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Diffuse intrinsic pontine glioma (DIPG) is a uniformly 
lethal primary pediatric brain tumor (1,2). Surgical 
resection is impossible due to its location in the brainstem 
and invasive nature. Radiotherapy provides just a minor 
incremental extension in overall survival, whereas 
chemotherapy is largely ineffective (3-5). There is thus a 
high unmet need for better therapies. Importantly, several 
recent studies have characterized the genomic landscape of 
DIPG, revealing common genetic alterations in ACVR1, 
histone H3, ATRX and TP53 (6-9). Unfortunately, these are 
mostly not yet appreciable druggable targets. Next to these 
alterations, a fraction of DIPGs is characterized by increased 
receptor tyrosine kinase-RAS-PI3K-AKT signaling, e.g., 
as a result of AKT gain or phosphatase and tensin homolog 
(PTEN) loss, making this pathway a potentially attractive 
target for therapy (10,11). Researchers from the lab of Dr. 
Raabe at Johns Hopkins University School of Medicine in 
Baltimore have therefore investigated targeting the PI3K-
AKT-mTOR pathway as a potential therapeutic strategy 
for DIPG. In a recent study in Cancer Letters, Miyahara 
and colleagues demonstrate that the mammalian target 
of rapamycin complex 1 and 2 (mTORC1/2) inhibitor 
TAK228 (INK128, sapanisertib) delayed tumor formation 
of an orthotopic murine model of DIPG (12) and conclude 
that mTOR inhibition may be a promising therapeutic 
strategy for treatment of DIPG.

The authors first demonstrate that TAK228 dose-
dependently inhibits signaling through the PI3K-AKT-
mTOR pathway and proliferation in three independent 
patient-derived spheroid DIPG cell lines, requiring 
continuous exposure to drug concentrations of about 5–25 

nM. Secondly, they show that 25 nM of drug reduces the 
fraction of proliferating bromodeoxyuridine (BrdU) positive 
cells from 44–50% to 32–37% and find an additive reduction 
to 21–26% when combined with 2 Gy of radiation. These 
findings correlate with the increased fraction of cleaved caspase 
3 (CC3) positive cells, a commonly used marker for apoptosis. 
In two of the three cell lines, this increase in CC3 positive 
cells was associated with reduced expression of the anti-
apoptotic proteins BCL-2 and BCL-XL. Third, the authors 
show that TAK228 can suppress the migration/invasion of 
DIPG cells using a transwell assay in which DIPG cells are 
seeded onto matrigel coated inserts and allowed to migrate 
into a compartment containing either drug-free neurobasal 
medium with growth factors or the same medium containing  
10 nM of TAK228.

Finally, the authors confirm that the previous findings 
on cell signaling, proliferation, increase in CC3 positive 
cells and reduction of migration (by scratch assay) also 
occur in  a cell line that was derived from a genetically 
engineered murine PDGF-B; H3.3-K27M; p53–/– DIPG 
model (13). Subsequently, the authors use this cell line to 
validate their in vitro findings in an in vivo orthotopic DIPG 
xenograft model. They inject murine DIPG neurospheres 
in the brainstem of 12 NOD/SCID gamma mice and 
randomize the animals one week after tumor cell injection 
between vehicle control treatment and 1 mg/kg/day of 
TAK228 in a 5-day on/2-day off schedule for the duration 
of the study. They demonstrate that TAK228 significantly 
delayed DIPG tumor formation, as indicated by increased 
survival. Taken together, the authors conclude from these 
experiments that mTOR inhibition is a promising strategy 
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for DIPG treatment since it reduces proliferation, survival 
and migration and increases radiosensitivity and apoptosis 
(Figure 1) and suggest that a phase I study with TAK228 in 
pediatric brain tumor patients may be reasonable.

As outlined above, the introduction of more effective 
weaponries for the treatment of DIPG would be very much 
welcomed and the authors of this paper do their best to 
convince us about the potential of TAK228. However, we 
are of course also very much aware of the fact that DIPG 
is a tough adversary and that thus far all previous attempts 
with drugs have failed. What are the odds that TAK228 can 
indeed be a game changer in DIPG treatment or that it may 
be the next disappointment? In order to address this issue, 
let’s zoom in on a few critical issues.

PI3K-AKT-mTOR: driver or hitch-hiker?

