1.86; Vp/F (L) =10.36, BW: 0.52, hepatocellular cancer: 1.63, renal 
cell cancer: 1.86; ka [L/h] =0.46, oral solution: 1.97; F—time of dose: 0.73, food condition: 0.86, 
acute myelogenous leukemia/myelodysplastic syndrome: 0.57

Food effects, covariates (318)

Hepatocellular cancer Pop-PK CL/F (L/h)—males: 3.65, females: 2.81; V/F (L)—males: 96.8, females: 71.5 Dose, covariates (319)

Lym-1, 123I B-cell lymphoma Semi-mech. PK – Investigational (320)

Matizumab Advanced cancer Pop-PK θi = θ × [1+ β × COV × (COVi − COVmedian)]; CLL (mL/h) =15.3, fat-free mass: 0.0138; V1 (L) =3.79, fat-
free mass: 0.0077

Dose, covariates (321)

Advanced cancer Pop-PK θi = θ × [1+ β × COV × (COVi − COVmedian)]; CLL (mL/h) =14.6, BW: 0.0087; V1 (L) =3.73, BW: 0.0044 Covariates (322)

Melphalan Advanced malignancy Bayesian pop-PK CL (L/h) =1.37× CLCR −18.9× (sex −1) +7.01 Covariates (323)

Advanced prostate cancer Pop-PK/PD θi = θ × (COVi/COVreference)
β·COV; CL (L/h/70 kg) =10.9, BW: 0.0831, SCR: 0.0831; Q (L/h/70 kg) =0.110, 

BW: 0.693
Toxicity, covariates (324)

Mixed cancer Bayesian pop-PK CL (L/h) =0+0.34× BW −3.17× prior carboplatin therapy +0.0377× GFR; V (L) =1.12+0.178× BW Pediatrics, dose, covariates (325)

Bayesian pop-PK CLnon-renal (L/h) =79.7× (hematocrit/34)0.679 × (fat-free mass/50)0.75; CLrenal (L/h) =50.7× (CLCR/88); V1 (L) 
=63.8× (fat-free mass/50)

Efficacy, toxicity, covariates (326)

Bone marrow transplant PK CL (L/h) =4.77+0.37× BW −3.99× prior carboplatin treatment −2.84× GFR +2.10× prior total body 
irradiation

Pediatrics, dose, covariates (327)

Menogaril Metastatic tumors PK – Investigational (328)

Methotrexate Osteosarcoma Pop-PK/PD θi = θ × (COVi/COVreference)
β·COV; CL (L/h) =15.7, hematocrit: 0.85; Vc (L) =79.2, BW: 1.29 Toxicity, covariates (329)

Hematologic malignancy Pop-PK – Investigational (330)

Cancer (N/S) PK/PD – Efficacy, dose (110)

Breast cancer Bayesian pop-PK – Dose (87)

Cancer (N/S) Bayesian pop-PK – Dose, pediatrics (88)

Osteosarcoma Pop-PK CL—CLCR >89 µmol/L, alanine amino transferase; V—height, BSA, hemoglobin Limited sampling, Covariates (331)

Cancer (N/S) Pop-PK – Covariates (332)

Cancer (N/S) Pop-PK CLMTX (mL/min) =8.84+0.0423× (87− CLCR) −2.45× benzimidazoles −1.46× NSAID; CL7-OH-MTX (mL/min) 
= 2+0.0423× (87− CLCR) −2.45× benzimidazoles −0.369× NSAID

Metabolite, covariates (333)

Mixed cancer Bayesian pop-PK – Evaluation/validation, dose, pediatrics (89)

Osteosarcoma Bayesian pop-PK – Dose, toxicity (90)

Solid tumors Bayesian pop-PK – Dose, evaluation/validation (91)

Mitomycin C Liver cancer PK – Investigational (334)

Mitoxantrone Metastatic breast cancer, inflammatory breast cancer PK – Investigational (335)

MNRP1685A Advanced solid tumor Pop-PK/PD – Efficacy (336)

