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Background parenchymal uptake (BPU), a new 
imaging biomarker to predict breast cancer risk

Recently, Hruska and colleagues (1) published an 
interesting paper in Breast Cancer Research on a crucial 
topic to understanding breast cancer risk factors. In 2016, 
they assessed BPU with molecular breast imaging (MBI) 
as a risk factor through a case-control study nested in a 
cohort study (2); in their recent study they showed that 
a semi-automated system can be used for a quantitative 
measurement of BPU (1). The study, though conducted 
retrospectively, has all the strengths of purely prospective 
cohort studies, since the authors had the opportunity to 
construct a cohort of asymptomatic women screened for 
breast cancer with MBI and included in their case-control 
study all the cases occurring in the cohort. Furthermore, 
the cohort had a sufficiently long follow up (3.5 y average) 
to include both incident cases and prevalent cases missed by 
the screening tests. Assessment of Tc-99m sestamibi BPU 
was conducted retrospectively. In the study published in 
2016, two radiologists, blinded to the outcome, interpreted 
the uptake with a subjective four-point qualitative scale, 
while in the present study two non-radiologist readers, 
blinded to the outcome, performed a quantitative semi-
automated measurement: on MBI images analyzed with 
the corresponding digital mammograms, they defined two 
regions-of-interest (ROI), one of purely fat tissue and one 
of fibroglandular tissue. Quantitative BPU was defined as 
a unitless ratio of the average pixel intensity (counts/pixel) 

within the fibroglandular tissue versus the average pixel 
intensity in fat.

A semi-automated system to quantify BPU 
has almost the same performance as that of 
radiologists

Both the qualitative uptake categories and the quantitative 
BPU resulted associated with breast cancer (Table 1); the 
semi-automated measurement resulted definitely more 
reproducible.

The strength of association between BPU and breast 
cancer risk obtained with the radiologists’ subjective 
interpretation and with the semi-automated system cannot 
be directly compared through the reported odds ratios 
because the two technique do not produce the same scale: 
radiologists classified the breasts in four categories, while 
the semi-automated system produces a continuous measure. 
Nevertheless, the area under the curve (AUC) of the model 
is somewhat independent from the adopted scale, thus 
allowing a comparison of the accuracy of the variable in 
predicting the outcome. 

The authors did not produce any formal comparison 
between the two techniques, subjective vs. semi-automated, 
though they seem to perform quite similarly. In fact, the 
subjective classification by radiologists seems to be slightly 
better in terms of AUC, despite the fact that a continuous 
classification has an intrinsic advantage compared to a  
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four-class scale. 
This is not the first example of an automatic classification 

proving to be more reproducible than a subjective one, 
although it is less predictive. The example of mammographic 
breast density evaluation is clear: despite enormous efforts 
to produce software, the human eye’s ability to identify 
density patterns that are particularly at risk of developing 
cancers is still unmatched (3), and the best algorithms are 
probably those that empirically try to predict the visual 
classification instead of defining density parameters (4). 
Understanding why the human eye is able to capture some 
aspects conferring higher breast cancer risk that are not 
captured by the machine algorithms is beyond the scope of 
this contribution, but we must accept that this phenomenon 
often occurs.

Is reproducibility an important feature of tests 
predicting risk?

The rationale for seeking an automatic classification in 
imaging is usually based on three points: (I) increase 
reproducibility; (II) increase accuracy; (III) reduce human 
resource consumption. We implicitly consider the first two 
points as strictly related; we know that a non-reproducible 
test cannot be very accurate on average, but the opposite 
is not necessarily true, and we can have very reproducible 
tests that are systematically not accurate. In the case of a 
test applied on symptomatic cases for differential diagnosis, 
we expect to have a very high positive predictive value. 
Thus, the assumption that low reproducibility corresponds 
to low accuracy is always true; if a reader has 95% PPV and 
95% sensitivity, it is unlikely for another reader to disagree 
with test results without increasing false positives or false 
negatives, i.e., reducing accuracy. On the other hand, 
when we apply a test to classify the general population in 
groups with different risks, particularly if the absolute risk 
is low, the ability to predict cancer, i.e., mathematically 
corresponding to the positive predictive value in a clinical 
test, will be very low. In the nested case-control study 
presented by Hruska and colleagues (2), we are fortunate 
to have an unbiased estimation of the risk in each group 
because we know the outcomes of the whole initial cohort 
of 3,000 women in which cases occurred and controls are 
a representative sample of this cohort for the distribution 
of the exposure. Let’s imagine screening the whole cohort 
of 3,000 women: according to the reader with the best 
performance, the prevalence of marked BPU in the whole 
cohort is about 7%, 208 women (i.e., 6.7% among the 

2,938 non-cases and 17.7% among the 62 cases); thus, the 
probability of developing a cancer in the highest risk group 
(marked) is 11 out of 208. On the other hand, only 11 cases 
out of 62 are classified in the highest risk group. Now it 
is clear that it is likely for a different reader to disagree 
without impacting performance; the second reader can 
exchange any of the 219 false positives with some of the 
other 2,800 non-cases, the same for classification of cases 
with 51 false-negatives, obtaining the same specificity and 
sensitivity. There are many opportunities to disagree while 
maintaining the same accuracy of prediction (Figure 1).

