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Abstract: The prospect of precision dosing in oncology is attractive for several reasons. Many anticancer
drugs display narrow therapeutic indices, where suboptimal therapy may lead to severe patient outcomes.
Clinical study participant recruitment is seldom extended beyond the intended patient population, leading to
difficulties in patient recruitment in dedicated clinical trials. The high rate of non-responders and high cost
of cancer therapy warrant novel solutions to increase clinical effectiveness and cost-benefit, pharmacokinetic
(PK) modeling and model-informed precision dosing (MIPD) can help to maximize these. PK modeling
provides a quantitative framework to account for inter-individual variability in drug exposure, the influence
of covariates and extrapolation to special populations or drug-drug interactions, using physiologically-based
PK (PBPK) modeling. Here we present the current state of PK modeling in precision dosing of anticancer
drugs and illustrate its utility, based on an extensive literature review and numerous case examples from
both pharmaceutical industry and healthcare focused research. While some great progress has been made
in implementing model-informed dosage guidance in the drug label and much research has been carried
out to address clinically relevant dosing questions, the uptake of MIPD has been modest in healthcare. The
success of PK modeling in industry has been made possible through collaborative efforts between regulators,
industry and academia. Collaboration between academia, healthcare and industry, and financial support for
research into patient benefit, cost-benefit and clinical effectiveness of these approaches is imperative for

wider adaption of PK modeling in precision dosing of anticancer drugs.
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Introduction

In drug development, late phase clinical trials often aim to
establish uniform dosing, balancing efficacy and toxicity,
across the patient population from a limited set of proposed
dosage schemes (1). Dosing of anticancer drugs has
traditionally been based on body surface area (BSA) under
the assumption that there is a relationship between BSA and
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clearance (CL) or volume of distribution (V,). However, this
relationship is in many instances poor and may therefore not
accurately reflect the change in drug exposure seen across
the population (2-5), meaning variability in drug exposure
may remain high at the established dosage regimen (5). This
is particularly true when the drug is dosed in a more diverse
patient population in clinical practice, such as: complex
drug-drug interactions (DDIs), pediatric patients, and
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Figure 1 Pharmacokinetic modeling approaches for precision dosing of oncology drugs. Bars indicate the features of the individual and

combined techniques.

renally/hepatically impaired or other special populations (6).
Explicit dosage recommendations are often absent from
the drug label for most special populations at the time of
approval (7). These factors contribute to variable clinical
practices, where clinicians are challenged to make decisions
based on experience and the many times limited literature.
Patients with multiple comorbidities/co-medication are
therefore at risk of suboptimal pharmacotherapy that may
lead to unacceptable levels of toxicity or reduced efficacy
(6,8,9). Model-informed precision dosing (MIPD) provides
a quantitative framework for achieving the accurate
dose for the individual patient through statistical and/
or mathematical modeling, such as pharmacokinetic (PK)
modeling, by accounting for inter-individual variability
(IIV), and other factors that lead to variable drug exposure
and/or pharmacodynamic (PD) response (10).

Here we examine the current state of PK modeling in
dose individualization of anticancer drugs. The comparative
analysis presented here was based on a sample of 393 peer-
reviewed publications on PK modeling in oncology (see
Tuble S1, in supplementary appendix available online). The
dataset should not be considered an exhaustive list of the
abundant literature on PK modeling in oncology. Many
arguments on precision dosing presented here are part of a

much broader discussion on MIPD across therapeutic areas
(7,10-12).
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The case for MIPD in oncology

The traditional resolution to dose optimization in special
populations/DDIs is to carry out dedicated clinical
studies. This is however not always feasible in oncology
due to patient recruitment issues around dosing drugs in
vulnerable populations or patients outside the indicated
treatment group (13). Statistical nonlinear-mixed effects
(NLME) modeling (population-PK/PD modeling, or
pop-PK/PD) aims to describe the IIV in PK parameters
using compartmental and increasingly mechanistic
models. Physiologically-based PK (PBPK) modeling and
simulation (M&S), attribute physiological meaning to PK
models by mimicking physiology (inter-compartmental
CLs informed by blood flows, volumes based on organ/
tissue volumes etc.) in an attempt to better understand
the processes that determine drug ADME (absorption,
distribution, metabolism and excretion). The combined
approach (“middle-out”) accommodates physiological
models where model parameters may account for observed
IIV in the population sample (see Figure 1) (14). Pop-PK/
PD and PBPK M&S have gained increasing acceptance
in pharmaceutical research and development (R&D) and
by regulatory agencies over the last couple of decades to
a point where dedicated clinical trials may be substituted/
supplemented by modeling, foremost interpolating the
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effect of metabolic DDIs (15). It is anticipated that M&S
will gain further utility over the coming years as confidence
is built in other areas of application, both in pharmaceutical
R&D, regulatory submission and clinical practice for dose
individualization (7,10,12).

Dose individualization, personalized dosing or precision
dosing, may be considered part of the well-recognized
paradigm of precision medicine. Precision medicine pursues
to personalize prevention, diagnostics and optimal treatment
of disease based on individual patient characteristics, e.g.,
genotyping, renal function and other biomarkers (16).
Similarly, precision dosing strives to account for between-
patient variability in drug exposure and response to optimize
dosing for the individual. This is not a novel idea, carboplatin
is the perhaps most famous example in oncology, seeing
early adoption of renal function guided dosing (Calvert et al.
formula) to reduce the risk of hematological toxicity (17).
Similarly, PK-based dose adjustment, using therapeutic drug
monitoring (TDM), of 5-fluorouracil (5-FU) was shown to
produce superior treatment response and reduced toxicity
as compared to BSA-guided dosing alone in metastatic
colorectal cancer (18).

