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Background: Hepatocellular carcinoma (HCC) frequently recurs and has poor prognosis, and thus it
is essential to investigate the molecular mechanisms associated with HCC development using integrated
bioinformatics approaches to identify potential therapeutic targets.

Methods: Gene expression data from three microarray datasets, namely, GSE36376, GSE45267,
and GSE51401 and 318 HCC tissues and 266 adjacent non-tumorous tissues from HCC patients were
downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs)
were selected with the limma package in R language, followed by Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway functional enrichment analysis. A protein-protein
interaction (PPI) network and a sub-network were established using Search Tool for the Retrieval of
Interacting Genes (STRING) and visualized with Cytoscape.

Results: A total of 2,249 DEGs were identified in the three datasets, which included 1,735 upregulated
and 514 downregulated DEGs. Functional annotation of the DEGs using GO analysis identified categories
that were mainly associated with mitotic nuclear division, chromosome segregation, and sister chromatid
segregation. KEGG pathway analysis showed that the categories of cell cycle and the p53 signaling pathway,
which contributes to the development of HCC, were mainly enriched with DEGs. PPI network and sub-
network analyses identified cyclin dependent kinase 2 (CDK2), cyclin BI (CCNBL1), and cell division cycle 20
(CDC20) as hub genes. Furthermore, the categories of cell cycle and p53 signaling pathway were enriched
with the hub genes CCNB1 and CDK2.

Conclusions: DEGs such as CCNB1, CDC20, and CDK2 as well as classified under the categories of the
p53 signaling pathway and the cell cycle were associated with HCC and thus may be potentially utilized as
therapeutic targets for the treatment of HCC.
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Introduction cause for cancer-related death worldwide (1). Major risk

factors for HCC include aflatoxin exposure, tobacco use,
Hepatocellular carcinoma (HCC), a heterogeneous cancer, nonalcoholic fatty liver disease, metabolic syndrome, and
is one of the most common malignant tumors and the main various carcinogens. Hepatitis B and C viral infection also
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cause HCC, although this is more common in sub-Saharan
Africa and Eastern Asia (2,3). Surgical resection is currently
the first-line treatment for HCC, specifically liver resection,
liver transplantation, and local ablation (4). Other therapeutic
options include systemic treatments that are individualized
for each patient (5). Unfortunately, not all therapies are
effective, and frequent tumor recurrence and poor prognosis
are common problems associated with HCC, particularly
when it is diagnosed at an advanced stage. Thus, there is a
need to better understand the molecular pathogenesis of
HCC and explore novel therapies.

Recent research has been undertaken to better understand
molecules and pathways related to tumorigenesis,
development and progression of HCC. Li et /. (6) reported
that the single-nucleotide polymorphism (SNP) rs2380585 in
the ADAMTSS gene contributes to susceptibility to HCC in
a Chinese Han population. Furthermore, overexpression of
the general transcription factor IIB (GTE2B) may contribute
to HCC pathogenesis via cell proliferation (7). Zeng et 4l. (8)
revealed that the activation of transcription factor SALL4
enhances spheroid formation and invasiveness of a HCC
subtype with stem cell features. Murakami and colleagues (9)
found that some miRNAs are overexpressed in HCC
compared to adjacent non-tumorous tissues and are linked
to differentiation of HCC. Cao ez /. (10) reported that the
overexpression of DDB1 and CUL4-associated factor 13,
which regulate cell cycle progression, is associated with
poor survival in HCC. Previous studies (11,12) have also
identified molecular targets, including epidermal growth
factor receptor, platelet-derived growth factor receptor,
histone deacetylases, fibroblast growth factor, and vascular
endothelial growth factor receptor, which play critical
roles in the development, progression, and metastasis of
HCC. Furthermore, research investigations on pathway
dysregulation may improve our understanding of HCC
pathobiology. A meta-analysis (13) of gene expression profiles
has identified three robust HCC molecular subclasses, which
includes the activation of the WN'T signaling pathway. The
aberrant activation of the Hedgehog, RAS/MAPK, PI3K/
Akt, and tyrosine kinase receptor-related signaling pathways
have also been associated with HCC (14). However,
information on the underlying molecular mechanisms of
HCC pathogenesis is limited.