Motesanib Thyroid cancer Pop-PK/PD – Efficacy, dose (337)

Thyroid cancer Pop-PK/PD – Efficacy, dose (338)

Cancer (N/S) Pop-PK – Metabolite, investigational (339)

Nab-paclitaxel Cancer (N/S) Pop-PK – Investigational (340)

Cancer (N/S) Pop-PK/PD VMEL (µg/L) =40.2, albumin: 0.341 Toxicity, hepatic impairment, covariates (341)

Navitoclax Cancer (N/S) Semi-mech. Pop-PK/PD – Toxicity (342)

Nimotuzumab Advanced breast cancer Semi-mech. Pop-PK – Covariates (343)

Nivolumab Solid tumors Pop-PK CL: BW, eGFR, baseline performance status, sex, Asian; Vc: BW, sex Covariates (344)

O(6)-benzylguanine Central nervous system tumors PK – Pediatrics (345)

Onartuzumab Advanced solid tumors Pop-PK – DDIs (erlotinib), dose, covariates (346)

Orteronel Healthy volunteers PBPK – Renal impairment, DDIs (41)

Osimertinib Non-small cell lung cancer Pop-PK – Dose (347)

Oxaliplatin Peritoneal cancer Pop-PK VIP (L) =3.73× (BSA/1.69)1.24; kEL-B (h−1) =4.58× (total protein/42)−0.75 Surgery, covariates (348)

Metastatic cancer Pop-PK CL (L/h) =14.1× (BW/71)1.10 × (SCR/87)−0.57 × (0.60 if female); V1 (L) =24.9× (BW/71)1.29; Q (L/h) =34.8× 
(BW/71)1.01

Covariates (349)

Cancer (N/S) Pop-PK CL (L/h) =0.67× BW0.75 × (0.6/SCR)0.67; Q2 (L/h) =2.94× BW0.75 + Q3; Q3 (L/h) =0.22× BW0.75; V1 (L) 
=0.39× BW × (age/21)0.16; V2 (L) =6.23× BW; V3 (L) =17.1× BW

Pediatrics, renal impairment, hepatic 
impairment, covariates

(350)

Advanced colorectal cancer Pop-PK CL (L/h) = 0.28× BSA × (1−0.058× hematocrit) Covariates (351)

Peritoneal carcinomatosis Semi-mech. pop-PK/PD – Toxicity, covariates (352)

Advanced colorectal cancer Pop-PK (with 5-fluorouracil) – Investigational, covariates (353)

Paclitaxel Cancer (N/S) Pop-PK/PD – Efficacy, formulation, dose (354)

Cancer (N/S) Pop-PK CL (L/h) =4.71, gestational effects: 1.92; Vc (L) =12.8, gestational effects: 4.21; Vp1 (L) =17.1, 
gestational effects: 3.16; Vp2 (L) =2640, gestational effects: 2.57

Other special populations (pregnancy), 
covariates

(216)

Ovarian cancer, small-cell lung cancer, solid tumors Semi-mech. Pop-PK/PD – Dose, toxicity (25)

Ovarian cancer Pop-PK CL (L/h)—CYP2C8-performance status 0–1: 396; CL (L/h)—CYP2C8-performance status 2: 3,04l; 
CL—BSA: 0.62, age: −0.006; V1 (L) =296, BSA: 1.11; V2 (L) =793, BSA: 0.48; using Henningsson 
model: CL (L/h) =396× [1+0.62× (BSA −1.71)] × [1−0.012× (bilirubin −5)] × [1−0.006× (age −60.7)]

Metabolic genotype (CYP2C8), covariates (355)

Solid tumors Pop-PK/PD Suggests dose adaptation for hepatic impairment Hepatic impairment, toxicity, covariates (356)

Solid tumors Pop-PK VMEL (µmol/h) =37.4×1.2sex × (BSA/1.8)0.842; VMTR (µmol/h) =169×1.2sex × (BSA/1.8)0.911; KMTR (µmol/L) 
=0.826×2.11sex; V3 (L) =252× (BSA/1.8)1.17; k12 (h

