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Pancreatic ductal adenocarcinoma (PDAC) is one of 
the highest mortality malignancies, with average 5-year 
survival less than 3%. The etiology of pancreatic cancer 
has been investigated, and the identified risk factors 
including such as non-O ABO blood group (1), uncommon 
hereditary factors of germline mutations in p16, BRCA1 
and BRCA2 (2), obesity, chronic pancreatitis, long-term 
diabetes mellitus (3,4), Helicobacter pylori colonization (5) 
and tobacco smoking (6). Somatic mutations of KRAS is a 
driver mutation with the frequency of over 90% in invasive 
PDAC (7,8), and with the frequency increasing from 36% 
to 87% according to disease progression from PanIN-
1a to 2–3 preneoplastic lesions (9,10). Besides the KRAS 
mutations, there exist many other genes with somatic 
mutations in pancreatic cancer based on The Cancer 
Genome Atlas (TCGA) pancreatic cancer dataset (Table 1). 
However, our understanding on the molecular mechanisms 
of these mutated genes in the development of intraductal 
papillary mucinous neoplasia (IPMN) and consequently 
invasive PDAC is still limited (11,12), and the effective 
therapies against PDAC are lacking (13). In a recent study 
of Gastroenterology,  Kimura and colleagues used available 
mouse models and clinical samples to investigate the 
functions of ARID1A (AT rich interactive domain 1A)  
in the development of IPMN and PDAC (14). Their 

investigation revealed that conditional Arid1a knockout 
(KO) mice had dilated pancreatic duct and acceleration 
of PDAC from IPMN when mutant Kras oncogene was 
also expressed. Eventually, multilocular cystic neoplasm 
developed. Interestingly, cystic neoplasm developed in these 
transgenic mice did not show aggressive cell proliferation, 
but manifested excessive intraductal mucin. Moreover, cystic 
neoplasms developed in these mice had the characteristics of 
IPMN in human, but not that of mucinous cystic neoplasms 
(MCN). About 20% (3 out of 15) of these IPMN lesions 
in the transgenic mice gradually developed into PDAC at 
48 weeks of age. They observed decreased expression of 
Sox9 in Arid1a conditional KO mouse pancreas and marked 
decreased expression of p21, p53 and p16INK4a (Cdkn2a) in 
mouse IPMN-like cystic neoplasms. They concluded that 
ARID1A deficiency results in ductal cell dedifferentiation 
and ductal dilation due to reduced SOX9 expression. This 
phenotype was rescued by overexpression of SOX9 both 
in cell culture and in vivo. Their research illuminated an 
important function of ARID1A which is the maintenance of 
differentiation of pancreatic ductal cells and the suppression 
of PDAC development, suggesting that ARID1A may be 
a target in the chemoprevention of PDAC. Their findings 
are encouraging and have implications beyond pancreatic 
cancer. 
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ARID1A is an epigenetic regulator involved in chromatin 
remodeling (15). Its mutations occur at as high frequency as 
50% in a wide range of cancers, and lead to loss of ARD1A 
function (16,17). The frequency of somatic mutations of 
ARID1A in human pancreatic cancer is approximately 5% 
(Table 1), and the loss of ARIAD1A leads to poor prognosis 
in the patients (18). Recently, it has been shown that 
ARID1A promotes mismatch repair (MMR) by recruiting 

Table 1 Mutation frequency of the top 72 genes in a TCGA 
pancreatic cancer data

Genes Mutation frequency

KRAS 0.907

TP53 0.693

TTN 0.273

SMAD4 0.240

CDKN2A 0.147

MUC16 0.133

HMCN1 0.080

LRP1B 0.080

RYR1 0.080

OBSCN 0.080

FAT3 0.073

FLG 0.067

SCN5A 0.067

FAT2 0.067

USH2A 0.067

ASPM 0.060

CSMD2 0.060

DMD 0.060

CUBN 0.060

PLEC 0.060

DSCAM 0.060

DSCAML1 0.060

DNAH11 0.060

GNAS 0.060

TNXB 0.060

RYR3 0.060

Table 1 (continued)

