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Introduction

Ovarian cancer starts as a single tumor, then mutates to 
a heterogeneous complex disease that is composed of 
different types of tumors (1). It remains the most fatal 
disease in women reproductive system. Even if the disease 
is in the early stages, early detection is sometimes difficult. 
Although the standard approved chemotherapy treatments 
for ovarian epithelial, fallopian, and peritoneal cancers are 
bevacizumab (Avastin), Alkeran (Melphalan), Bevacizumab, 
Carboplatin, Cisplatin and Olaparib (Lynparza) in a single 
or in a combination form, sometimes show undesirable drug 
resistance after the initial promising treatment. Therefore, 
the development of new drugs is required to enhance the 

drug pharmacological activity and to reduce the drug’s 
side effects based on reliable protein biomarkers. This 
will effectively help in ovarian cancer early detection and 
treatment. Kim et al. and others have stated that HSP27, 
and HER2 are both reliable cancer biomarkers (2-7).

HSP27 is a low molecular weight protein (27 kDa), 
which is expressed in all eukaryotic cells. It plays a role 
in normal cell proliferation, differentiation, invasion, 
metastasis, and death. HSP27 exists in two forms: either 
as a large oligomer for chaperon intrinsic functions or as a 
small oligomer that binds to the microfilaments to stabilize 
them as extrinsic functions Figure 1A (6,8). It is also known 
to assist the correct folding of the misfolded proteins to the 
correct chain structure (9,10). In addition, HSP27 prevents 
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apoptosis through inhibition of apoptotic protein release 
from the mitochondria. It is a group of polypeptides, which 
work when the cell is subjected to stressful conditions such 
as an increase in temperature or pressure, or when the cell 
is faced with some toxic compounds such as chemotherapy 
drugs (11). Stress induces an increase of expression 
and phosphorylation of HSP27. HSP27 interacts with 
many proteins to stabilize them and prevents a variety of 
chemotherapy drugs from causing cancer cell death (12).  
Thus, clinically HSP27 displays drug resistance to 
chemotherapy treatment in some types of cancers, and there 
have been reports stating that high HSP27 expression is 
associated with poor patient survival rates (2,4-6). In addition, 
HSP27 over-expression was found in a number of malignant 
cancer types such as prostate, breast, pancreatic, and ovarian 
cancers (13). Further, HSP27 is over-expressed in a late stage 
ovarian malignant tumor more than the early stage of the 
benign tumor. Although the cellular role of HSP27 in cancers 
is not yet completely understood, HSP27 is potentially a 
good molecular target for cancer therapy (5,6).

HER2, on the other hand is a trans-membrane protein 

tyrosine kinase receptor, which regulates cell survival, 
proliferation, differentiation, and migration. Over-
expression or mutation of HER2 is associated with a 
malignant phenotype in many cancers, including ovarian 
cancer (14,15). This protein forms a dimer by binding to 
another family member growth factor receptor in the cell 
membrane, which activates downstream signaling pathway 
through kinase phosphorylation; then this process activates 
HSP27 protein’s function, which is important for the 
cell cycle check points Figure 1B (5). Studies have shown 
that HSP27 expression is directly proportional to HER2 
expression up/down regulation and both are regulated 
through MAPK phosphorylation pathway (14,16-18). There 
are many drugs of monoclonal antibodies that target HER2, 
the common drug used being trastuzumab (Herceptin). It 
is a humanized recombinant monoclonal antibody, which is 
used clinically to treat patients with HER2 positive (5,19,20). 
HER2 over-expression cell lines were down-regulated 
after treatment with herceptin such as SKBR3 breast 
cancer cell line (2). However, the majority of patients that 
initially respond to herceptin begin to progress again within  
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Figure 1 Targeting dual proteins for their cellular functions. (A) HSP27 intrinsic and extrinsic cell functions; (B) HER2 and HER3 
dimerization that forms downstream signaling pathway; (C) targeting dual proteins through HER2 pathway; (D) Nimesulide (Methane 
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one year (20). In addition, HSP27 has been recognized to 
reduce cellular herceptin’s ability by direct binding to HER2 
and increasing its stability (18,21). HER2 over-expression 
ovarian cancer is more resistant to the chemotherapy drugs 
including taxol, which leads to aggressive progression in 
ovarian cancer (19,20).

HSP27 and HER2 interactions’ complex often increases 
the protein stability and up regulated HSP27 protein 
expression levels, which have been reported in HER2 
positive breast tumors Figure 1C (21,22). In order to 
overcome the barrier of chemotherapy drug resistance, 
nimesulide drug was used as a starting material to synthesize 
a series of compounds for the inhibition of HSP27  
function (23-25). Nimesulide is a non-steroidal, anti-
inflammatory drug, and is characterized by analgesic, 
antipyretic, and anti-proliferation properties Figure 1D. 

The main aim of this study is to find HER2 over-
expression ovarian cancer cell line (OVCAR3, SKOV3, & 
HEY1B) using western blot assay, followed by the screening 
and evaluation of the potent anticancer agents’ activities 
using the standard MTT assay designed to assess the cell 
proliferation after HSP27 suppression. It is worth noting 
that our goal is to target dual proteins through HER2 
pathway Figure 1C (26-29). 