The lesson we can learn is that, dealing with tests for 
risk factors with the aim of stratifying the population 
according to the risk of disease, we usually have very low 
positive predictive value. Reproducibility, therefore, is not 
a necessary condition to reach acceptable accuracy in risk 
prediction. A similar phenomenon has also been observed 
for HPV DNA test in screening for cervical cancer 
precursors. This is a very sensitive test, with low positive 
predictive value. It is a molecular test with a clear target 
(the DNA of 12 HPV types), and as almost all the available 
commercial tests showed very good inter-laboratory 
reproducibility, it was thought to be highly reproducible 
even between different commercially available tests. 
Rebolj et al. (5) showed that this was not the case; different 
commercially available tests were highly discordant, 
even though the performance in terms of sensitivity and 
specificity was very similar. In fact, the tests were very 
consistent on the classification of the few true positives, 
but largely discordant on those classified as false positives, 
maintaining approximately the same total rate of positivity, 
i.e., similar specificity. 

What could the potential use of BPU be in 
clinical practice and prevention?

What makes BPU an interesting risk factor is that it 
is a predictor of breast cancer risk regardless of breast 
density. This has been observed also for the background 
parenchymal  enhancement  (BPE) with  magnet ic 
resonance imaging (MRI) and contrast-enhanced spectral 
mammography (CESM) (6-9). Since an association between 
MRI BPE and MBI BPU has already been described (10), 
it would also be interesting to discover whether MBI BPU 
and MRI/CESM BPE are each predictors of cancer risk. 
For the moment, let’s consider them two ways of measuring 
the activity of the tissue. Hruska and Coll. did not find 
any association between MBI BPU and mammographic 
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Figure 1 Theoretical scheme for the interpretation of the results of a trial designed to assess excess overdiagnosis (A) and impact on 
surrogate outcomes of mortality and morbidity (B) of a new breast cancer screening procedure. At recruitment, women are randomized to 
do the standard screening procedure or the experimental procedure for at least one round. In this phase we expect higher detection rate 
in the experimental arm, if the new test is more sensitive. Then, at the following rounds, women in both arms undergo the same test in 
order to see whether the excess detection observed in the first round in the experimental arm is compensated by lower detection rate. If the 
cumulative detection rate at the end of the study is similar in the two arms, the new screening test more effectively produce early diagnosis 
and do not lead to excess overdiagnosis (A). However, if at the end of the study the cumulative incidence is higher in the experimental arm, 
it probably means that the new screening test detects cancers that will never become symptomatic nor detectable with the standard test. 
Surrogate outcome of cumulative incidence of advanced cancers in women negative at first screening test is expected to diverge during the 
first interval and at the second round (B), in the following rounds women will receive the same test and thus the curves should be parallel; if 
women undergo experimental and standard screening tests for more than one round, the study design should gain statistical power.
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breast density, but their cohort included women with 
very homogenous breast density [the vast majority Breast 
Imaging Reporting and Data System (BI-RADS)]. They 
could, therefore, have missed the association. On the other 
hand, study results on the association between MRI/CESM 
BPE and mammographic density are controversial (11-15). 
Nevertheless, what is important is that BPU (like MRI and 
CESM BPE) can add some information to our prediction 
models that is not already included in what we know from 
density. While mammographic density, a well-established 
breast cancer risk factor, takes into account the amount of 
fibroglandular tissue, BPU and BPE introduce additional 
functional features of this tissue, including mitochondrial 
activity, cellular proliferation, blood flow, angiogenesis, 
and inflammation, which are in their turn linked to cancer 
development (16-18).