We report data from three microarray datasets
downloaded from GEO database and the identification of
differentially expressed genes (DEGs) between HCC and
adjacent non-tumorous tissues. GO functional and KEGG
pathway enrichment analysis were conducted to analyze
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the potential functions of the identified DEGs. In addition,
protein-protein interaction (PPI) network and sub-network
analyses were performed to screen for hub genes. These
analyses were conducted to identify potential biomarkers
for HCC and to elucidate its underlying pathological
mechanisms.

Methods
Microarray data

In the present study, three gene expression datasets,
namely, GSE36376 (15), GSE45267 (Wang et al.,
personal communication), GSE51401 (Sun er a/., personal
communication) were downloaded from the National
Center of Biotechnology Information (NCBI) Gene
Expression Omnibus (GEO available online: https://www.
ncbi.nlm.nih.gov/geo/) database, which is an international
public functional genomic data repository. GSE36376 is
based on the GPL10558 platform (Illumina HumanHT-12
V4.0 expression beadchip). GSE45267 and GSE51401
are based on the same platform of GPL570 [HG-U133_
Plus_2] Affymetrix Human Genome U133 Plus 2.0 Array.
The present study included 584 samples (318 HCC and 266
adjacent non-tumorous tissues). Specifically, GSE36376
included 240 tumor and 193 non-cancerous liver tissues
specimens containing no necrosis or hemorrhage from
HCC patients who were treated with surgical resection
or liver transplantation. None of the patients received
preoperative chemotherapy. GSE45267 comprised 48
tumor and 39 non-cancerous specimens from 61 patients,
HCC tissues were collected from 16 young HCC and 32
elder HCC patients. GSE51401 consisted of 30 tumor
and 34 non-cancerous specimens, which were collected
immediately after removal from patients with pathologically
proven HCC and positive alpha-fetoprotein (AFP), then
washed 3 times by phosphate buffer solution (PBS). All
samples were obtained from patients with HCC. This study
used gene expression data downloaded from the public
database, thus no patient consent or ethics committee
approval were necessary.

Data preprocessing

Series matrix files and annotation information of the
corresponding platform for the three gene expression
microarray datasets were downloaded. Value distributions
of the three datasets were also downloaded from the
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Figure 1 Venn diagram of DEGs. A total of 2,249 DEGs were
common to three datasets. Cross sectional areas refer to the shared
DEGs. Statistically significant DEGs were defined as P<0.01 and
[log,FC] >1 as thresholds. DEGs, differentially expressed genes;
FC, fold change.

GEO database, which were shown in (Figures S1-S3);
median-centered values were indicative that the data were
normalized and cross-comparable. R packages were used for
data preprocessing, which consisted of data normalization
and background correction. In combination with annotation
information files for the platform of GPL10558 and
GPL570, probe IDs were transformed into gene names.
Gene expression values were calculated and used in the data
analysis.

DEG screening

The DEGs in the three microarray datasets (GSE36376,
GSE45267, and GSE51401) from HCC specimens were
compared to those of non-cancerous specimens using
the limma package in R language. The threshold for
the selection of significant DEGs was |log, fold change
(log,FC)I >1 and an adjusted P<0.01. Additionally,
the intersection of DEGs among the three microarray
datasets was screened using Venny2.1.0 (http://bioinfogp.
cnb.csic.es/tools/venny/index.html). The overlapping
DEGs were represented using a Volcano plot using
ggplot2 in R.
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GO annotation and KEGG pathway analysis of DEGs

Functional annotation of the identified DEGs using GO
analysis indicated the enrichment of three categories,
namely, cellular component (CC), biological process (BP),
and molecular function (MF). KEGG pathway analysis
provided information on biological chemicals, genomes,
and enzymatic pathways (16). To analyze the function of
common DEGs, GO annotation and KEGG pathway
enrichment analysis were performed using R (version: 3.4.1)
language. The threshold for significantly enriched DEGs
was P<0.01.