−1) =1.15×0.893sex; Q (L/h) =20.1× (BSA/1.8)0.724

Covariates (357)

Cancer (N/S) Pop-PK – Metabolic genotype (CYP2C8, CYP3A4/5), 
Transporter genotype (ABCB1), covariates

(358)

Solid tumors Pop-PK CL (L/h) =343× [1+0.65× (BSA −1.76)] × [1−0.012× (bilirubin −6)]; V1 (L) =418× [1+1.45× (BSA −1.76)]; 
V2 (L) =1010× [1+0.868× (BSA −1.76)]; Bmax =0.212× [1+1.09× (AAG−1.35)]

Evaluation/validation, covariates (359)

Malignant solid tumors Pop-PK – Formulation (360)

Metastatic breast cancer, metastatic ovarian cancer Pop-PK – Investigational (361)

Cancer (N/S) Pop-PK/PD – Toxicity (362)

Metastatic cancer PK – Investigational (363)

Ovarian cancer PK – Investigational (364)

Mixed cancer Semi-mech. Pop-PK/PD – Toxicity, covariates (222)

Advanced non-hematologic malignancy Pop-PK – Formulation (365)

Metastatic cancer Pop-PK/PD – Toxicity (366)

Ovarian cancer Pop-PK/PD (with 
carboplatin)

– Toxicity (367)

Mixed cancer Semi-mech. Pop-PK/PD – Toxicity (368)

Relapsed or refractory ovarian cancer, relapsed or refractory breast 
cancer

Pop-PK/PD – Toxicity, efficacy (369)

Palbocicilib Advanced solid tumors, non-Hodgkin lymphoma, mantle cell 
lymphoma, metastatic breast cancer

Pop-PK/PD – Toxicity, dose, covariates (370)

Panitumimab Advanced solid tumors Pop-PK CL (L/day) =0.273× (BW/80)0.411 × 0.769female × 0.861non-small cell lung cancer × 0.957renal cancer × 0.870other cancer; 
V1 (L) =3.95× (BW/80)0.526 × 0.831female; Vmax (mg/day) =12.1× (BW/80)0.621 × (age/60)−0.495

Covariates (371)

Patritumab Non-small cell lung cancer Pop-PK – Hepatic impairment, renal impairment (372)

Patupilone N/A PBPK – Inter-species extrapolation (373)

Pazopanib Cancer (N/S) Bayesian pop-PK/PD – Toxicity (374)

Cancer (N/S) – Investigational (375)

Pembrolizumab Advanced solid tumors Pop-PK CL (L/day) =0.202× (BW/76.8)0.578 × (albumin/39.6)−0.854 × baseline tumor burden/89.6)0.0926 × 
(eGFR/88.47)0.139 × [(1−0.152) if female] × [(1+0.145) if non-small cell lung cancer] × [(1+0.0739) if 
ECOG] × [(1+0.140) if prior ipilimumab]; V (L) =3.48× (BW/76.8)0.492 × (albumin/39.6)−0.178 × [(1−0.134) 
if female] × [(1+0.0736) if prior ipilimumab]

Dose, covariates (92)

Pemetrexed Mixed cancer Semi-mech. Pop-PK/PD – Toxicity, Covariates (376)

Mixed cancer Pop-PK CL (mL/min) =43.0+47.2× CLCR/92.6; V1 (L) =6.13× BSA1.32 Covariates (377)

Metastatic colorectal cancer, pancreatic cancer, recurrent/metastatic 
breast cancer, esophageal cancer

Pop-PK CL (L/h) =[2.82+0.0292× CLCR +0.0475× (BW −70) +0.0041 × (ALT −30.5)] × (1−0.344× FOL); Vc (L) 
=[11.3+0.105× (BW −70)] × (1−0.325× sex); Vp (L) =9.78+4.28× (BSA −1.8) −1.25× (albumin −3.67)

Covariates (378)

Cancer (N/S) PBPK – DDIs (47)