Precision dosing in cancer therapy is attractive for several
reasons. Many anticancer drugs display narrow therapeutic
indices, where suboptimal therapy may lead to severe patient
outcomes. Clinical study participant recruitment issues
accentuates the difficulty of patient recruitment in dedicated
clinical trials for special populations and is perhaps part of
the reason (as well as accelerated approvals) why there has
been an above average adoption of PBPK M&S for new
drug applications (NDAs) in oncology to the U.S. Food and
Drug Administration (FDA) (19). The relatively high rate
of non-responders in cancer treatment together with high
cost of cancer therapies warrants alternative approaches to
increasing patient benefit and cost-benefit; this may include
more effective use of approaches that maximize treatment
outcome, such as PK modeling and MIPD (20,21).

Application of PK modeling in oncology

Model-informed drug discovery and development has
become established practice in the pharmaceutical
industry over the past decades, where today it is
employed across drug development to inform internal
and regulatory decisions (15,22). In early discovery and
pre-clinical development, modeling is used to inform
candidate selection, ADME characterization, translation
of exposure and effect and more, this includes pop-PK/
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PD, PBPK and more mechanistic systems pharmacology/
biology approaches. Pop-PK/PD is widely used in clinical
development to investigate efficacy, dose selection and
dose bridging. PBPK M&S is used clinically for predicting
metabolic DDIs, impact of genetic polymorphism,
biopharmaceutics effects and extrapolating to special
populations (22).

Analysis of peer-reviewed publications using PK
modeling in oncology, based on the modeling approach
(see Figure 2), showed that a majority of studies employed
population-based approaches in their data analysis (75%),
a subset of these include traditional pop-PK (45%),
pop-PK/PD (14%), Bayesian pop-PK (10%) and semi-
mechanistic pop-PK/PD (6%). PBPK M&S accounted for
8% of identified studies. In terms of areas of application
of PK modeling (see Figure 3), the most prominent area of
application was investigation of covariates (49%) to account
for IIV in PK. This was followed by studies investigating
dosing issues (22%), including dose finding and practice
based dosing issues. The most studied special populations
included pediatric patients (13%), hepatic (3%) and renal
impairment (2%). Other investigated special populations
included: pregnancy, elderly, and more. Other areas of
investigation included: toxicity (18%), dose/PK-efficacy
studies (response: 8%), metabolite kinetics (8%), metabolic/
transporter genotype/phenotype (6%), DDIs (5%), limited
sampling strategies (5%) and more.

In PBPK M&S, predictions of metabolic DDIs and
extrapolation to special populations were the perhaps
most prominent area of research. This was consistent with
common areas of application seen in regulatory submissions
where predictions of DDIs tend to dominate due to more
well-established body of evidence to support PBPK,
guidelines and regulatory acceptance (15,19). There is in
other words wide application of PK modeling to address
critical questions in dose individualization of oncology
drugs.

Population PKs and covariate analysis to aid
precision dosing in oncology

Pop-PK/PD aims to describe the observed IIV in drug
exposure and response for a given population sample.
The method allows estimation of the population mean
(6) and IIV () of PK/PD parameters and the remaining
residual, or unexplained, variability (g). The approach
allows interpolation of drug exposure and response over
the observed parameter space through identification of
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Figure 2 Peer-reviewed publications on pharmacokinetic modeling of oncology drugs categorized based on method of approach
(number of publications: 393, number of drug-publication combinations: 414; see supplementary appendix). PK, pharmacokinetic; PD,
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Figure 3 Areas of application of pharmacokinetic modeling in oncology based on a sample of 393 peer-reviewed publications (see

supplementary appendix). Circle areas are proportional to frequencies. DDIs, drug-drug interactions.
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covariates (demographics, genetic polymorphism and other
pathophysiological variables). For example, covariates can
be included as either dichotomous {Eq. [1]} or continuous
effects {Eq. [2]} on PK parameters, e.g., (23):

9]‘,1‘ = ej X 9Cov,ncov’n + 77,',; [1]
0,
Cov, \ ™"
0,,=0, X( Cov j +1,, (2]

Where mean effect of the n™ covariate (0,,,) and 1TV
of the j" parameter of the i™ individual (n;;)) on population
mean (0;) determines the individual parameter estimate
for the j”‘ parameter (0;;), Cov; is the individual observed
covariate and Cov the central tendency of the sample
population. Significant covariates account for IIV in
exposure, meaning that a combined PK-covariate model can
forecast individual exposure based on individual biomarker
data prior to dosing and refine predictions following sparse
PK sampling or TDM. This makes for a powerful tool for
precision dosing. Covariate significance can be determined
using, e.g., step-wise inclusion based on a predefined
statistical criterion (post-hoc p-value testing for difference
in objective function), or alternative approaches. Pop-PK-
covariate modeling has been successfully employed for
oncology drugs to individualize dosing, as included in drug
labelling (24,25). Further, there are a number of examples
of pop-PK-covariate models that have been used to address
dosing issues in clinical practice with some success (see
section “PK modeling of anticancer drugs in healthcare”).

Figure 4 shows identified PK covariates for anticancer
drugs based on the peer-reviewed literature. The most
commonly included covariates were bodyweight (50% of
drugs in sample set) and other demographic data [sex (28%),
BSA (26%) and age (21%)]. Other common covariates
included biomarkers related renal function [creatinine CL
(19%), serum creatinine (7%) and estimated glomerular
filtration rate (5%)], drug-binding plasma proteins [albumin
(17%) and o;-acid glycoprotein (AAG, 2%)], cancer type
(14%) and concomitant treatment (11%). Other biomarkers
of liver function were also reasonably prominent as
model covariates, e.g., alanine amino transferase (ALT,
9%), aspartate amino transferase (AST, 6%) and alkaline
phosphatase (ALK, 5%) including more. Metabolic
genotyping was included for 7% of drugs.