Construction of the PPI network and sub-network

The Search Tool for the Retrieval of Interacting Genes
(STRING; https://string-db.org/) online database (17),
which encompasses various organisms, was used to predict
PPIs, including direct (physical) and indirect (functional)
interactions. Interactions among the identified DEGs were
analyzed by mapping with STRING (version: 10.5), and
a combined score >0.4 was used as criterion. Cytoscape
(version:3.5.1; http://cytoscape.org/), a visualization
software, was used to construct the PPI network and sub-
network based on the data generated using STRING. The
proteins and their interactions were shown using nodes
and edges, respectively. Nodes with more connectivity and
combined scores were considered hub genes.

Results
DEG analysis of integrated microarvay datasets

Based on the aforementioned selection criteria, the three
microarray datasets were downloaded from GEO, and
the expression datasets for GSE36376, GSE45267, and
GSES51401 were used to extract DEGs (Figure I). Of these
DEGs, 2,249 overlapping DEGs were used for subsequent
analysis of HCC and non-cancerous tissues and their
corresponding distribution (Figures 1,2).

Functional and pathway enrichment analyses

GO and KEGG analyses were performed to further
investigate common DEGs that are associated with HCC.
GO analyses of DEGs, identified three functional categories
(BP, MF and CC) (Figure 3). Functional enrichment analysis
involving the BP category indicated that the identified
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Figure 2 Volcano plot of DEGs. Green represents identified
DEGs. Red indicates genes lacking differential expression. Log,FC
>1 and log,FC <-1 were significantly represented up-regulated
genes and down-regulated genes respectively. FC, fold change;

DEGs, differentially expressed genes.

DEGs are predominantly associated with mitotic nuclear
division, chromosome segregation, and sister chromatid
segregation (Table 1). KEGG pathway analysis showed that
the functional categories cell cycle, DNA replication, and
p53 signaling pathway were significantly enriched with the
common DEGs (Table 2).

PPI network and sub-network analysis

The PPI network of the common DEGs consisted of
565 nodes and 4,223 edges (Figure 4). Among these genes,
cyclin B1 (CCNB1) showed the greatest degree in the PPI
network, suggesting that CCNBI plays a key role in HCC
development. To learn more about the common DEGs,
genes with combined scores of >0.999 were selected in the
construction of a PPI sub-network (Figure 5). The hub
nodes in the PPI sub-network included cyclin dependent
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kinase 2 (CDK2), cyclin B1 (CCNB1), and cell division
cycle 20 (CDC20).

Discussion

HCC is a complex malignancy involving various genetic and
epigenetic alterations. However, its underlying pathology
is not well understood. The present study conducted an
integrated bioinformatics analysis of three datasets from
GEO and identified 2,249 DEGs that were observed in
both HCC and non-cancerous tissues. Among these DEGs,
1,735 were upregulated and 514 were downregulated.
GO and KEGG enrichment analyses showed that the
functional categories of cell cycle, DNA replication, and
the p53 signaling pathway were the most highly enriched.
PPI network and sub-network analysis identified CDK2,
CCNBI and CDC20 as hub nodes. Taken together, these
findings indicate that these specific genes and pathways are
involved in HCC progression.

