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Introduction

Pancreatic ductal adenocarcinoma (PDAC) is one of the 
most lethal human cancers (1), with a 5-year survival rate of 
less than 7%, and a great proportion of patients die within 
6 months after diagnosis. Previous reports have indicated 
that in 2017 more than 91,500 patients died of PDAC in 
the European Union (2). Various hereditary changes—for 
instance, genetic deletions, amplifications, translocations, 
frameshifts, inversions and substitutions—can be found in 
approximately 97% of PDAC cases (3). KRAS mutation 

is the most frequent mutation (more than 90%) (4) and 
the initiating genetic event for PDAC, and it is found in 
primary tumors, metastatic tumors and even in pancreatic 
intraepithelial neoplasia (PanIN), the earliest preneoplastic 
stage in PDAC progression (5).

As one of the four main driver genes (KRAS, TP53, 
CDKN2A and SMAD4) in PDAC, the KRAS gene, located 
at chromosome 12p12.1, is a member of the RAS gene 
family and encodes the KRAS protein (21 kDa), which 
has GTPase activity and thus binds GTP in the activated 
state and GDP in the deactivated state. Ras regulates cell 
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proliferation, differentiation, and apoptosis by activating 
several signaling pathways, including the RAF/MEK/ERK, 
PI3K/AKT/mTOR, PLC/PKC, and RAL pathways (6).  
KRAS mutations are found at codon12, codon13, codon60 
and codon61 in PDAC, and these mutations cause KRAS 
protein to remain activated in the absence of signal 
stimulation, resulting in an uncontrollable functional status. 
This review summarizes the current knowledge regarding 
the critical applications of KRAS mutation in PDAC.

Microenvironment

The tumor microenvironment, which is a dynamic network 
primarily comprising the matrix, soluble factors and cellular 
components, along with large quantities of inflammatory 
stroma, plays a critical role in PDAC occurrence and 
progression. Using genetically engineered mouse (GEM) 
models of PDAC, researchers have investigated the 
initial steps of pancreatic tumorigenesis in the context 
of the microenvironment and the role of KRAS in the 
microenvironment (7). Pancreatic stellate cells (PaSCs) have 
structures and functions similar to those of hepatic stellate 
cells and usually exist in the resting state. In the earliest stages 
of PanIN, mesenchymal cells are transformed into fibroblasts 
and pancreatic stellate cells upon injury induction. PaSC 
proliferation and activation are central to the development 
of pancreatic fibrosis. Activated PaSCs synthesize many 
extracellular matrix components (8), and infiltration of these 
cells can be influenced by KRAS gene activity.

The expression of KRAS-dependent factors, such as 
interleukin-6 (IL-6) and Sonic hedgehog (Shh), in the 
tumor microenvironment is modulated by KRAS (9). 
The Hedgehog signaling pathway plays a significant role 
in stromal desmoplasia in PDAC and accelerates the 
progression of oncogenic disease driven by KRAS (10). KRAS 
G12D upregulates Hedgehog signaling to mediate paracrine 
interactions in the microenvironment. Additionally, 
overexpression of the soluble ligand Shh stimulates PDAC 
cells and promotes the formation of desmoplastic stroma 
brimming with fibroblasts (11). In the iKRAS mouse model, 
when KRAS is inactivated, Shh expression in epithelial cells 
is decreased to regular levels (9). IL-6, an inflammatory 
cytokine that has been associated with PDAC development, 
plays a critical role in various biologic activities (12). The 
serum concentration of IL-6 is increased in PDAC, and its 
expression is enhanced by KRAS. 