It has been recognized that there is a disparity between
the wealth of covariates identified in the literature and the
limited number pertaining to the dosage recommendation
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in the drug labels of oncology drugs (25). Figure 5 shows
factors affecting explicit dose recommendations in the FDA
label for selected drugs compared to additional identified
PK covariates in the literature. There are many potential
explanations for this: covariate selection can be biased
(insufficient power, collinearity, etc.), not all statistically
significant covariates are clinically relevant, covariates
may for example be of obscure meaning and have little
physiological/pharmacological relevance (25,32). Further,
the identification of significant but low-effect covariates
may have little clinical implication. Here, cut-off points
have been proposed where covariates may be considered
clinically relevant if they explain at least 20% to 30% of
IIV (25,33). A lack of communication of research between
academia and industry may also affect the difference in the
adoption of covariates, suggesting some scope for further
individualization of dosing of oncology drugs based on
disseminated research (25).

PBPK modeling to inform individualized dosing
of anticancer drugs

By assigning physiological meaning to model parameters,
PBPK M&S offers a method for quantitative extrapolation
of drug exposure from in vitro to in vive (IVIVE), between
species, across populations and for metabolic/transporter
DDIs. In oncology, PBPK M&S has been used extensively
for the prediction of DDIs, special populations (renal/
hepatic impairment and pediatrics) and biopharmaceutics
effects (absorption, formulation, food effects). In fact, some
of the earliest examples of PBPK M&S in oncology can
be traced back to modeling of chemotherapy agents in the
1970s (34).

There are several factors that explain the wide usage of
PBPK in oncology: ethical/safety or recruitment issues,
many oncology drugs exhibit narrow therapeutic indices
and/or pose risks of severe toxicity and may therefore
require more consideration for precision dosing, many
anticancer drugs are carried forward through accelerated
regulatory approval meaning that studies that have not been
carried out in timely fashion may be substituted by PBPK
M&S (19). Numerous examples of PBPK M&S of oncology
drugs exist in the literature, including for: pediatrics (35-37),
biopharmaceutics effects (38), renal impairment (39-41),
hepatic impairment (42), metabolic phenotypes/genotypes
(43,44) and adherence (44) metabolic/transporter DDIs
(45-49), with more examples available in FDA drug labels (50).
The current view of FDA regarding PBPK-informed
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Figure 4 Identified pharmacokinetic covariates of oncology drugs based on a literature sample set of 393 peer-reviewed publications (see
supplementary appendix). Numerical prefixes/suffixes show number of identified covariates for respective drug (and their metabolites
where applicable), percentage suffixes show frequencies of drugs that identify respective covariate. Erythromyecin breath test, as surrogate of
CYP3A4 activity. AAG, al-acid glycoprotein; ALK, alkaline phosphatase; ALT; alanine amino transferase; AST, aspartate amino transferase;
BSA, body surface area; BW, bodyweight; IBW, ideal bodyweight; CLCR, creatinine clearance; DDI, drug-drug interaction; EGE, epidermal
growth factor; EGFR, EGF receptor; GFR, glomerular filtration rate; eGFR, estimated glomerular filtration rate; HER, human epidermal

growth factor receptor; IFN-a, interferon-a; LBW, lean bodyweight; LD, lactate dehydrogenase; PDGE, platelet-derived growth factor;
SCR, serum creatinine; VEGE, vascular endothelial growth factor.
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Figure 5 Factors affecting explicit dose recommendations in the FDA drug labels [including contraindications (CI)] of docetaxel (Taxotere®),

bevacizumab (Avastin®), aflibercept (Zaltrap®), capecitabine (Xeloda®), carboplatin (Teva Pharmaceuticals USA) and busulfan (Busulfex®)

(blue circles) (26-31). Grey circles indicate additional pharmacokinetic covariates identified in the sampled peer-reviewed literature (see

Table S1, supplementary appendix). Exposed circle areas are proportional to the number of factors/covariates. Erythromycin breath test, as

surrogate of CYP3A4 activity; liver function, including AST, ALT and more, excluding albumin. AAG, a,-acid glycoprotein; AIBW, adjusted

IBW; BW, bodyweight; BSA, body surface area; CLy, creatinine clearance; DDIs, drug-drug interactions; IBW, ideal bodyweight; IFN-a,

interferon-a; AST, aspartate amino transferase; ALT, alanine amino transferase.

dosing, is that sufficient evidence exists to employ verified
models for the prediction of metabolic DDIs where the
drug is the victim substrate (50). For special populations and
biopharmaceutics effects, the jury is still out in the absence
of more evidence to support the ability to prospectively and
quantitatively predict these effects (50). Here we present
selected case examples to illustrate the usefulness of PBPK
M&S for dose individualization of anticancer drugs.

Case examples

Ibrutinib—metabolic DDIs

Ibrutinib (Bruton’s tyrosine kinase inhibitor; Imbruvica®)
was granted accelerated approval by the FDA in 2013 (51).
The drug is given orally and undergoes extensive first-
pass metabolism, mainly via CYP3A4 and to a lesser
extent by CYP2D6, whilst undergoing minimal renal CL.
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Ketoconazole inhibited 96% of ibrutinib’s metabolism in
human liver microsomes. A PBPK model was developed to
evaluate CYP3A4 DDIs in healthy volunteers with ibrutinib
as the victim. The model was validated against clinical DDI
studies of ibrutinib in the presence of ketoconazole (strong
inhibitor) and rifampin (strong inducer). The PBPK model
was then used to interpolate DDI effects of mild, moderate
and strong CYP3A4 inducers and inhibitors and used to
inform dose guidance in the drug label (52,53).