Pertuzumab Advanced solid malignancies, advanced ovarian cancer, metastatic 
breast cancer

Pop-PK CL (L/day) =0.214× (BW/69)0.587 × (albumin/39.2)−1.01 × (ALK/107)0.169; Vc (L) =2.74× (BSA/1.72)1.160 Covariates (379)

Neoadjuvant early breast cancer Pop-PK – DDIs (380)

Phenylacetate Refractory cancer PK – Pediatrics (381)

PI-88 Solid tumors Pop-PK CL (mL/h) =3,440+ [1,800× (BSA −1.9)] − (867× cancer); V (mL) =16,900+ [14,400× (BSA −1.9)]; ka (h
−1) 

=1.07− [0.0401× (BMI −25.7)]
Covariates (382)

Plitidepsin Advanced solid tumors, advanced renal and colorectal tumors, 
advanced medullary thyroid carcinoma, advanced metastatic 
melanoma

Pop-PK – Covariates (383)

PM00104 Malignant tumors Pop-PK/PD – Toxicity, covariates (384)

Polyestradiol phosphate Prostate cancer PK – Dose (385)

Porfimer Sodium, 
2-[1-Hexyloxyelthyl]-2-
devinyl pyropheophorbide-a 
(Photochlor), 5-ALA-induced 
protoparophyrin IX

Cancer (N/S) PK – Investigational (386)

Poziotinib Advanced solid tumors Pop-PK ka (h
−1) =0.921, ka, food =0.359; Vc/F (L) =147× (BW/70)1.23 Food effects, Covariates (387)

PRO95780 Cancer (N/S) PK/PD – Inter-species extrapolation (388)

Pyrazine diazohydroxide Solid tumor, lymphoma PK – Investigational (389)

Raltitrexed Advanced solid tumors Pop-PK CL (L/h) =0.54+0.02× CLCR; V (L) =6.64+0.08× BW −0.16× albumin Covariates (390)

Recurrent or refractory leukemia PK – Pediatrics (391)

RG7160 Advanced EGFR-positive solid tumors Pop-PK – Dose (392)

Rilotumumab Mixed cancer Pop-PK CL (L/day/70 kg/60 years) =0.184, BW: 0.625 (power), age: 0.268 (power); Vc (L/70 kg/60 years) 
=3.56, BW: 0.611 (power), age: 0.229 (power)

Covariates (393)

Rituximab Diffuse large B-cell lymphoma Pop-PK – Covariates (394)

RO5323441 Advanced solid tumors, metastatic treatment refractory colorectal 
or ovarian cancer, metastatic and/or unresectable hepatocellular 
carcinoma

Pop-PK – DDIs (395)

Selumetinib Advanced solid tumors, low-grade gliomas Pop-PK F—fed state: 0.117 (linear coefficient); D1 (nmol/h) =0.622, fed state: 4.09 (linear coefficient for 
duration of zero order input); tlag (h) =0.319, fed state: 0.348 (linear coefficient); CL/F (L/h) =13.5, 
BSA: 0.923 (power), ALT: 0.187 (power); V2/F (L) =32.6, BSA: 1.24 (power), age: 0.327 (power)

Pediatrics, dose, covariates (396)

Sepantropium bromide Advanced solid tumors, low-grade glioma Pop-PK CL (L/h) =42.1× (CLCR/79.22)0.425 × (ALT/19)0.124 × 0.995hormone refractory prostate cancer ×1.24unresectable melanoma Covariates (397)

Sibrotuzumab Advanced metastatic cancer Pop-PK θi = θ × [1+ β × COV × (COVi − COVmedian)]; CLL (mL/h) =22.1, BW: 0.0182; V1 (L) =4.13, BW: 0.0125; V2 

(L) =3.19, BW: 0.0105; Vmax (mL/h) =0.0338, BW: 0.00934
Covariates (398)

Sirolimus Healthy volunteers PBPK – Hepatic impairment, DDIs (42)

Advanced cancer Pop-PK CL1/F (L/h) =12.9× (hematocritmedian/hematocriti
)0.14 Covariates (399)