According to the STRING online database, CDK2,
CCNBI and CDC20 are all involved in cell cycle and
oocyte meiosis, and they have interactions with each other,
indicating that these genes might also implicate in HCC
through interacting with each other. It has been reported
that the DEGs between liver cancer tissues and non-
cancerous tissues were enriched in cell cycle and oocyte
meiosis (18), which were the significantly dysregulated
pathways in HCC (19). The eukaryotic cell cycle contains
the alternation between chromosome segregation and
DNA replication, which is driven by the Cyclin-Cdk
family of protein kinases (20). Individual cyclin functions at
different stages of cell cycle via binding and activating the
corresponding CDK protein (21). Oocyte meiosis occurs
in the absence of any appreciable transcription. During
meiosis, a single round of DNA replication is followed
by two rounds of chromosome segregation, which are
called meiosis I and meiosis II. CDC20 is referred to the
microtubule function in the process of meiosis; specifically,
CDC20 is essential for the anaphase onset of the meiosis
I but not the meiosis II in mouse oocytes (22). A study
demonstrated that the activity of CDK2 was required for
oocyte meiosis (23). CCNBI is required for cells to enter
mitosis and its spatial localization plays an important role
in triggering mitosis at the correct time (24). Thus, these
genes have interaction with each other by the pathways.

CDK?2 is a CDK that is involved in DNA replication,
histone synthesis, centrosome duplication, and the cell
cycle. Among these processes, CDK2 is a vital regulator of
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Figure 3 GO analysis of DEGs. Including cellular component (CC), molecular function (MF), and biological process (BP) (top 10 in each

category). GO, gene ontology; DEGs, differentially expressed genes.

Table 1 GO functional enrichment analysis of DEGs in BP (top 10, ranked by P value)

Category ID Description Count P value Example of genes
BP GO:0007067 Mitotic nuclear division 138 4.50x107%° SMC4, CDK2, NME6, TUBB3, NDC80
BP G0:0007059 Chromosome segregation 110 1.68498x10* SMC4, ACTR3, NDC80, CENPA,
SMC2
BP G0:0000819 Sister chromatid segregation 85 2.19281x107** SMC4, NDC80, CENPA, SMC2,
SPAG5
BP G0:0098813 Nuclear chromosome 96 1.19121x10™ SMC4, ACTR3, NDC80, CENPA,
segregation SMcC2
BP GO0:0007062 Sister chromatid cohesion 56 1.12415x107"° NDC80, CENPA, CENPE, CENPF,
KIF2C
BP G0:0006260 DNA replication 92 6.21957x107"° CHAF1A, PARP2, CDK2, CDK1, ATM
BP G0:0006261 DNA-dependent DNA 56 1.87722x107"7 PARP2, CDK2, ALYREF, POLQ,
replication CHEK2
BP GO0:0000070 Mitotic sister chromatid 51 1.13818x107" SMC4, NDC80, SMC2, SPAGS5,
segregation CENPE
BP G0:0051983 Regulation of chromosome 36 9.32997x107"® NDC80, SPAG5, CENPE, CENPF,
segregation KIF2C
BP G0:0006310 DNA recombination 74 3.02777x107" ALYREF, PSMD14, MCRS1,

RAD51AP1, POLQ

BP, biological process; Count, numbers of DEGs enriched in BP; DEG, differentially expressed gene; GO, gene ontology.
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Table 2 KEGG pathways enrichment analysis for DEGs (top 10)

Term Description Count P value Example of genes

hsa04110 Cell cycle 49 5.45x107" CDK2, CDK4, CDK7, CDKN2A, CDKN2C
hsa03030 DNA replication 21 4.31x107"° RNASEH2A, DNA2, FEN1, RNASEH1, LIG1
hsa04115 p53 signaling pathway 25 1.41x10° CDK2, CDK4, CDKN2A, CHEK1, CHEK2
hsa03430 Mismatch repair 13 1.65x107° MLH3, MSHS, LIG1, MSH2, PCNA
hsa04610 Complement and coagulation cascades 26 9.33x10°° MASP2, VSIG4, CLU, CPB2, CR1
hsa00330 Arginine and proline metabolism 19 1.49x10°° HOGA1, ALDH2, ALDH1B1, GAMT, AMD1
hsa03060 Protein export 11 8.34x107° IMMP1L, SEC61G, SPCS1, SEC61A1, SRPRB
hsa01200 Carbon metabolism 30 0.000271 GLYCTK, AGXT, ECHS1, ENO1, GAPDH
hsa00260 Glycine, serine and threonine metabolism 14 0.000534 GLYCTK, CTH, AGXT, ALAS1, GAMT
hsa03040 Spliceosome 32 0.000929 ALYREF, SF3B4, SLU7, PUF60, NCBP2

