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The ability of different oncogenes to cooperate effectively 
with each other in promoting tumor growth has long been 
a major focus of research. Until recently it was thought that 
oncogenes, including Ras and Myc, contributed to tumor 
proliferation and survival only through tumor cell-intrinsic 
mechanisms. However, it is now evident that oncogenes not 
only drive relentless cell division and corollary intracellular 
programs, but also contribute to the instruction of the 
tumor microenvironment. The latter is intimately related 
to immune evasion—the mechanism through which cancer 
cells avoid host immune surveillance mechanisms—by 
inducing an immunosuppressive microenvironment and 
immune edition. 

In this context, a recent publication by Kortlever et al. 
has shed significant light on a new aspect of oncogenic 
cooperation between KRas and Myc. Indeed, making use 
of a non-small cell lung cancer (NSCLC) mouse model 
that allows conditional expression of both KRasG12D and 
deregulated (inducible) Myc, the authors provide clear 
evidence that these two oncogenes collaborate with each 
other to instruct an immunosuppressive microenvironment 
that favors tumor growth and avoids immune recognition (1).  
In fact, quasi-physiological levels of Myc are able to turn 
indolent KRas-driven tumors into more aggressive, highly 
proliferative and inflammatory adenocarcinomas. As early 
as 24 hours post Myc activation, the authors observe a 
dramatic influx of CD206+ tumor-associated macrophages 
to the tumor site, in striking contrast with an immediate  

T, B and NK cells exclusion. These stromal changes 
induced by Myc activation are due to the secretion of 
chemokine (C-C motif) ligand 9 (CCL9) and interleukin-23 
(IL-23) by epithelial tumor cells. The importance of these 
two molecules is elegantly demonstrated by their co-
blockade, which results in efficient reversion of all Myc-
induced stromal changes and significant tumor shrinkage, 
explained by inhibition of tumor proliferation and induction 
of apoptosis. Specifically, CCL9 appears to be crucial for 
macrophage infiltration, angiogenesis and T cell loss, 
while IL-23 is responsible for T, B and NK cell exclusion, 
closely related to maintenance of Myc-driven lung tumors. 
Recruited macrophages express PD-L1 (independently 
of Myc activation), which is the main cause of T cell 
expulsion. Intriguingly, neither PD-L1 blockade nor  
CD4/CD8 had any therapeutic effect on KRas- and Myc-
driven lung tumors, demonstrating the limited role of T 
cells in tumor maintenance. In contrast, by depleting NK46+ 
cells, Kortlever and colleagues demonstrate that NK cells 
play an essential role in promoting tumor shrinkage upon 
Myc de-activation, which results in rapid tumor regression 
to indolent KRas-only adenomas and reversion of all Myc-
induced stromal changes.

These findings elucidate a new aspect of the cooperation 
between KRas and Myc in tumorigenesis, while also 
revealing a new mechanism through which Myc favors 
an immunosuppressive tumor microenvironment. This 
evidence is nicely in line with another paper published at 
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the same time by Topper et al. also demonstrating that Myc 
expression has immunomodulatory effects in vitro in a panel 
of NSCLC cells lines as well as in both KRasG12D-driven 
NSCLC and Lewis lung carcinoma (LLC) mouse models (2). 
In this case, the authors first show that epigenetic therapy 
with the DNA methyltransferase inhibitor (DNAMTi) 
azacitidine (aza) combined with the histone deacetylase 
inhibitor (HDACi) ITF-2357 was able to impair the growth 
of a panel of Ras-mutated NSCLC cell lines, upregulating 
interferon signalling pathways (including those associated 
with antigen presentation) and significantly downregulating 
Myc and Myc target genes. Similarly, in in vivo lung cancer 
models, treatment with the same epigenetic combination 
therapy reduced tumor burden, decreased Myc signaling 
pathways and triggered an anti-tumor immune response 
by inducing changes in immune populations. In the KRas-
driven NSCLC model, epigenetic treatment reduced 
macrophage numbers and altered their angiogenic potential, 
while also facilitating CD8+ T cell infiltration into lung 
tumors and reversing their exhausted phenotype to a 
more effector/memory one. Interestingly, in the LLC 
model, CD8+ T cell depletion reduced the effect of the 
epigenetic therapy, suggesting a crucial role of these 
cells in mediating the therapeutic effect of the epigenetic 
treatment. The authors suggest that the recruitment 
of T cells to the tumor site is due to increased levels of 
CCL5 as a consequence of Myc downregulation by the 
epigenetic treatment (consistent with a repressing role of 
Myc over CCL5 transcription). 

Interestingly, very early clinical trial data from the same 
group suggests that Myc status could become a potential 
biomarker of response to immune therapies in NSCLC, as 
the only patient that did not show durable clinical benefit in 
their study presented Myc amplification (3). Although very 
encouraging, these preliminary data should be validated in 
larger patient cohorts before being considered conclusive.

In summary, all these new findings highlight the importance 
of Myc in influencing the response to immunotherapies, which 
are now at the forefront of cancer treatment. These therapies, 
despite encouraging early results, are unfortunately effective 
only in a small percentage of patients, while the rest present 
intrinsic or rapidly acquired resistance, at least in part due 
to Myc deregulation. These new reports, together with 
previously published ones (4-7), are indisputable proof 
of Myc’s role in directing an immunosuppressive tumor 
microenvironment through multiple different mechanisms, 
depending on tumor type, tissue and driving oncogenic 
lesions. To list some, these mechanisms include the activation 

and recruitment of tumor-associated macrophages (1,6,7),  
the expression of the immunosuppressive molecules CD47 
and PD-L1 (4), the loss and exclusion of T, B and NK 
cells (1) and possibly even the modulation of immune cell 
metabolism itself (5). For these reasons, assessing Myc status 
prior to immunotherapy approaches could be informative 
regarding the potential benefit that patients could derive 
from such treatment. 

Finally, one more implication of these studies is that new, 
up and coming anti-Myc therapies (8) may not only inhibit 
the direct oncogenic effects of Myc, but also antagonize the 
Myc-induced immunosuppressive microenvironment. This 
would create an ideal scenario where pre- or co-treatment 
with Myc inhibitors could trigger an immune-stimulatory 
environment favorable to immunotherapies, making our 
arsenal against cancer undoubtedly more powerful and 
effective. 
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