In the era of personalized screening, risk prediction 
models are fundamental. Research is now moving in the 
direction of using multiple sources of information to tailor 
the screening intervention to a woman’s breast cancer risk 
and breast characteristics: family history, metabolic and 
behavioral factors (body mass index, hormone replacement 
therapy, physical activity, diet), breast density, and genetic 
risk, both as high penetrance mutations (BRCA1 and 2) and 
SNIPs polymorphism, which have very weak association 
when considered individually, but with considerable 
predictive value when analyzed together (19,20). These 
factors can be used for tailoring screening for two reasons: 
(I) they modify the woman’s risk and therefore the balance 
between screening desirable and undesirable effects, 
without affecting mammographic screening efficacy; (II) 
they can alter the mammography sensitivity, thus affecting 
screening efficacy, thus suggesting the use of different/
additional tests, i.e., ultrasound, tomosynthesis, or MRI. 
These new fibroglandular tissue activity biomarkers such 
as BPU or BPE are interesting because they can probably 
add something that is not yet included in the existing risk 
prediction models.

Unfortunately, the scientific community has not yet 
produced any convincing evidence regarding the efficacy 
of personalized screening (21,22). Properly designed 
studies are ongoing (23-25) but we will see results in future 
decades. 

While the findings of Hruska and colleague contribute 
to understanding the mechanism underlying breast cancer 
risk and to future developments of risk-based screening, the 
practical application of BPU (or MRI and CESM BPE) are 
not clear. 

At the moment, only mammographic screening has 
shown to be effective in reducing mortality. The balance 
between desirable and undesirable effects is definitely in 
favor of the desirable ones in the age range 50–69 (21,26,27), 
while it is less clear in the age range 40–50 (21,26). In the 
balance between benefits and harms, overdiagnosis plays an 
important role. Thus, when introducing a new screening 
test that adds relevant detection rate, we should demonstrate 
that it is not introducing additional overdiagnosis, and 
that, simultaneously, early diagnosis is actually reducing 
mortality. Many researchers and clinicians claim that it is 
theoretically impossible to assess overdiagnosis because 
it can be measured only by following the two groups for 
more than 30 years, and that proving the efficacy of a new 
screening technique would require studies that are too 
large with too long a follow up. If these claims are true for 
measuring absolute overdiagnosis, we do not need 30 year-
long follow-up studies to estimate additional overdiagnosis: 
the additional overdiagnosis can be done with study design 
requiring much shorter follow up, as demonstrated by the 
HPV test studies (28); such study designs are now being 
adopted in most tomosynthesis trials (29,30). This design 
requires that we randomize the women to be screened with 
mammography or with the new experimental procedure; 
we maintain the two different procedures for one or two 
screening rounds and then we screen both groups with the 
standard screening test (i.e., mammography) for at least 
two rounds. If the cumulative overall incidence is similar 
at the end of the two rounds with standard test, we have 
demonstrated that there is no excess overdiagnosis. The 
scientific community has made an exception to this principle 
only for the introduction of more sensitive test (i.e., MRI) 
in the BRCA1-2 mutated women (or those with similar risk) 
because the lifetime probability of having a cancer is about 
80%, overdiagnosis is no longer an issue. For the impact 
on mortality as well, we can use surrogate hard outcomes 
as the cumulative incidence of advanced cancers: if we are 
reducing the cumulative incidence of cancers in stage 2 or 
more severe, we can be reasonably sure that we are reducing 
the burden of breast cancers in terms of mortality and 
morbidity. 

Therefore, in the situations in which the risk of having a 
cancer is far below 80%, before introducing a screening test 
that is effective in improving the detection rate, we should 
demonstrate, first, the reduction of cumulative incidence 
of advanced cancers, and second, that there is no (or 
acceptable) additional overdiagnosis compared to standard 
screening. 
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Furthermore, overdiagnosis is not the only negative 
effect of screening. Undesirable consequences also come 
from radiation exposure. Induced cancers are probably 
irrelevant with mammography screening, but MBI has 
a completely different source of radiation, even when 
minimized (31), and the balance between benefits and harms 
could be affected. Finally, even if MBI has been proposed 
as screening test for women with dense breast not justifying 
an MRI, the resource consumption of this approach is 
huge and would thus probably make such an intervention 
unsustainable for any public health system. 

In this landscape, the application of MBI BPU (or 
MRI/CESM BPE) as a component of risk stratification 
models could be used only occasionally, because a 
baseline evaluation of this factor will be available only if 
we demonstrate the efficacy and suitability of MBI as a 
screening tool, at least for a group of women. 

In conclusion, MBI BPU is an interesting biomarker 
which can add new information to the large panorama 
of breast cancer risk factors to be used for personalized 
screening. However, when the need for a tailored screening 
is advocated, we must remember that, when considering the 
balance between desirable and undesirable effects, tailoring 
should lead us to add a new test to a small group of women 
with high risk or for whom mammography is not effective 
or, on the other hand, to avoid additional tests for some 
women in whom the risk will, by definition, be below the 
average. To date, most of the personalized screening models 
are completely skewed to increase the intensity of screening 
in women in the high-risk group, without decreasing the 
intensity in those at low risk. 
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