hsa, Homo sapiens, Count, numbers of DEGs involved in KEGG terms; DEG, differentially expressed gene; KEGG, Kyoto Encyclopedia of

Genes and Genomes.

eukaryotic cell cycle progression, which strictly controls cell
proliferation, growth, and survival. Cell cycle dysregulation
may cause uncontrolled proliferation, thereby resulting
in malignancies (25,26). CDK2 regulates the G1/S phase
by binding to positive regulators such as cyclin E and
cyclin A (27,28). The CDK2/cyclin A complex play a
major role in regulating the progression of the S-phase,
whereas the CDK2/cyclin E complex is required for the
G1 to S-phase transition. However, aberrant expression
of CDK2 may lead to uncontrolled cell proliferation (29),
which is associated with tumor formation. CDK2 has been
correlated to cancer (30). Kohzato et a/. (31) reported
that CDK2 and cyclin E are both overexpressed in HCC;
however, the overexpression of CDK2 has been strongly
associated with poorly differentiated HCC. In our study,
CDK2 was identified as a hub gene in the PPI network and
sub-network and was significantly enriched the cell cycle
functional category, suggesting that CDK2 contributes to
the pathogenesis of HCC.

CCNBI1, a member of the highly conserved cyclin B
family, is expressed in nearly all human body tissues (21).
CCNBI controls the G2/M phase transition in the cell
cycle, and its deregulation can result in uncontrolled cell
cycle progression and tumorigenesis. The CCNB1 has also
been correlated to various malignancies (32). Song ez al. (33)
reported that CCNBI induces cancer cell invasiveness and
metastasis in esophageal squamous cell carcinoma. Matthess
and colleagues (34) indicated that CCNB1 controls Fas-
mediated apoptosis by regulating caspase-8 activity, which
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contributes to tumorigenesis. Gomez et al. (35) showed
that CCNBI is implicated in chemoresistance in prostate
cancer cells. Zhao et al. (36) revealed that the upregulation
of CCNBI1 is strongly associated with pituitary adenomas
invasiveness, whereas its downregulation decreases cell
proliferation (37). Other studies have suggested that CCNB1
is associated with poor prognosis in patients with tumors (38).
Previous studies (39) have also revealed that CCNBI is
correlated with HCC that may potentially be utilized as a
candidate biomarker or a therapeutic target. The present
study conducted functional and pathway enrichment analyses
of DEGs in HCC, which further support previous findings
that CCNBI is correlated with the cell cycle and the p53
signaling pathway. Thus, CCNBI may play a pivotal role in
tumorigenesis and progression of HCC.

Abnormal cell-cycle checkpoints may result in cancer.
CDC20, which is a regulatory protein in cell cycle checkpoints
(40), is required for nuclear movement before anaphase
and chromosome separation by interacting with other
proteins. It activates the anaphase-promoting complex
at metaphase and is also involved in mitotic exit (41).
In our study, GO analysis of DEGs in BP showed that
the functional categories of mitotic nuclear division,
chromosome segregation, sister chromatid segregation,
nuclear chromosome segregation, sister chromatid cohesion
are enriched with CDC20. Pathway analysis revealed that
the cell cycle pathway and spliceosome are enriched with
CDC20. Furthermore, PPI network and sub-network
analyses demonstrated that CDC20 is a hub gene. CDC20