Sonidegib—bridging DDIs to cancer patients

Sonidegib (Odomzo®) is an oral anticancer agent for
the treatment of locally advanced basal cell carcinoma.
The drug displays low oral bioavailability. Iz vitro drug
metabolism studies and clinical DDI trials in the presence
of ketoconazole and rifampin were carried to elucidate
the metabolic contribution of sonidegib elimination. Co-

Transl Cancer Res 2017;6(Suppl 10):S1512-S1529
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administration of ketoconazole led to a 2.25-fold increase in
area under the curve (AUC), whereas rifampin produced a
72% reduction in exposure. A PBPK model was developed
to bridge the DDI data from healthy volunteers to cancer
patients at the ratified dose, to extrapolate to steady state
effects and interpolate the effect of moderate/weak CYP3A
inhibition/induction. The simulation study showed the
effect of the DDIs to be slightly reduced in cancer patients
compared to healthy and the interaction magnitude to
increase at steady state dosing of sonedegib. The simulated
DDI magnitudes and alternative dosing schedules informed
dosing recommendations provided in the FDA drug
label (54). The study demonstrates the utility of using
PBPK M&S to bridge the effect of metabolic DDIs from

healthy volunteers to cancer patients.

Alectinib—biopharmaceutics effects

Alectinib [selective anaplastic lymphoma kinase (ALK)
inhibitor; Alecenza®] underwent accelerated regulatory
approval in 2015 because of likely clinical benefit in treating
ALK-positive non-small cell lung cancer (55). The drug is
a lipophilic basic (pKa ~6-7) displaying poor solubility and
moderate oral bioavailability. As alectinib is given orally
the pH-dependent solubility may be indicative of potential
impact of biopharmaceutics effects. Parrott and co-workers
developed a PBPK model to prospectively evaluate food
effects and increased gastric pH with esomeprazole. The
model predicted a positive food effect and a lack of impact
of co-administration of esomeprazole. This was later
confirmed in clinical trials, although the magnitude of the
food effect was not accurately predicted, potentially due to
excipient effects. The absorption model was further refined
following confirmatory clinical studies and used to inform
dose recommendations on timing of alectinib administration
in relation to food intake. Authors stated that these finds
were used to inform drug labeling (38).

Docetaxel—pediatric dose bridging

Docetaxel (taxane anticancer drug) is extensively
metabolized by CYP3A4, substrate to the efflux transporter
P-glycoprotein (P-gp), and active hepatic uptake
transporters OATP1B1 and OATP1B3. The drug exhibits
dose limiting toxicity in the form of neutropenia. In a
retrospective study, a full PBPK model was developed based
on adult data and validated against adult data in presence
of ketoconazole. The PBPK model was then scaled to
pediatrics in order to establish first dose in children
assuming a similar exposure-response to adults with the

© Translational Cancer Research. All rights reserved.
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same indication. A global approach was used where PBPK
predictions were fitted using a pop-PK model in order to
carry out optimization of sampling times. PBPK predictions
of pediatric data gave a reasonable prediction with a 1.4-fold
overprediction of CL (37). The study shows proof-of-
concept for dose bridging from adults to pediatrics in
oncology using PBPK M&S coupled with pop-PK, to
inform first-dose-in-children and optimal sampling design.

Impact of physiology of oncology patients on exposure
of anticancer drugs

A number of physiological changes have been reported
in cancer patients that may impact the PKs of anticancer
drugs (such as increased levels of inflammation and altered
levels of plasma proteins) (56). With sufficient information,
PBPK M&S can facilitate extrapolation of drug exposure to
a more clinically relevant oncology population. Cheeti and
co-workers developed an oncology PBPK model by altering
sex, age, height and weight population distributions, levels
of drug-binding plasma proteins (albumin and AAG),
and hematocrit to investigate the effect of plasma protein
binding on exposure of midazolam (CYP3A probe) and
saquinavir (CYP3A probe highly bound to AAG) (57). A
similar PBPK model for oncology patients developed by
Thai and co-workers was demonstrated to better recover
variability in PK profiles and CL of docetaxel compared
to when physiology was assumed to remain the same
as in healthy (37). In the absence of physiological data,
PBPK modeling can also be used to make inferences
about physiological parameters based on clinical PK data.
Yoshida and co-workers developed a PBPK of irinotecan
(topoisomerase I inhibitor) and its metabolites to explore
different PK of the drug in cancer patients. Using
parameter estimation, the authors could get an indication of
the feasible parameter space of irinotecan’s CL pathways in
cancer patients (58).

PK modeling of anticancer drugs in healthcare

Lately, there has been much debate how PK modeling
can be used to aid precision dosing in clinical practice
(10,11,59). In an earlier state of the art paper, we proposed
a categorization to describe implementation of MIPD in
healthcare based on current practices, these were: real-
time implementation in healthcare systems, mechanistic
modeling and extrapolation and model-derived dose
banding (10).