Metabolic reprogramming

The process of tumor cell metabolic reprogramming is 
one of the most typical mechanisms by which tumors to 
adapt to the microenvironment, maintain cell survival and 
meet the needs of macromolecule synthesis (13,14). In this 
sense, tumors are also considered a metabolic disease (15). 
Under hypoxia deficiency (16), PDAC metabolic processes 
exhibit significant changes (17). Moreover, the Warburg 
effect and altered mitochondrial metabolic activity are 
typical metabolic changes in pancreatic cancer (18,19). Even 
with sufficient oxygen, PDAC utilizes aerobic glycolysis to 
replace oxidative phosphorylation (OXPHOS) in normal 
tissue cells to provide energy, and this process is called the 
Warburg effect. In one aspect, KRAS adjusts to the metabolic 
changes in PDAC by increasing the expression of glycolytic 
enzymes, such as hexokinase 1 and 2, glucose transporters, 
phosphofructokinase and lactate dehydrogenase. On the 
other hand, the synthesis of proteins, nucleic acids and fatty 
acids needed for PDAC cell proliferation is supported by 
KRAS mainly through stimulation of glucose uptake and 
glucose mid products into the hexosamine and pentose 
phosphate pathways (20,21).

Another role of KRAS in promoting PDAC growth 
affects the glutamate metabolic pathway. Most cells 
require glutamate dehydrogenase to convert glutamine 
into α-ketoglutarate within the mitochondria to fuel the 
tricarboxylic acid cycle. However, in PDAC, glutamine-
derived aspartate is transported to the cytoplasm and 
converted to oxaloacetate by aspartate aminotransferase, 
and oxaloacetate is subsequently converted to malic acid 
and finally becomes pyruvate, followed by an increase in 
the NADPH/NADP ratio to maintain the redox levels in 
PDAC cells. Pancreatic cancer cells are highly dependent on 
this metabolic pathway. KRAS mutations lead to increased 
aspartate aminotransferase expression and promote 
glutamine metabolism in PDAC, maintaining redox levels 
and promoting cancer cell growth (22).

Additionally, KRAS leads to metabolic changes that alter 
the generation of mitochondrial reactive oxygen species 
(ROS) (23). PDAC cells develop several mechanisms to 
resist the excessive ROS levels, which are detrimental to 
tumor cells. Therefore, the cancer cells can reduce cellular 
damage caused by ROS (24). Currently, KRAS mutation is 
considered to activate nuclear factor-erythroid 2-related 
factor 2 (Nrf2) to start the antioxidant mechanism (25), 
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which activates a series of antioxidant genes. More than 100 
genes have been reported to be regulated by Nrf2, including 
NADPH regulators, drug efflux pumps and growth  
factors (26). The inhibitor KEAP1 strictly controls 
Nrf2 levels by binding to Nrf2 and mediating Nrf2 
ubiquitination; thus, under normal conditions, Nrf2 levels 
remain low (27). One study found that mutant KRAS signals 
mainly through the Mek-Erk-Jun pathway to promote Nrf2 
nuclear localization and antioxidative gene expression (28). 
In pancreatic cancer, human PanIN and PDAC, Nrf2 is 
more active than in normal pancreatic ductal cells, and the 
ROS level remains low. By contrast, because of the effect of 
KEAP1, Nrf2 in normal pancreatic duct cells is maintained 
at a very low level. Unlike many other tumors, few somatic 
mutations lead to inactivation of NRF2 in pancreatic  
cancer (29). Therefore, in KRAS-mutant pancreatic cancer, 
Nrf2-mediated antioxidant activity is regulated mainly 
by KRAS mutation. By contrast, knockdown of KRAS or 
MAPK signaling blocks Nrf2 expression and increases 
intracellular ROS levels (28).

Early diagnosis

Compared with resectable PDAC, the prognosis of 
patients with unresectable PDAC is worse (30); thus, an 
early diagnosis is essential for these patients. Endoscopic 
ultrasound-guided fine-needle aspiration (EUS-FNA) 
can scan the lesion within a short range and has few 
complications. Because pathological diagnosis is still 
the gold standard for PDAC diagnosis, EUS-FNA has 
become the preferred method to diagnose pancreatic 
disease and has been increasingly used clinically (31). 
EUS-FNA can be used to detect gene mutations in tissues 
or cells obtained by aspiration (32). Combination of a 
KRAS-mutation assay with cytopathology is better than 
cytopathology alone in increasing the sensitivity, negative 
predictive value and accuracy in inconclusive or doubtful 
diagnoses based on cytopathology and thus is central to 
inconclusive or doubtful diagnoses from cytopathology. 
This KRAS-mutation detection approach cannot replace 
histology but complements histology (33), especially for 
patients with an indeterminate mass in the pancreas (34). 
However, EUS-FNA may lead to the release of cellular 
material from tumors to the bloodstream. The detection of 
mutant KRAS and the concentration of cfDNA in plasma 
are increased after the procedure (35). Thus, further 
studies are needed.