Table 1 (continued)

Genes Mutation frequency

SPTA1 0.060

GLI3 0.060

RNF43 0.053

SCN1A 0.053

CACNA1B 0.053

FAT4 0.053

HERC2 0.053

LRP2 0.053

CSMD3 0.053

ADAMTS16 0.053

SYNE1 0.053

MYO18B 0.053

RNF213 0.053

RELN 0.053

PCDH15 0.053

ZNF831 0.053

ADAMTS12 0.053

PRUNE2 0.053

SDK1 0.053

BTBD11 0.047

PCDH9 0.047

AKAP6 0.047

HECW2 0.047

FCGBP 0.047

RYR2 0.047

ATP10A 0.047

TGFBR2 0.047

HECW1 0.047

FAM71B 0.047

RBM12 0.047

TMEM132D 0.047

ARID1A 0.047

CSMD1 0.047

MKI67 0.047

Table 1 (continued)
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Table 1 (continued)

Genes Mutation frequency

PSG6 0.047

SSPO 0.047

LRP1 0.047

AMOT 0.047

ANK3 0.047

GPR133 0.047

KCNA6 0.047

PKD1 0.047

HYDIN 0.047

RREB1 0.047

TPO 0.047

MYLK 0.047

TCGA, The Cancer Genome Atlas.

MSH2 to chromatin during DNA replication and promotes 
MMR (19). ARID1A deficiency enhances the efficacy of 
immune checkpoint blockade (19). In addition, a subunit 
of the SWI/SNF chromatin remodeling complex (20), 
ARID1A interacts with a variety of transcription factors and 
cofactors including p53, HDAC1/2, and SMAD2/3 (16).  
SOX9 is a stem cell transcription factor with the high-
mobility-group box class DNA-binding motifs (21,22). 
Given that stem cell transcription factors in general have the 
potential of maintaining cells in the undifferentiated state (22), 
SOX9 mediation of ARID1A function is a novel finding in 
Kimura’s study. But how ARID1A regulates SOX9 expression, 
and how two factors orchestrate together and the nature 
of their partners in PDAC, remain to be answered. Many 
hypotheses can be made. A clear answer to these questions 
awaits further experimentations in the future. 

It is not clear whether SOX9 KO leads to the same 
phenotype as ARID1A KO-induced one. The data in 
Kimura’s study demonstrated that ARID1A KO in the 
KRAS mutant background accelerated the development of 
PDAC through the mTOR pathway. A previous study of 
this group showed that Brg1 (another SWI/SNF complex 
component) KO mice has similar but stronger phenotypes 
compared to ARID1A KO-induced alterations in pancreatic 
ducts (23), suggesting that BRG1 KO should also have 
stronger mTOR pathway activation. 

As a chromatin remodeling factor, ARID1A should exert 
its functions by means of direct regulation of target gene 

expression. Immunohistochemistry results in Kimura et al.’s 
study showed that the levels of ARID1A and phosphorylated 
S6 (a marker of mTOR pathway activation) proteins were 
decreased in a parallel manner in both human IPMN and 
PDAC. There is also a positive correlation at the mRNA 
levels between ARID1A expression and the expression of 
several key mTOR pathway molecules such as mTOR, 
PIK3CA, AKT3 and RICTO, suggesting that activation 
of mTOR pathway is important for tumor progression in 
ARIAD-low PDAC. Taken together, these results raise the 
possibility of targeting mTOR pathway in the treatment of 
human PDAC when ARID1A or BRG1 expression levels 
are low in the patient tumor samples. Indeed, preclinical 
studies and clinical trials are in progress (24). It would be 
interesting to see whether mTOR pathway inhibitors have 
stronger therapeutic effects against human BRG1-low PDAC 
than ARID1A-low PDAC. Furthermore, would ARID1A 
or BRG1 or both be used as liquid biopsy-based biomarkers 
(for example, the presence of mutated genes in circulating 
exosomes as early detection of PDAC (25) in the future? 
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