Real-time implementation in healthcare systems refers

Transl Cancer Res 2017;6(Suppl 10):51512-S1529
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to direct implementation of M&S in-line with healthcare,
e.g., software tools and integration into electronic health
records (EHR). The approach is particularly well-suited for
treatments where continuous measurement, such as TDM,
is carried out routinely throughout the therapy. Bayesian
modeling approaches are particularly well-suited for this
approach where feedback-control can be used to update prior
parameter estimates and refine individual patient predictions
as more data becomes available (10,11). Mechanistic or PBPK
models are a powerful tool for allowing extrapolation to for
example DDIs or special populations. Despite many examples
of application to address dosing in special populations (60),
there are few examples of the approach being evaluated in
clinical practice (61). This may partly be due to PBPK’s
reliance on drug-specific and physiological information and
its inferior ability to describe IIV compared to pop-PK. This
may however change over the coming years, the generation
of new proteomic data (62), emergence of “middle-out”
modeling (14), and Bayesian PBPK M&S (63) certainly
makes PBPK an increasingly viable approach in precision
dosing. Model-derived dose banding refers to the use of
PK models to develop dosing strategies based on clinically
relevant covariates identified during the data analysis.
This is perhaps the most practical approach although it
potentially may offer less scope for dose individualization
compared to other model-based approaches (64-66). Based
on previous experiences, work streams have been proposed
for how to develop these model-based approaches from
conception to implementation in clinical practice. The
proposed necessary steps to prove clinical effectiveness of
MIPD include: model development, internal validation—
to diagnose model misspecifications, external validation—to
test performance against a different but related population
sample, prospective clinical evaluation—to test the
performance of the model-informed approach compared
to standard practice, and an implementation phase—for
integration into clinical practice (10,67,68). Here follow
examples of PK modeling applied to answer clinically
relevant dosing issues in oncology (in addition, see 7Table I).
These illustrate both utility and concepts for clinical
evaluation and practical implementation in a healthcare.

Case examples

5-FU—metabolic phenotyping

Due to the risk of severe toxicity and a relatively narrow
therapeutic index, prediction of toxicity has been widely
sought for treatment using thymidylate synthase inhibitor
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5-FU (see Table S1, supplementary appendix). The drug
undergoes metabolism by dihydropyrimidine dehydrogenase
(DPD), where DPD deficiency has been linked to an
increased risk for toxicity (95). In a retrospective study,
van Kuilenburg and co-workers developed a Bayesian pop-
PK model, based on population sample of DPD deficient
patients and controls. The model described 5-FU CL
using nonlinear Michaelis-Menten PK, where DPD
deficient patients displayed a 40% reduction in maximum
velocity (V,,,,). Using a limited sampling strategy, the
DPD phenotype could be determined based on Bayesian
estimation of individual V,,,,, AUC or terminal half-life to
anticipate the risk of toxicity (69). The approach potentially
offers advantages to genotyping where misclassification can
occur due to discrepancies in genotype and phenotype.

Carboplatin—Bayesian forecasting of drug exposure
Despite being safer than cisplatin, carboplatin displays
dose-limiting bone marrow toxicity. Duffull and co-workers
developed a bioanalytical method for measuring carboplatin
serum concentrations and a Bayesian pop-PK model with
covariates lean bodyweight (LBW) and creatinine CL on
CL, and LBW on volumes and inter-compartmental CL
based on data from 12 ovarian cancer patients (78). The
model was tested prospectively against the Calvert et al.
formula in an additional 12 patients over two courses.
During the first treatment course, the Calvert formula
produced less bias compared to the population methods.
Following two feedback concentrations the Bayesian
method showed superior accuracy for AUC predictions. It
was recognized that an updated model may produce better
accuracy (79). This was perhaps one of the earliest examples
incorporating patient data to update individual priors for
prospective predictions (78,79).

Busulfan—strategies for healthcare implementation
Busulfan (alkylating agent) is widely used in combination
with cyclophosphamide for conditioning prior to
hematopoietic stem cell transplantation. The narrow
therapeutic window of busulfan warrants TDM in
pediatrics, where up to nine PK samples are taken over the
course of a single dose to inform dose adjustments. Hence
numerous PK models have been published to address dose
individualization of busulfan (see 1able S1, supplementary
appendix).

Neely and co-workers, developed a nonparametric
pop-PK model with age (described using a continuous
polynomial function), and ideal body weight as covariates

Transl Cancer Res 2017;6(Suppl 10):S1512-S1529



S$1521

Translational Cancer Research, Vol 6, Suppl 10 December 2017

(panurzu0d) 1 Syqey,

yoeoudde bBuidwes (5=N)
palWI| paseq-[opow 8y} uoleneAs [eoluljo aAlzoadsoud
Buisn 1e6.e} 03 8SOJO SONY {€1=N) | uonepien vsg A «(10) Md ABeens
(08) panaiyoe syusned (v {(06=N) uawdojanag ‘‘A #°g ‘xes ‘ebe ‘Mg 1D -dod ueiseleg Buidwes pajwi dojpreqg
SUOI1BJIUSOUOD (21=N)
YOBQPa9) OM] YlIM BJNWLIOS UOIIBN[BAS [BO1Ul|O 8AR0adsoid M1 21D Mgt A L(1D) dwog Md swisnlpe
(62°82) HeAED paw.ouadino [SPON {(21=N) wewdojeneg ‘Mg :=A P10 ‘Mg1:1D  -dod ueiseAeg asop ueisakeg dojpnaQg
sa|dwes om} Jo suo Buisn
uonewse QN 4o uoisioaid (S1=N) | uonepirea (%) dwo-1 yd ABerens
(27) peseaidul pue selq paonpay {(22=N) wewdojaneg V/N -dod ueiseAeg Buidwes paywi dojpnreqg uizeldoauen
s}npe BunoA pue
Auoixoy/Aoeoiys anoidwi pue uaJp|Iyd Ul SWOI1INO [BDIUI[D
ainsodxa 1abue} aziwndo (22) pue ainsodxe ajewse
(92) djay Aew yoeoudde ay | (#29=N) uonenjeang V/N (panual) Md-dod 01 seyoeoidde ayenjeny
INQL Buipesu (0g=N)
‘A}]IgelEA [BNPISS] SWOS 0} UOljen|eAs [eojulo aAdadsoid Buisop aziwndo
pa| swayos Buisop {[opow {(8G1=N) | uonepien L(01D) 01 synpe BunoA pue uaip|iyo
(S2'72'%9) Md U0 peseq weibowoN {(G¥e=N) swdojeraq Mg A Rep ‘Mg 10 dwo-g iyd-dod Ul Md ul Aljigqelien siojdx3
(02=N) uoneniens
[eolul|o aA30adsolal
SUO[}BJJUSdU0D {(LL=N) g uonepiea
10681 9A8IYOE 01 Buldwes {(GOL=N) | uonepien L(®) dwio-| Md Buidwes paywi| uo paseq
(€2) palwi| pamoj[e [opoN {(eG=N) wewdojanag Mgl ‘eby  -dod ueiseheg Juswisn(pe asop oujeIpad
HH3 Bunse} YH3 ul uswis|dwi pue
ul pejuswa|dwi sem |NQL Ayjigesn asiemyos {(0e=N) sayoeoidde Buisop paseq
(22¢12) Bunsaidisiul Joy |00} BreMYOS uoneplieapuswdoleraq V/N dwo-g/L Md  INAL JusIayip 8Al} suiwex3
Buisop [euoiuUSAUOD
0} pasedwod Juswanalyoe (12=N) uaJp|iyod 1 DH Ul ainsodxa
10681 panoidui uolnepljen aaoadsoud L(10) dwo-| M4 1964e1 9ABIYOR O} |9pOoW Md
02) wiyyioble paseq-|opo {(06=N) Wwawdojanaq abe ‘g 1D -dod ueisaheg swsa|dwi pue dojasq uejinsng
A}101x0} JO Ysu je sjuaned S|0J]UOD pUE JUBIoleP
jusIoleP-dad Ayuspi o3 (€€=N) | uonepijen -QdQ@ usamiag A ul {77 Kousioyep-dad 1081ep
(69)  8Inpayos Buidwes paywi {(87=N) weawdojanaq oouaJalIp eoubls  dwo-g :yd-dod 03 Buidwes paywi dojpasg  (N4-S) |1oeINoION|I-G
SEBIVEYETE) sawooIN oeoudde Apn S9JBLIBAOD PAIHIUD yoeoudde Buispow o wi sbnu
19d ino Yy pn1s 1el payiuep| BUIEPOW S l[8pow JO Wiy a