In addition to EUS-FNA, a new emerging detection 

method, cancer-specific DNA detection, was recently 
identified. This method, called a liquid biopsy, detects 
cancer-specific DNA in peripheral blood and noninvasively 
examines tumor characteristics. KRAS mutations can 
be detected both in plasma and serum DNA (36,37). 
Carbohydrate antigen 19-9 (CA19-9) is currently the most 
meaningful and widely used biomarker in PDAC, and 
has a sensitivity and specificity of 79–81% and 82–90% 
respectively. However, approximately 5% to 10% of the 
PDAC patients are Lewis negative individuals which are 
documented to have scarce or no CA19-9 secretion (38).  
Therefore, measurement of ctDNA for detection and 
quantitative monitoring of KRAS mutations may offer an 
additional diagnostic biomarker to CA19-9 (39). Baseline 
ctDNA KRAS  detection rate was 93.7% (86.4% in 
patients with non-elevated CA19-9) with the application 
of an ultrasensitive ctDNA KRAS assay (40). However, 
the KRAS-mutation subtype in peripheral blood may 
be heterogeneous compared with that in the primary  
tumor (41). Additionally, KRAS mutations can be detected 
through genomic DNA in exosomes derived from the 
serum of PDAC patients. Exosomes are small vesicles 
(50–150 nm) of endocytic origin that are shed from viable 
cells into the circulation, and serum exosomes from 
patients with PDAC contain genomic DNA spanning all  
chromosomes (42). Exosomal DNA (exoDNA) can be 
detected even in the early stage of PDAC. Additionally, 
KRAS mutations in exoDNA were found in 7.4%, 
66.7%, 80%, and 85% of age-matched controls and 
localized, locally advanced, and metastatic PDAC 
patients, respectively, which is higher than the detection 
levels in cfDNA (14.8%, 45.5%, 30.8%, and 57.9%,  
respectively) (43). However, mutant KRAS in the circulation 
has also been detected in healthy samples, possibly limiting 
its usefulness as a marker for early diagnosis. 

Prognosis

There is still no consensus on whether KRAS mutations 
affect the prognosis of PDAC patients. Many studies have 
found that the presence of a KRAS mutation and a KRAS 
mutational subtype were both associated with a poor 
prognosis in PDAC patients (44,45). A single-nucleotide 
mutation induces a replacement of the GGT sequence 
(encoding glycine) by the GAT (aspartic acid-G12D-c35 
G>A), GTT (valine-G12V-c35 G>T), CGT (arginine-
G12R-C34 G>C), or GCT (alanine-G12A-c35 G>C) 
sequence. The KRAS G12 mutation accounts for 99% of 
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all mutations. A point mutation can also happen on codon 
13 (G13D) or 61 (Q61L or Q61H) but is less frequent 
(46,47). Whole-exome sequencing of PDAC revealed that 
codon Q61 alleles of KRAS are specifically associated with 
a better prognosis (48). Using next-generation sequencing, 
Qian et al. (49) analyzed DNA alterations in four main 
driver genes in 356 patients with resected PDAC. They 
found that patients who had KRAS-mutant tumors had a 
worse disease-free survival (DFS) and overall survival (OS) 
than those with KRAS wild-type tumors. Additionally, 
patients with KRAS G12D-mutant tumors had particularly 
different outcomes and the worst DFS. Ako et al. (36) 
proposed the contrasting idea that the prognosis of KRAS 
G12V-mutant tumors was poorer than other subtypes. 
In metastatic pancreatic cancer patients, KRAS G12V 
mutation was also correlated with poor OS based on 
subgroup analysis (50). Hamidi et al. (51) used a growth 
inhibition assay to determine the sensitivity to MEK 
inhibition in different KRAS mutational subtypes and copy 
number variations. They found that cell lines with KRAS 
G12V mutation and KRAS gain or loss were ~10 times 
more resistant than the other subtypes. Copy number 
variation may be an important biomarker for PDAC. 
Thus, multicenter investigations in a larger homogeneous 
cohort of PDAC patients are certainly needed in the future 
to reach a definitive conclusion.

