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Glioblastoma (GBM) is the most common of all high-
grade gliomas (HGGs). It accounts for almost 80% of 
all malignant primary neoplasms of the brain (1). It is a 
very aggressive tumor, with historical median survival 
rates of less than 2 years. Patients receiving standard of 
care following surgical resection, temozolomide (TMZ) 
plus radiation therapy, have a median survival of 14-
18 months, highlighting the need for developing novel 
therapeutic strategies to effectively target malignant gliomas 
while preserving quality of life (2). Malignant gliomas 
are characterized by cellular heterogeneity, are highly 
vascularized, and invasive, which influence their resistance 
to conventional treatments and poor clinical outcomes. 
In addition, glioma stem-like cells (GSCs) contribute 
to the aggressive nature and incidence of malignant 
glioma recurrence (3). GSCs drive tumor initiation and 
proliferation, and are resistant to radiation and classical 
chemotherapeutic agents such as TMZ (4,5).

Despite significant efforts, advances in developing more 
effective therapies for malignant gliomas have been slow. 
In the past thirteen years, only three therapies have been 
approved by the FDA for GBM—TMZ, bevacizumab, and 
tumor-treating fields (TTF). In order to be effective, novel 
therapeutic candidates for malignant glioma must overcome 
several challenges: (I) they must have good blood-brain 
barrier penetrance; (II) kill GSCs; (III) synergize with 
radiation therapy and/or TMZ; (IV) block multiple critical 
pathways to impede GBM growth and survival; while (V) 
sparing normal brain tissue and minimizing toxicity.

Heat shock proteins (HSPs) are an evolutionarily 
conserved class of molecular chaperones that are involved 

in protein folding, intracellular availability, and proteolytic 
turnover of many key regulators of cell growth and survival. 
Among them, HSP90 has gained particular interest as a 
potential therapeutic target in cancer as it is overexpressed 
in various solid and hematologic malignancies (6,7). HSP90 
can regulate the conformation and stability of many 
client proteins including signaling protein kinases (e.g., 
EGFR, MAPK cascades, Akt kinase), and steroid hormone 
receptors, many of which are deregulated in GBM (8). 
Currently, there are five HSP90 inhibitors undergoing 
interventional trials in multiple cancer indications, although 
none in GBM to date (9,10). Preclinical studies of HSP90 
inhibitors 17-AAG and analogues in malignant glioma have 
demonstrated potent efficacy alone or in combination with 
conventional therapeutics although clinical development 
has been hindered (9,11,12). 

In a recent report published in Clinical Cancer Research, 
Canella and colleagues evaluate the efficacy of onalespib, 
a second generation HSP90 inhibitor, as a single agent 
and in combination with TMZ against malignant gliomas 
including patient-derived GSCs in vitro, and in two distinct 
glioma xenograft models using zebrafish and NOD/
SCID mice. Onalespib inhibited proliferation, survival, 
angiogenic potential, and migration of human glioma cell 
lines. Onalespib inhibited the EGFR signaling pathway 
and downstream signaling intermediaries AKT, ERK1/2, 
and S6 in human glioma cell lines and GSCs. Notably, 
onalespib depleted mutant EGFRvIII and its downstream 
intermediates in glioma cell lines. EGFRvIII is the most 
common gain-of function EGFR mutation in GBM and 
is known to enhance tumorigenicity (13). Further, they 
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examined the efficacy of onalespib against the mesenchymal 
(MES) and proneural (PN) GSC subtypes, and found that 
HSP90 inhibition decreased survival, invasion, and inhibited 
phosphorylation of STAT3. 

Pharmacokinetics in non-tumor-bearing nude mice 
revealed the concentration of onalespib in the brain surpassed 
the plasma concentration two hours post-intravenous 
administration, which indicated that onalespib can cross the 
intact blood brain barrier. Immunohistological analysis of brain 
tissue of onalespib-treated mice revealed a time-dependent 
increase in HSP70 expression, which further validated 
onalespib’s potent ability to inhibit HSP90 in the brain. 

Lastly, they examined whether onalespib and TMZ 
exerted synergistic activity, and found this combination 
had synergistic or additive activity in glioma cells. In an 
orthotopic intracranial zebrafish glioma model, onalespib plus 
TMZ reduced tumor burden and extended survival compared 
to either individual treatment alone. To examine the effect of 
onalespib in a more clinically relevant model, they evaluated 
the effect of this combination therapy in NOD/SCID mouse 
xenograft model implanted with an aggressive patient-derived 
GSC line. The results were encouraging, this combination 
treatment significantly improved survival compared to vehicle 
or single agent treatment. Furthermore, examining the effect 
of the onalespib plus TMZ combination on survival and 
tumor burden against the MES GBM subtype in xenograft 
models could further strengthen the argument that the anti-
tumor activity of onalespib is not restricted to certain GBM 
subtypes.

This study demonstrates the superior pharmacodynamics 
of this second generation HSP90 inhibitor compared to 
older HSP90 inhibitors in glioma models, which have 
been hindered by their low BBB penetrance, limited target 
inhibition, and toxicities (14). However, more questions 
must be addressed before onalespib can be examined 
clinically as a glioma treatment. Degradation of HSP90 
clients is mediated by the proteasome (15). Does onalespib, 
through accumulation of misfolded client proteins, enhance 
proteasomal stress? Examination of whether the combination 
onalespib plus marizomib, a potent brain-penetrant 
proteasomal inhibitor, exhibits synergistic activity in vitro 
and in vivo is of great interest (16,17). Previous studies 
have reported enhanced HSP90 inhibition in 17-AAG in 
combination with bortezomib in multiple myeloma, likely 
due to an increase in protein misfolding and impaired protein 
degradation by the ubiquitin-proteasome pathway (18).  
Additionally, as TMZ plus radiation therapy is the standard 
of care for glioma, examining the effect of onalespib in 

combination with TMZ and radiation therapy in pre-
clinical models is needed. DNA repair enzyme gene 
O6-Methylguanine-DNA methyltransferase (MGMT) 
promoter methylation is associated with enhanced overall 
survival and sensitivity to TMZ (19). To determine which 
patients may potentially benefit from onalespib, newly 
diagnosed and/or patients with recurrent glioma; examining 
the effect of onalespib on TMZ resistant glioma lines and 
xenograft models is needed. Determining whether onalespib 
can sensitize TMZ resistant gliomas to TMZ or other drug 
combinations is of utmost importance. 

As long-term survivorship in glioma patients is increasing, 
the quality of life of survivors should be preserved by using 
novel treatments that demonstrate potent activity against 
aggressive GSCs and glioma cells, while exhibiting minimal 
neurotoxicity. Previous studies have shown that NSCs have 
low HSP90 constitutive expression suggesting that HSP90 
inhibitors might selectively target GSCs while not depleting 
NSCs (11,12). Exposing neural stem/cell progenitor cells 
to graded doses of onalespib, evaluating survival, HSP90 
inhibition, and differentiation potential shall shed light on 
onalespib-related neurotoxicity.

 Onalespib is currently being evaluated in several clinical 
trials for various malignancies, including advanced solid 
tumors and metastatic gastrointestinal stromal tumors 
(20,21); however, this is the first preclinical study to 
examine the effect of onalespib in glioma. Canella et al.  
elegantly demonstrates the potent effect of onalespib against 
gliomas in in vitro and in vivo models, as a single-agent, 
and in combination with TMZ, further supporting HSP90 
inhibition as therapeutic strategy for GBM.
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