Sonidegib Healthy volunteers PBPK – DDIs (54)

Sulindac Healthy volunteers Pop-PK ka-Tablet (h
−1) =0.67, ka-Capsule (h

−1) =1.09; NTablet =9.11, NCapsule =15.5; MTTTablet (h) =0.845, MTT Capsule (h) 
=0.427; BIOCapsule =1.12

Formulation, covariates (400)

Sunitinib Advanced gastrointestinal stromal tumor, advanced renal cell 
carcinoma

Pop-PK/PD – Efficacy, toxicity, covariates (401)

Cancer (N/S) Semi-mech. Pop-PK – Metabolite, dose (402)

Acute myeloid leukemia Pop-PK (sunitinib malate) Continuous: θi = θ × (COVi/COVreference)
β·COV; categorical: θi = θ × (1+ β × COV × COV); CL/F (L/h) =51.8, 

sex: −0.0876, Asian: −0.130, GIST : −0.285, solid tumor: −0.269, mRCC : −0.258; V/F (L) =2030, 
BW: 0.459

Covariates (403)

Healthy volunteers, cancer (N/S) Pop-PK/PD – Response, covariates (404)

Suramin Malignant cancer Bayesian pop-PK – Dose, evaluation/validation (93)

Prostate cancer Bayesian pop-PK – Dose, evaluation/validation (94)

Tamoxifen Cancer (N/S) PK/PD – Efficacy, Dose (110)

Breast cancer Pop-PK Θ2D6,1: 0.262, Θ3A4,1: 0.157 Metabolic phenotype (CYP3A, CYP2D6), 
metabolite, covariates

(405)

Healthy volunteers PBPK – Metabolite, metabolic genotype (CYP2D6), 
adherence

(44)

Breast cancer PBPK – Metabolic phenotype (CYP2D6) (43)

Tegafur Gastric cancer Pop-PK – Surgery (406)

Mixed cancer Bayesian pop-PK (tegafur-
potassium oxonate-
gimeracil)

VFT (L) =16.0× BSA; V5-FU (L) =11.5× BSA; ki-Women (µg/mL) =0.037, ki-Men (µg/mL) =0.042 Ethnicity, covariates (407)

Metastatic or recurrent solid malignancy Pop-PK (tegafur-5-
fluorouracil)

CDHP: CL/F (L/h) = (5.86+0.025× SCR) × BSA, V/F (L) =42.7× BSA; FT: ka (h
−1) =1.39, ka-gastric resection (h

−1) 
=1.62×1.39, CL/FCYP2A6-No/one variant allele (L/h) =2.02× BSA, CL/FCYP2A6-twovariantalleles (L/h) =0.58×2.02× BSA

Metabolic genotype (CYP2A6), toxicity, 
surgery, covariates

(408)

Temozolomide Advanced cancer Pop-PK CL: sex, BSA, cancer type Toxicity, covariates (409)

Primary central nervous system tumors Pop-PK CL/F, V/F: BSA, age Pediatrics, metabolite, covariates (410)

Temsirolimus Advanced renal cancer Bayesian pop-PK CL (L/h) =1.39, BSA: 1.28, dose: 0.551 Metabolite (sirolimus), toxicity, efficacy, 
covariates

(411)

Recurrent solid tumors Pop-PK CL (L/h/70 kg): 3.71, dose: 0.878 Pediatrics, metabolite, covariates (412)

Teniposide Acute leukemia PK – Pediatrics (255)

Thioguanine Mixed cancer PK – Pediatrics (413)

Topotecan Recurrent solid tumors, recurrent acute leukemia, medulloblastoma, 
high-risk neuroblastoma, recurrent Wilms tumor

Pop-PK CL (L/h/m2) =15.9+0.184× GFR +13.5× missing GFR +13.5× TrialNo4 +6.49× investigation 
formulation −7.3× age +9.9× phenytoin; V (L/m2) =32.7+6.0× TrialNo1 +15.3× TrialNo4