Patients with KRAS wild-type tumors seem to benefit 
from chemotherapy. A multicenter, randomized phase 
IIb study found that patients with KRAS-mutant tumors 
experienced a significantly poorer prognosis than 
those with KRAS wild-type tumors when administered 
gemcitabine combined with the monoclonal antibody 
nimotuzumab (52). Another phase III trial that compared 
gemcitabine/erlotinib followed by capecitabine with 
capecitabine/erlotinib followed by gemcitabine in 
advanced PC also showed that KRAS wild-type patients 
have an improved OS (53). Early changes in the plasma 
DNA concentration of mutant KRAS is a sensitive index of 
the chemotherapy effect of the start stage in PDAC (54). 
An increase in plasma DNA in the sample collected from 
patients after chemotherapy was correlated with poorer 
PFS and OS than observed in patients with stable/reduced 
plasma DNA (55). The dynamic changes in ctDNA KRAS 
mutation load from serial measurements may be used as an 
assessment of therapeutic response, which was independent 
and complementary to the commonly used biomarker 
CA19-9, especially in Lewis negative individuals (40). And 
ctDNA level over time is a better predictor of survival 

than the dynamics of CA19-9 (56).

Therapeutics

Because the KRAS gene plays a vital role in PDAC 
development, it is an attractive therapeutic target. However, 
there is still no lone path to an effective treatment for 
KRAS-mutant PDAC (57). Nonetheless, researchers have 
attempted to find possible paths that can suppress the effects 
of KRAS in PDAC (58). 

Many studies have tried to inhibit RAS directly. Burns  
et al. (59) reported the identification of a small molecule 
that can link to a unique pocket on the Ras:Son of Sevenless 
(SOS): Ras complex and increase the rate of SOS-catalyzed 
nucleotide exchange in vitro. This finding provides a new 
target for the discovery of potent Ras signaling inhibitors, 
but this complex has yet to be targeted by existing 
compounds (Figure 1).

Compared with the protein inhibition approach, mRNA 
targeting via RNA interference (RNAi) has already been 
shown to be an effective alternative (60). Zorde Khvalevsky 
et al. (61) developed a local prolonged siRNA delivery 
system (Local Drug EluteR, LODER) that sheds siRNA 
against mutant KRAS (siG12D LODER) (Figure 1). They 
found that the in vitro growth of pancreatic cancer cells 
can be substantially inhibited by LODER-derived siG12D 
and that in vivo tumor growth can also be suppressed. 
Another phase 1/2a study showed that the combination of 
LODER-derived siG12D and chemotherapy demonstrates 
a potential treatment effect in patients with locally advanced 
pancreatic cancer (60). Additionally, many miRNAs have 
been shown to target KRAS in PDAC, including let-7a,  
miR-96, miR-126, miR-143 and miR-217 (62,63). For 
example, miR-126 can directly target KRAS at a ‘seedless’ 
binding site within its 3´ UTR. Replacing these miRNAs in 
KRAS-mutant PDAC patients may represent a new approach 
to preventing tumor progression and metastasis (62).