In order to be a useful target for therapy, the tumor must have 
a dependency on a target to sustain. As mentioned above, 
the picture of the genetic landscape of DIPG is gaining 
more and more detail. The assumption of the authors that 
the AKT pathway is activated in approximately 70% of all 

DIPG patients is based on older publications from 2010 and 
2012, but based on four more recent Nature Genetics papers 
from 2014 that describe the genomic landscape of DIPG  
(6-9), this is closer to 25%. Moreover, the PI3K-mTOR axis 
is one of the most frequently hijacked pathways in cancer, but 
this does not make all these cancers uniformly responsive to 
inhibitors. Importantly, a recent large scale molecular meta-
analysis of DIPGs demonstrated that activating PI3K pathway 
mutations are randomly distributed amongst Histone-defined 
subgroups and do not define a patient subgroup with a 
distinctly different survival, begging the question whether this 
pathway is a driver or a hitch-hiker in DIPG (14).

Pharmacokinetic considerations

TAK228, formerly known as MNL0128 or INK128, is an 
orally bioavailable small molecule drug initially developed 
by Intellikine (15). The IC50 of TAK228 for mTORC1/2 
is about 1 nM in cell-free systems, but as shown in this and 
other papers 10 to 25 nM is generally required for inhibition 
of cell proliferation. Preclinical data on pharmacokinetics is 
relatively scarce, but Hsieh et al. have documented that the 

Figure 1 The mode of action of TAK228 in DIPG cells. Schematic overview of the possible mode of action of TAK228 in DIPG cells 
as proposed by Miyahara et al. This figure was prepared using Servier Medical Art under a Creative Commons Attribution 3.0 Unported 
License. RTK, receptor tyrosine kinase, PI3K, phosphatidylinositol-3 kinase; PTEN, phosphatase and tensin homolog; mTORC, 
mammalian target of rapamycin complex; DIPG, diffuse intrinsic pontine glioma.
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plasma Cmax level of TAK228 is 500 nM when given orally at 
a dose of 1 mg/kg. Thus, potentially active drug levels can 
be achieved in vivo at tolerable dose levels, explaining the 
efficacy observed in preclinical models. However, a recent 
Phase I study in patients shows that the plasma levels at 
the MTD of 4 mg/day does not exceed 25 ng/mL (80 nM), 
rendering this potential therapeutic window considerably 
smaller in humans (16). Thus, whereas inadequate exposure 
may already become a critical issue in all tumor types, it 
will be even more so in DIPG. DIPGs are notorious for 
their drug inaccessibility because of their location behind a 
more or less intact blood-brain barrier (BBB), as indicated 
by heterogeneous gadolinium enhancement on magnetic 
resonance imaging (MRI) (17). Nothing has yet been 
reported on the BBB permeability of TAK228 and although 
it is a relatively small molecule drug (MW 309.3), this does 
not automatically warrant good brain distribution.

Efficacy model considerations

The authors show in vivo efficacy against an orthotopic 
DIPG model using a dose of 1 mg/kg/day given Monday-
through-Friday. Unfortunately, the authors have restricted 
in vivo efficacy testing to one murine DIPG model that 
is driven by platelet-derived growth factor B (PDGF-B) 
overexpression. This model is a genetically engineered 
PDGF-B; H3.3-K27M; p53–/– model referred to as the “PKC 
model”. Although overexpression of the PDGF-A receptor 
is a relatively common event in DIPG, the urgent question 
is how representative a PDGF-B driven model is for human 
DIPG. Clearly, PDGF-B is a potent oncogenic driver that 
relays proliferation via PI3K-mTOR, thus creating a major 
dependency on mTOR (18,19). Moreover, pericytes that 
intimately surround the brain endothelial cells are rich in 
PDGF-receptor and the continuous activation of these 
pericytes by tumor cell-produced PDGF-B results in a very 
leaky BBB that is typical for PDFG-B driven models (20-22).  
Interestingly, PDFG-B has also been shown to induce 
secretion of vascular endothelial growth factor (VEGF) in 
various cell types, possibly further contributing to a leaky 
vasculature (18,23). Leakiness of this particular PKC model 
was also previously shown in a paper demonstrating that the 
level of the kinase inhibitor BMS-754807 is approximately 
3-fold higher in brain tumor tissue compared to normal 
brain (24). Thus, the authors’ model-of-choice combines two 
features that are unusual for DIPG: dependency on mTOR 
and a highly permeable BBB. Notably, these authors do have 
potentially more relevant patient-derived DIPG models 

available (25-27). Their main motivation for using the murine 
PKC model is the long latency of tumor formation of the 
human DIPG cell lines. Although practical considerations 
certainly have a place in science, we do feel that in this case 
these arguments do not outweigh the requirement of using 
biologically relevant preclinical tumor models.

To summarize, DIPG presents a formidable opponent 
and we can only applaud the authors’ ventures to explore 
novel therapeutic avenues to tackle this devastating disease. 
However, to our opinion the present preclinical work with 
TAK228 is not yet convincing enough to support its further 
clinical development in DIPG.
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