ASo10ouo ur sansst Sursop pauario-adnoerd aajos 01 10 Adersyoseurreyd [esrurpo 01 parjdde Surppour onaurjoorurreyd jo sopdurexs pa1dalag T Aqe],

Transl Cancer Res 2017;6(Suppl 10):51512-S1529

tcr.amegroups.com

© Translational Cancer Research. All rights reserved.



logy

ing In onco

Darwich et al. PK models for precision dos

S$1522

‘o1e1s Apeais je uonnquisip
10 awinjoA “°A fuswpedwod (jessyduad) puodas JO SWNJOA A fJuswpedwod (|eJiuad) 1Sl JO SWN[OA ‘A eo1bojoIsAyd-1Las/onsIuBydaW-IWaS YyoaW-IWwag ‘JueI1SUOD
SI[eBYDIN ‘“M ‘AH00jaA wnwixew ‘xew ‘esereydsoyd aseusaboipAysp a1eantAd dad ‘fuonnguisip J0 awnjoA ‘A ‘Buuopuow Bnip oinadesayl ‘NQL ‘duluizeald wnies ‘¥og
‘Burspow onauooewseyd uonendod ‘yd-dod ‘olweulpooewleyd ‘qd ‘onsujooewleyd ‘Yd (paiels 1ou ‘g/N ‘ejgedldde jou ‘y/N ‘suedoiped Apnis Jo Jequinu ‘N ‘MG
ues| ‘g ‘lueisuod ajel uoneulwid °y ‘\g [espl ‘Mgl ‘ueldsuely (190 onslodojewsy | DH ‘401oe} Buieinwiis-Auojod 814o0jnueib 4SD-5 {pJodal yieay d1uosjose ‘YHI
‘oyes uoljesy|y Jejniswolb pajewnss ‘Y4He ‘dnos ABojoouQ aanelsadoon wisise] ‘HOD3J ‘eseusboipAysp suipiwnAdoipAyip ‘adq ‘uswpedwod ‘dwo 9 9|gionpul-uou
NONAy 199 g|qronpul ‘N9 99 [eluswpedwoo-iaiul 10 1D suluneald ‘499 feoueles|d ‘10 ‘ybiemApoq ‘Mg ‘ease aoeuns Apoq ‘ySg ‘(s)ie1eweled uoieuIWIS [opoW ¢,

2Ins0dxa JO |043U0D (69=N) 1UBWaUIBI [9pOW Nale))
as1004d pajey|ioe) )oeqpas) -juswdojanap (| L+81=N) dwo-¢/g Md
(v6) -UliM-|01juo2-aAildepy  uolien|eAs [eoaiuljo aAl3oadsold V/N -dod ueiseAeg

uonezifenpiApul
9s0p peseq Hd

SuoljeJiusduod

106.e]1 Buineiyoe Joy Aoeinooe (€1=N) S/N Md uswibai
(e6)  panosdwi Buisop ueisakeg uolen[eAd [BOIUIO 9A1109dSs0Id Vv/N  -dod ueiseAeg Buipeo| pides e dojpnag ulweing
(56) gewnuiid Joud ‘xas
ainsodxe ‘ulungre ‘g A 15003