Pediatrics, covariates (414)

Metastatic epithelial ovarian cancer Bayesian pop-PK CL (L/h) =5.47× CLCR; Vc (L) =0.584× BW Limited sampling, covariates (415)

Refractory solid tumors Pop-PK/PD – Toxicity, pediatrics (416)

Solid tumors Pop-PK CL (L/h) = (5.77+12.8× CLCR/70) × (BW/70)0.75 × exp[−0.120× (ECOG performance status−1)]; V1 (L) 
=19.3× (BW/70)0.75; V2 (L) =45.7× (BW/70)

Toxicity, covariates (417)

Myelodysplastic syndromes Pop-PK/PD VC/F (L) =395, age Dose, covariates (418)

Mixed cancer Semi-mech. Pop-PK/PD – Toxicity, covariates (222)

Metastatic epithelial ovarian cancer Bayesian pop-PK – Limited sampling (419)

Metastatic epithelial ovarian cancer PK – Evaluation/validation, dose (420)

Trabectedin Malignant tumors Semi-mech. Pop-PK/PD – Toxicity (421)

Advanced solid tumors, breast cancer, melanoma, soft tissue 
sarcoma, renal cancer, colorectal cancer, ovarian cancer

Bayesian pop-PK (with 
dexamethasone)

CL (L/h) =31.5, dexamethasone: 6.05 (additive), missing dexamethasone: 4.60 (additive); V1 (L) 
=13.9, males: 2.22 (additive)

Covariates (422)

Advanced solid tumors, breast cancer, melanoma, soft tissue 
sarcoma, renal cancer, colorectal cancer, ovarian cancer

Semi-mech. pop-PK/PD – Dose, toxicity, covariates (423)

Trastuzumab HER2-positive early breast cancer Pop-PK CL (L/day) =0.111× (BW/68)1.04 × (alanine transaminase/19)0.144; Vc (L) =2.91× (BW/68)0.443; Vp (L) 
=3.06× (BW/68)0.500

Covariates (424)

HER2-positive inoperable cancer Pop-PK – DDIs (425)

HER2-positive breast cancer Pop-PK/PD – Toxicity, covariates (426)

HER2-positive metastatic breast cancer Pop-PK CL (L/day) =0.225× [(min(ECD, 200)/8.23] ×0.041; CL × [1+ (0.221× MET )]; V1 (L) =2.95× (BW/65) × 
0.556× [min(ECD, 200)/8.23] ×0.105

Dose, covariates (427)

Trastuzumab emtansine HER2-positive metastatic breast cancer Semi-mech. Pop-PK/PD – Toxicity, dose, covariates (428)

HER2-positive breast cancer Pop-PK CL (L/day) = exp[0.676+0.49× (BW/70) +0.035× log(baseline epidermal growth factor/25] −0.423× 
log(albumin/41) +0.052× log(baseline sum longest lesions/9) −0.002× baseline trastuzumab +0.071× 
(aspartate amino transferase/25); Vc (L) = exp[3.127+0.596× log(BW/70)]

Renal impairment, ethnicity, covariates (429)

HER2-positive metastatic breast cancer Semi-mech. pop-PK – Covariates (430)

HER2-positive locally advanced/metastatic breast cancer Pop-PK – Ethnicity (431)

HER2-positive breast cancer Pop-PK/PD – Efficacy, dose (432)

HER2-positive metastatic breast cancer Pop-PK – Limited sampling (433)

Triptorelin Healthy volunteers, prostate cancer Pop-PK/PD – Efficacy (434)

Healthy volunteers, prostate cancer Semi-mech. pop-PK/PD – Efficacy, formulation (435)

Troxacitabine Advanced solid tumors, Advanced leukemia Pop-PK Model based on mg/h dosing: CL—CLCR, BSA; V1—BSA; V2—BSA; Q3—BSA; model based on  
mg/h/BSA (m2) dosing: CL—CLCR

Covariates (436)

Solid tumors Semi-mech. pop-PK/PD – Toxicity (437)