Transl Cancer Res 2018;7(4):849-858
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Figure 4 PPI network of DEGs. Red nodes represent proteins of upregulated DEGs, green nodes represent proteins of downregulated

DEGs; Gray edges represent interactions between proteins. DEGs, differentially expressed genes; PPI, protein-protein interaction.

plays a significant role in the initiation and progression of cells) by knocking down CDC20 blocks downstream mitotic
various tumors (42). Previous bioinformatics analysis (18) exit. Thus, CDC20 may be potentially used as a biomarker and
has indicated that CDC20 may be associated with a novel therapeutic target for HCC.

carcinogenesis, invasion, or recurrence of HCC. Li et al. (42) What’s more, the result of data analysis should be

revealed that CDC20 is upregulated in 68% of HCC patients connected with clinic research. The report showed that
and is positively correlated with clinicopathological parameters CCNBI1 was highly expressed in HCC (44). The study by
such as gender, TNM stage, and tumor differentiation. Weng et al. (45) showed that CCNBI positivity was observed
Furthermore, silencing of CDC20 expression using siRNA in 80% of the recurrent HCC samples related to the hepatitis

delays HCC progression, decreases cell proliferation, and B virus infection. Furthermore, high or low expression of
induces entry into the G2/M cell cycle phase (42). Huang ez CCNBI had no significant correlations with any single
al. (43) reported that inhibiting tumor cell growth (including clinicopathological characteristics, including sex, age, AFP,
apoptosis-resistant, SAC-defective, and slippage-prone cancer tumor number, histopathological grading, or liver cirrhosis.
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However, elevated expressed CCNB1 was connected with
earlier recurrence in HCC patients after surgical resection,
and its overexpression could be a prognostic factor for
recurrence-free survival. CDC20 is one of the regulators of
cell cycle checkpoints. The research (42) demonstrated that
the expression of CDC20 was abnormal higher in primary
HCC samples than the non-cancerous samples from the same
patients. Upon spearman correlation analysis, overexpression
of CDC20 was closely correlated with gender, advanced TNM
staging, poorer tumor differentiation, and higher expression
level of p53. Nevertheless, increased CDC20 expression
revealed no statistically significant correlation with other
clinicopathological features, including age, HBV infection,
hepatic cirrhosis, serum AFP level, tumor size, vascular
invasion and intra/extra hepatic metastasis. CDK2 is the key
protein for the transition of cell cycle G1/S phase. CDK2 is
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activated in over 80% of HCC cases. Whereas, no significant
association was found between the degree of CDK activation
and the clinical parameters of HCC samples, including cellular
differentiation, tumour size, tumour encapsulation, venous
permeation, and microsatellite (46). The aforementioned
results by our study showed that CCNB1, CDC20 and CDK?2
were the hub genes from the network. However, they were
needed to be correlated with the clinical validation, which
would be carried out in our further researches.

Conclusions

We identified DEGs in HCC tissues, and CDK2, CCNBI,
and CDC20 were classified as hub genes that play a
predominate role in HCC tumorigenesis. These DEGs are
associated with major biological pathways such as cell cycle,

Transl Cancer Res 2018;7(4):849-858
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DNA replication, and the p53 signaling pathway. These
genes may be potentially utilized as therapeutic targets and
prognostic biomarkers for HCC. Also, our data improves
our understanding of the underlying mechanisms of HCC,
although further investigations are warranted.
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Figure S1 Value distributions of GSE36376. Median-centered values were indicative that the data were normalized and cross-comparable.

GSE45267/GPL570, selected samples
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Figure S2 Value distributions of GSE45267. Median-centered values indicated that the data were normalized and cross-comparable.

GSE51401/GPL570, selected samples
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Figure S3 Value distributions of GSE51401. Median-centered values suggested that the data were normalized and cross-comparable.