[ewndo Buiurejurew
9|IyM JusWIE8.] JO 1S00

‘qewnuwiidi Joud “4soued

Bun| ||90 |lews-uou ‘Xas 1500 pue Juswabebus 1o6ie)

pue abeisem eonpas ued
(99) Buipueq asOP PAALIBP-[OPON

1UasCe aJom
Sa}10IX0} 84enes ‘Alojorysies
(16'06) sem uoisioeid pue seig

ainsodxa Bunoipaid

Jo} Aoeinooe ajgeuoseal

pamoys |00} 8y} ‘padojensp

(68°88)  seM |00} BIBMYOS [BOIUIO

aoueJes|o paledwl

Apnis uonejnwis

(e7=N)

uolen|eAs [eoluljo aAioadsoud
{(ee=N) wewdojaneq

(05=N) uoneniens

[eo1uld aAizoadsou1al
‘(0¥72=N) swdojereq

‘4459 ‘usping Jowny
suljeseq ‘uwinge ‘g 19

V/N

uolouUNy [eUS) paonpal
pue [ewlou usemiaq 0
Ul 8ouBJBlIp JUBDLIUBIS

(s6) .(10)
dwo-g yd-dod

L(10) dwog :}d
-dod ueiseAeg

«(10) dwo-g :)id
-dod ueiseAeg

‘alnsodxa uo Bulepow
Md 10 10edwi a1enjeas

uoljewss ueisafeg
Buisn ayexaljoyiawl asop
-yb1y jo juswisnlpe esoq

sjnpe
BunoA/usJp|iyd Ul UIOAODNS|
yum Adeisyy arexalioyiow
asop-ybiy jo uswabeuey

gewnzijoiquiad

O Uolo81ep pamoje (]
(sejdwes omy) ABayens ‘g) dwo-zg Md uoneuiwie
(29) Buidwes paywi| ueisafeg (2=N) weawdojanaq V/N -dod ueiseAeg  pasiedwi Jo uonoslep Alueg EINENINETN]
sjuaned
[ENPIAIPUI Ul AYOIXO} SZIWIuIW (™) ad/yd-dod 4S0-9 pue Adessyjowsyo
(99) 0} [euajod sey [9poN (86=N) | uonepiien V/N ‘yosw-lwes O uoljeulquiod azifenplAlpul [exee00Qq
(0s=N)
awi-jeal ul Buisop uoieneAs [eoluljo aAnoadsoid
azi[enplaiput o} 8onoeid {(02=N) uolen|ens [eouljo ™10
[EO1UIIO Ul pajuswB|dwl (02=N) | uolrepien NONTYD) Md 1OH Buiobispun
(G8-18) SEM |00} 2/eMYO0S {(/¥1=N) wswdojeneqg abe :NONq 9y -dod ueisaheqg uaJp|iyo ul Ao1xol eonpay  eplweydsoydojoAn
S90UBI8}0 ST ole} g] oeoudde Apn S9]BIEAOD PalIUS Yoeoudde Bulspow jo wi sbnu
Jod ino Yy pns 1el payiuep| BUIEPOW M l[epow Jo Wiy a

(ponurzu0d) 1 S1qey,

Transl Cancer Res 2017;6(Suppl 10):S1512-S1529

tcr.amegroups.com

© Translational Cancer Research. All rights reserved.



Translational Cancer Research, Vol 6, Suppl 10 December 2017

on CL and V, based on a population sample of 53 pediatric
patients. An additional two datasets consisting of a total of
116 pediatric patients were then used for model validation
and Bayesian updating of priors. The final model was then

"™ software platform and

incorporated into the BestDose
blindly tested against an additional 20 patients. The final
model allowed target concentration achievement with only
two blood samples per adjustment (73).

Abdel-Rahman and co-workers carried out a retrospective
evaluation to examine the performance of five different
TDM approaches (including non-compartmental and
compartmental modeling) to estimate the dose of busulfan
in pediatric cancer patients and found considerable
discrepancies in dose recommendations (71). Due to
observed inefficiencies in the workflow for TDM guided
dosing at Children’s Mercy Hospital (Kansas City, MO),
a clinician-oriented interface was developed around a
compartmental model for dose optimization of busulfan
based on TDM. The software allowed the use of either
a one- or two-compartment model based on a series of
quantitative goodness-of-fit criteria implemented within
the software. The interface could be accessed through the
EHR and was subject to usability testing by healthcare
professionals. The research represents a significant step
towards bringing MIPD into clinical practice and serves
as a proof-of-concept for practical implementation.
The authors noted that next steps will focus on quality
assurance, predictive performance of the software tool and
investigations of model-refinement, including inclusion of
covariate effects (72).

Similarly, Long-Boyle and co-workers developed a pop-
PK model for busulfan based on retrospective data of 90
pediatric and young adult patients. The final model (CL
covariates: actual bodyweight and age) was then implemented
in a user-friendly Microsoft Excel-based tool for guiding
initial dosing in clinical practice and prospectively evaluated
in 21 children. The healthcare tool showed significant
improvement in attaining busulfan target concentrations
compared to conventional dosing guidelines (70).

As previously mentioned, healthcare implementation
of model-based precision dosing may take on different
forms; where the previous examples detailed the process of
incorporating real-time software tools in healthcare. A more
pragmatic approach is the derivation of dose banding based
on model optimized dosing regimens. Bartelink and co-
workers, developed a two-compartment pop-PK model for
busulfan with body weight as a covariate on CL based on
245 pediatric patients. The model was then used to derive
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a nomogram for dosing busulfan in clinical practice. The
model was externally validated against an additional 158
adult and pediatric patients (64,74). A prospective study was
carried out to assess the performance of the model-derived
nomogram and the added value of TDM was carried out
in 50 pediatric patients undergoing hematopoietic stem
cell transplantation. The study concluded that following
the model-derived dosing, variability was still significant
and therefore TDM was still needed to inform dose
optimization (75).

Cyclophosphamide—reduced toxicity and healthcare
implementation

Cyclophosphamide (alkylating agent) is given in two doses
over two consecutive days as myeloablative preparative
treatment before hematopoietic stem cell transplantation.
The drug is metabolized to carboxyethylphosphoramide
mustard (CEPM) amongst others, where the CEPM is
linked to liver toxicity and nonrelapse death. A Bayesian
pop-PK model was developed for cyclophosphamide and
its metabolites. The model was internally validated and
incorporated into an open-source code to allow real-
time dose adjustments between the two doses. This was a
considerable logistical effort considering the time constraint
for bioanalysis and model-derived dose recommendation.
A clinical trial was carried out to test the performance of
the model-based dosing approach. The approach led to an
average total dose reduction of around 9% and a reduction
in acute liver and kidney injury with similar overall survival
(81-84,96). This case illustrates some of the logistic
challenges of real-time implementation of MIPD in clinical
practice.

