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Renal cell carcinoma (RCC) comprises about 3–4% of adult 
malignancies and according to recent estimates, over 65,000 
new cases will be diagnosed in 2018 (3.8% of all new cancer 
cases), and nearly 15,000 patients will die of this tumor 
(2.5% of all cancer deaths) in the United States (1).

Although patients with low stage, localized RCC have an 
excellent prognosis after surgical treatment (92.6% of these 
patients are still alive 5 years after the diagnosis), nearly 
30% are diagnosed with metastatic disease, and their 5-year 
survival is less than 12% (1-3).

Recent studies have investigated novel molecular 
mechanisms involved in the RCC pathogenesis, and 
have identified potential biomarkers with a role in early 
diagnosis, risk assessment, and outcome prediction. 
Different molecular markers such as CA 15-3, αKlotho, 
RKIP and many metabolic enzymes have been investigated, 
but none of these factors is used in the clinical management 
of kidney cancer patients (4-11).

The recent introduction of high-throughput screening 
has led to an in-depth molecular characterization of 
different human cancers including urological tumors, 
together with the identification of novel pathogenic 
mechanisms and potential therapeutic targets.

This multi-omics approach has confirmed and extended 
the Otto Warburg hypothesis that cancer cells hijack and 
remodel existing metabolic pathways to promote cell 
survival and proliferation. 

Many cl inical  studies  have shown that  RCC is 
fundamentally a metabolic disease (12). In fact, some clinical 
conditions characterized by an altered metabolism, such as 

obesity, diabetes and chronic kidney disease, are common 
risk factors for RCC (13-15). Moreover, molecular analyses 
have revealed that in the RCC tumor cell metabolism a 
program of metabolic remodeling is activated, characterized 
by a Warburg effect-like state, a rerouting of the sugar 
metabolism toward the pentose phosphate pathway, a 
reduced tricarboxylic acid (TCA) cycle activity, increased 
glutaminolysis and fatty acid accumulation (16-18). 

In recent years, a series of metabolic adaptations 
involving the accumulation of uncommon oncometabolites 
has been described (9,19-21). In this scenario, a recent study 
showed that in clear cell RCC (ccRCC)—the most common 
kidney cancer subtype—the expression of multiple urea 
cycle enzymes was strongly repressed, suggesting a tumor 
suppressant role in normal physiological conditions (22).

Urea cycle activity occurs in the liver and kidney, 
to prevent the accumulation of toxic ammonia in the 
organism (Figure 1). The first compound to enter the cycle 
is carbamoyl phosphate, generated from ammonia in the 
mitochondrion by carbamoyl ph            osphate synthetase 
(CPS). The cycle is characterized by four enzymatic steps. 
Firstly, carbamoyl phosphate donates its carbamoyl group 
to ornithine to form citrulline (step 1). Ornithine has 
a similar role to that of oxaloacetate in the TCA cycle, 
accepting material at each turn of the cycle. The reaction 
is catalyzed by ornithine transcarbamoylase (OTC), and 
citrulline shifts from the mitochondrion to the cytosol. 
The second amino group now enters from aspartate, by 
a condensation reaction between aspartate and citrulline, 
forming argininosuccinate (step 2). This cytosolic reaction 
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is catalyzed by arginine-succinate synthetase 1 (ASS1). The 
arginine-succinate is then cleaved by arginine-succinate 
lyase (ASL) (step 3) to form arginine and fumarate, and the 
latter enters mitochondria to join the pool of TCA cycle 
intermediates. In the last reaction of the urea cycle (step 4), 
the cytosolic enzyme arginase 2 (ARG2) cleaves arginine to 
generate urea and ornithine. Ornithine is then transported 
into the mitochondrion to start another round of the urea 
cycle.

In this setting, Ochocki and colleagues (22) demonstrated 
that ccRCC are characterized by alterations in ammonia 
metabolism, in association with downregulation of multiple 
urea cycle enzymes including ARG2, ASS1 and ASL.

In particular, these authors showed that ARG2 and ASS1, 
when re-expressed in ccRCC cancer cells, suppressed tumor 
growth in vitro and in vivo. Moreover, to better define the 
mechanisms involved in tumor suppressor activity of urea 
cycle enzymes, the metabolomics profile related to ARG2 
enzyme activity, that catalyzes the last reaction in the cycle 
with the production of urea and ornithine, was analyzed. 

Ornithine can enter in multiple biochemical pathways 
apart from the urea cycle:

 Conversion to glutamate-γ-semialdehyde by 
mitochondrial ornithine aminotransferase (OAT) for 
the production of both glutamine and proline; 

 Decarboxylation by ornithine decarboxylase (ODC) 
to synthetize polyamine.

Both these reactions require pyridoxal-5'-phosphate 
(PLP), a vitamin B6 derivative cofactor involved in a 
variety of metabolic reactions that are critical for glycogen 
production and amino acids synthesis. The authors 
demonstrated that ARG2 inhibits ccRCC tumor cell 
proliferation, through depletion of the PLP pool, hence 
reducing amino acids synthesis. The second mechanism 
involves the excessive production of polyamines putrescine 
and spermidine. In particular, using metabolic tracing 
experiments, it was shown that due to ARG2 activity, 
polyamines accumulate and cause cellular toxicity. Taken 
together, these findings suggest that in ccRCC a program 
of repression of urea cycle enzymes exists, with the aim of 
sustaining biomass expansion by two main mechanisms: 
maintaining elevated levels of PLP for amino acids 
homeostasis, and avoiding toxic polyamines concentrations.

A reduced expression of urea cycle enzymes has been 

Figure 1 Urea cycle—metabolites and enzymes. ARG2, arginase 2; ASL, arginine-succinate lyase; ASS1, arginine-succinate synthetase 1; 
CPS, carbamoyl phosphate synthetase; OTC, ornithine transcarbamoylase.
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reported also in other tumors such as sarcomas (23-25). 
Interestingly, Rabinovich and colleagues (25) showed, for 
the first time, a metabolic connection between the urea 
cycle enzymes and pyrimidine nucleotides, that are essential 
compounds for DNA synthesis. In particular, in different 
cancer cell lines an ASS1 deficiency was demonstrated 
to support tumor proliferation by activating carbamoyl-
phosphate synthetase 2, aspartate transcarbamoylase, and 
dihydroorotase (CAD), increasing aspartate levels for 
pyrimidine synthesis.

These studies confirm the fundamental role of metabolic 
reprogramming in cancer cells, and lay the basis for the 
identification of novel therapeutic targets in ccRCC. 
Ochocki et al. have shown, for the first time, the central role 
of the ammonia metabolism in ccRCC and their findings 
offer fundamental support of the concept that study of the 
cancer metabolome may give rise to innovative approaches 
to patient risk stratification and drug development. 
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