RAS must be positioned at the cell membrane to 
maintain its biological activity, and this association is 
induced by farnesyl transferase (FTase) (64). FTase 
attaches a 15-carbon farnesyl isoprenoid to the cysteine 
in the CAAX-motif, which is the first step in the CAXX 
modifications. Some farnesyltransferase inhibitors (FTIs), 
such as tipifarnib, have been tested clinically but do not 
show clinical benefit (65,66), likely because the RAS gene 
encodes four different proteins—HRAS, NRAS, KRAS4a, 
and KRAS4b—and because HRAS and NRAS do not rely 
on farnesylation. Another approach to interfere with RAS 
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membrane association is blocking the RAS pathway to the 
plasma membrane transporters. Phosphodiesterase 6 delta 
(PDE δ) has a pocket that can combine with RAS protein 
that has been modified by FTase. PDE δ can promote RAS 
protein distribution in the correct position and is involved 
in signal transduction (67). Deltarasin is a small-molecule 
inhibitor that inhibits the KRAS-PDEδ interaction. 
Through this process, oncogenic RAS signaling and the 
oncogenic KRAS-dependent proliferation of human PDAC 
cells are suppressed (Figure 1) (68). This brings a new 
approach to suppressing oncogenic RAS signaling.

Numerous inhibitors that target RAS downstream 
effector signaling (Figure 1), such as RAF/MEK/ERK and 
PI3K/AKT/mTOR signaling pathways, are already being 
tested in clinical trials. Many inhibitor combinations for 
PDAC treatment have demonstrated promising results (69). 
LY3009120 is a pan-RAF inhibitor with activity against 
three RAF isoforms and avoids the induction of paradoxical 
downstream signaling activation (70). Verteporfin, a YAP 
inhibitor (71), can block the activation of a parallel AKT 
signaling pathway after LY3009120 treatment, significantly 
enhancing the antitumor efficacy of LY3009120 (72). Many 
inhibitor-based combinations must be informed by the 
activation state of each putative driver in a given treatment 
context (73) and will be needed for efficacy across different 
KRAS-mutant PDAC populations (74,75). Some inhibitors 

can block the ERK signaling pathway indirectly. For 
example, inhibition of receptor for advanced glycation end-
products (RAGE) using the pharmacological antagonist 
FPS-ZM1 restrained ERK activity downstream of KRAS in 
PDAC cell lines (76).

Chimeric antigen receptor T cells (CAR-T) have 
shown huge success against CD19-ex-pressing B cell  
leukaemia (77). As CAR T cell therapy spread, so does 
the search for new biomarker targets for PDAC (78). 
However, there are reports on the CAR-T cells treatment 
which target an upstream component of the RAS signaling 
pathway (i.e., EGFR/HER2) in pancreatic cancer. Raj  
et al. (79) used switchable CAR-T cells to target the antigen 
HER2. They found that a switchable CAR-T system is 
effective against aggressive and disseminated tumours 
derived from patients with advanced PDAC while affording 
the potential safety of a control switch.

In addition, many alternative strategies exist for targeted 
KRAS therapy in PDAC. Ma et al. (80) generated an 
engineered E3 ubiquitin ligase (RC-U) to target the KRAS 
oncoprotein for ubiquitination and degradation, resulting 
in a reduction in PDAC cell proliferation both in vitro and  
in vivo (Figure 1). Exosomes that carry short interfering 
RNA or short hairpin RNA specific to KRAS G12D, 
generated by Kamerkar,  have been confirmed to 
significantly suppress cancer development in multiple 

Figure 1 Model of anti-KRAS therapy. Deltarasin inhibits the KRAS-PDEδ interaction, which inhibits oncogenic RAS signaling and 
suppresses PDAC. RC-U, which targets the KRAS oncoprotein for ubiquitination and degradation, results in the reduction of PDAC cell 
proliferation. siRNA and miRNA target KRAS to inhibit the growth of PDAC cells. Additionally, numerous inhibitors, such as LY3009120, 
Verteporfin, and FPS-ZM1, target RAS downstream effector signaling. Furthermore, some small-molecule compound inhibitors bind 
directly to RAS protein and inhibit GDP-GTP regulation. PDAC, pancreatic ductal adenocarcinoma.
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mouse models (81).

Summary

KRAS can be used to predict the prognosis and assist in the 
early diagnosis of PDAC. Unfortunately, despite the many 
paths available to suppress the effects of KRAS, none of the 
treatments targeting these paths have been significantly 
successful in the clinic. More studies are required to further 
elucidate the effects of KRAS and identify therapeutic 
targets in PDAC.
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