Methotrexate—reduced toxicity and healthcare
implementation

Methotrexate (antimetabolite) is used in the treatment
of a number of cancers. Due to high IIV in exposure and
the risk of toxicity in high-dose methotrexate treatments,
the drug is routinely subject to TDM. Barrett and co-
workers developed a pop-PK model on TDM data from
240 patients at the Children’s Hospital of Philadelphia
(Philadelphia, PA), accounting for impaired CL by
estimating the probability of a patient belonging to one of
the two subgroups. A software dashboard was developed,
consisting of a database of patient records, lab data and
adverse events management system. The data was then used
for Bayesian forecasting of exposure. A user-interface was
designed that allowed viewing of TDM data, forecasting
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of exposure, the potential risk of toxicity and dose
guidance (88). A retrospective study was carried out in 50
pediatric and young adult patients to test the ability of the
dashboard to predict future toxicity events to allow earlier
recommendations of leucovorin rescue therapy. The study
concluded that the dashboard gave reasonably accurate
predictions (precision of 12.9%, bias of 2.2%) and could
have been used to initiate earlier rescue therapy in 16 of the
studied patients, seven patients would have received a larger
dose of leucovorin and 37 patients would have received the
drug less often. The dashboard can support clinicians in
monitoring for risk of toxicity and guide decision making of
initiation of rescue therapy (89).

Pembrolizumab—minimizing excess drug wastage
Infused anticancer drugs are sold in vials with a set volume of
the drug; however, dosing is often based on body size. This
leads to excess drug volumes after dosing a patient which
many times are being discarded at the cost of healthcare
providers or insurers. It is estimated that the total cost
incurred by wastage of the top 20 anticancer drugs amounted
to USA dollar (USD) 1.8bn in 2016 in the U.S. alone (97).
Pembrolizumab (programmed cell death protein 1 ligand
antibody) is currently available as 50-mg vial size in the UK
at a licensed dose of 2 mg/kg every 3 weeks. Ogungbenro
and co-workers proposed a model-based approach to
optimize dose banding to maximize target attainment and
minimize wastage. Cost analysis showed that the model-
derived dosing strategy could save 16% of the cost of drug
treatment compared to dosing by bodyweight by reducing
discarded excess volumes of the drug, without altering
exposure significantly (66). The work provides an example
of how modeling can improve cost-benefit of anticancer
treatment.

MIPD in oncology: future challenges

It has been almost 50 years since the first model-based
dosing strategies for dose individualization were proposed
(98,99). PK modeling has come a long way in supporting
dose selection and answering clinically relevant questions in
oncology and other disease areas (10,11,59). While academic
groups, in collaboration with healthcare professionals, are
leading the way for model-based approaches to answer
bedside dose individualization, pharmaceutical industry
and regulatory agencies have made great strides in model-
informed dose guidance in the drug label. It is thought that
modeling will gain wider application in clinical practice over
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the coming years as precision medicine realizes its potential.
For this to happen, there are a number of challenges that
need to be met.

At the moment, there is a lack of clinical effectiveness,
patient benefit and health economic evidence to support
MIPD in healthcare. This is crucial for wider acceptance of
MIPD in clinical care. Too many published modeling efforts
are concluded following model development, indicating
areas of clinical application. Without rigorous validation and
clinical evaluation, these models will not see their full utility.
Better coordination between academia, industry, healthcare,
patient groups, and funding bodies are warranted to support
implementation-based research in healthcare.

A prerequisite for precision dosing is the availability
of multiple drug dose formulations. For MIPD to gain
greater traction, some adjustments to pharmaceutical R&D
would be required, with focus earlier in development of
precision dosing. Recently, we illustrated how this could
work using the “companion tool” approach (10), where a
MIPD tool can be considered following candidate selection
and developed alongside the drug. Precision dosing can
facilitate the advancement of candidate drug that otherwise
would be abandoned and there is therefore, in our opinion,
great financial incentives to pursue this approach in
pharmaceutical industry.

Oncology is an area with a lot to gain from PK modeling
based dose individualization. There are however some
specific challenges, such as the lack of exposure-effect/
toxicity relationship for many new drugs coming to the
market. This is of course a prerequisite for PK modeling
to be meaningful. The concentration-effect relationship
for monoclonal antibodies is poorly understood, where
for many of these the dose-efficacy relationship found in
clinical trials is flat (100,101). This suggests that current
dosing of monoclonal antibodies may not be optimal from
an efficacy-cost perspective. Here lies an optimization
challenge that can reap financial benefits for healthcare
providers and payers, and in the end aid pharmaceutical
industry to improve cost-benefit.

Conclusions

Here we present the current state of PK modeling in
precision dosing of anticancer drugs. We have illustrated,
using published case examples, some of the potential
benefits the approach may bring in terms of prospective
dosage guidance for DDIs and in special populations,
improved attainment of target drug concentration and
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reduced risk of toxicity, reducing wastage and scope for
improved patient benefit and cost-benefit. While some great
progress has been seen in implementation of model-informed
dosage guidance in the drug labeling, a collaborative effort
from regulators, industry and academia, the uptake has been
modest in healthcare. Collaboration between academia,
healthcare and industry together with greater financial
support for applied research into patient benefit, cost-benefit
and clinical effectiveness of model-based dosing approaches
is warranted for wider adaption in healthcare.
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