Veliparib BRCA 1/2-mutated cancer, PARP-sensitive tumors Pop-PK/PD CLR/F (L/h) =17.3×0.7× (CLCR/95)0.903; Vc/F (L) =99.2× (lean body mass/48)1.21 Efficacy, metabolite, covariates (438)

Venetoclax Chronic lymphocytic leukemia and non-Hodgkin’s lymphoma Pop-PK CL/F (L/day) =413, moderate CYP3A inhibitor: 0.807, strong CYP3A inhibitor: 0.158, rituximab: 1.21; 
V2/F (L) =113, female: 0.683, CLL/SLL/NHL : 1.79; F1 =1.0 (fixed), fasting: 0.334, fed: 1.24, moderate 
fat: 1.26, high fat: 1.42

Food effects, DDIs, dose, covariates (439)

Vincristine Cancer (N/S) Pop-PK CL—BW; V—BW Pediatrics, metabolic phenotype (CYP3A), 
limited sampling, toxicity, covariates

(440)

Acute lymphoblastic leukemia PK – Pediatrics (441)

Acute lymphoblastic leukemia, non-Hodgkin lymphoma, Wilms’ tumor Bayesian pop-PK – Pediatrics, limited sampling (442)

Lymphocytic leukemia, histiocytic lymphoma, multiple myeloma, 
idiopathic thrombocytopenic purpura, lymphoma, Hodgkin’s disease

PK – Investigational (443)

Solid tumors Bayesian pop-PK – Metabolic genotype (CYP3A4/5), 
transporter genotype (ABCB1), pediatrics, 
covariates

(444)

Vinorelbine Breast, prostate, lung, bladder, other cancer Pop-PK – Toxicity, dose, covariates (445)

Metastatic breast cancer Pop-PK CL (L/h) =74.2× (BSAi/BSAmedian)
1.25 × (alkaline phosphatei/alkaline phosphatemedian)

−0.25 Dose, covariates (446)

Non-small cell lung cancer Pop-PK – Other special populations (elderly) (447)

Advanced metastatic cancer Bayesian pop-PK – Other special populations (elderly) (448)

Non-small cell lung cancer Bayesian pop-PK – Dose (449)

Advanced metastatic cancer Bayesian pop-PK CL—elderly Limited sampling (450)

HER2-positive locally advanced or metastatic breast cancer Pop-PK (with lapatinib) CL (L/h) =24.9× (platelet counti/250,000)−1.1 × (BW/70)0.75; V1, V2, V3—(BW/70); Q2, Q3—(BW/70)0.75 Dose, covariates (314)

Vinzolidine Breast cancer, melanoma, renal cancer PK – Investigational (451)

The search results included 393 peer-reviewed publications of 177 approved or investigated oncology drugs, or 414 unique study-drug combinations. *, female =1, male =2. ECOG, AG: α1-acid glycoprotein; BMI: body mass index; BSA: body surface area; BW: bodyweight; CLCR: creatinine clearance; CNS: 
central nervous system; DDIs: drug-drug interactions; eGFR: estimated glomerular filtration rate; GFR: glomerular filtration rate; IBW: ideal bodyweight; N/A: not applicable; N/S: not stated; PBPK: physiologically-based pharmacokinetics; PD: pharmacodynamic; PK: pharmacokinetic; pop: population; SCR: 
serum creatinine; Eastern Cooperative Oncology Group; CDA, cytidine deaminase; TPMT, thiopurine S-methyltransferase; UGT, glucuronosyltransferase; semi-mech, semi-mechanistic; COV, covariate; w/o, without; FOL, folate deficiency; ALK, alkaline phosphatase; MET, number of metastatic sites; CLL, 
chronic lymphocytic leukemia; SLL, small lymphocytic lymphoma; NHL, non-Hodgkin’s lymphoma; GIST, gastrointestinal stromal tumor; mRCC, metastatic renal cell carcinoma; CDHP, 5-chloro-2,4-performed dihydroxypyridine; FT, tegafur.
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