Methods

Cell lines and reagents

The human ovarian cancer cell lines SKOV3, OVCAR3 
and HEY1B were obtained from the laboratory of Dr. 
Aimin Zhou at Cleveland State University. The anti-bodies 
(HSP27, HER2, HRP, B-actin) were purchased from Cell 
Signaling Technology. Cell culture media RPMI and other 
supplements were obtained from Thermo Fisher Scientific. 
Nimesulide analogs were synthesized in Cleveland State 
University laboratory. MTT (3-(4,5-dimethylthiazol-
2-yl)-2,5-diphenyl-2H-tetrazolium bromide) is from 
Sigma-Aldrich (Milwaukee, WI). Chemicals and reagents 
including RIPA, PI, EDTA, SDS, protogel, protogel buffer, 
loading and sample buffers, Tween 20, glycine, TRIS, SDS, 
methanol, and Luminal are commercially available, and are 
ready for direct use without preparation.

Cell culture

The cells were maintained in RPMI1640 medium 
containing 10% FBS, and 10 mL penicillin-streptomycin 

and 100 µL ciprofloxacin. FBS was deactivated for 30 min 
in a 37 ℃ water bath before use. Cell cultures were grown 
at 37 ℃, in a humidified atmosphere of 5% CO2 incubator.

Western blot assay

Confluent ovarian cancer cells dishes (OVCAR3-SKOV3-
HEY1B) were washed with PBS and the cells were 
harvested by scraper. This was followed by re-suspension 
of the cells with PBS and then centrifuging the collected 
sample at 3,500 g. The supernatant were then removed 
and the collected cell pellets were lysed by mixing them 
with RIPA, PI, and EDTA 100 µL. The cells were then 
vortexed and centrifuged for 60 minutes at 16,500 g. Each 
cell line proteins were boiled with (2×) loading buffer for 
5 min and then normalized and electrophoresed on a 10% 
SDS-polyacrylamide gel. The gel containing the proteins 
was transferred to nitrocellulose membrane followed by 
blocking of the non-specific proteins with 5% NFDM in 
PBST. The membranes were rinsed three times for five 
minutes with PBST (0.1% Tween 20). Then, the membrane 
was incubated with the primary antibody (target-HER2) for 
one hour (rabbit 1:1,000 dilution). Next, the membranes 
were washed three times with PBST for 10 minutes each 
and incubated with the secondary antibody (anti rabbit-
HRP conjugated secondary antibody 1:1,000 dilution) 
for one hour. Similar steps repeated for the membrane 
incubated with HSP27 (rabbit 1:500 dilution) followed by 
one-hour incubation with the secondary antibody. Then, 
the membrane was again washed with PBST three times 
for 10 minutes each to be prepared for the visualization 
of the bands by chemiluminescence substrate. B-actin  
(1:1,000 dilution) was used as housekeeping control.

MTT assay

MTT assay was performed by monitoring the reduction of 
yellow MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl 
tetrazolium bromide) to violet color product. After 
culturing the cells in the 2D monolayer cell culture, cells 
were harvested and then seeded with RPMI1640 medium 
into 96-well, and incubated overnight. Then, cells were 
treated with different concentrations of anticancer agents 
in four replicates each and incubated for 72 hr. DMSO 
control wells received concentrations equal to those in the 
drug-treated cell wells. The cell viability was determined 
by MTT reagent the popular metabolic dye 100 µL of  
0.5 mg/mL in fresh medium, added after the removal of 
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the old medium and the cells were incubated for 1 hr. 
Supernatants were removed from the wells and 100 µL 
DMSO were added on the reduced MTT dye. The final 
absorbance measurement was determined using a plate reader 
at 570 nm and the values were normalized to controls. 

Statistical analysis

Graph Pad Prism software (Graph Pad Software 
Incorporated) and Microsoft Excel (Microsoft Corporation) 
were used to determine the statistical and graphical 
information. IC50 values were normalized using nonlinear 
regression analysis.

Results and discussion

Determination of HER2 over-expression ovarian cancer 
cell line using western blot assay

Western-blot analysis was performed as described 
previously. Cell lysates were collected from all three cancer 
cell lines to examine HER2 over-expression cell line. From 
the visualized bands, we found that SKOV3 cell line is 
highly expressing HER2 protein more than OVCAR3 and 
HEY1B cell lines Figure 2. Therefore, SKOV3 carcinoma 
cells, which express high HER2, treated with the potent 
selective compounds BM 1, 5, 8, 11, 13, 14, 15, 16, 17 at  
1 µM concentration Figure 3. The anticancer agents showed 
potent reduction in HER2 expression compared with the 
DMSO control band. In depth, SKOV3 cells’ bands treated 
with the compounds BM 11, 13, 14, 15, 16, and 17 were 
much more potent than BM1, 5, and 8 in reducing HER2 
protein expression. 

Figure 2 SKOV3 cells highly expressed HER2 protein. HER2, human epidermal growth factor receptor 2.

Figure 3 Reduction of HER2 levels after HSP27 suppression. 
SKOV3 cells were treated with the potent compounds BM 1, 5, 8, 11, 
13, 14, 15, 16, and 17 at (1 µM) concentration incubated for 24hours 
(60 µg protein loading), all compounds were potent and reduced 
HER2 expression. In depth, compounds BM 11 to 17 more potent 
than BM 1, 5 & 8. HER2, human epidermal growth factor receptor 2.
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Evaluation of HSP27 inhibitors treated on SKOV3, 
OVCAR3, & HEY1B ovarian cancer cell lines using  
MTT assay

HSP27 inhibitors were examined for their potency 
and selectivity on cell growth inhibition with SKOV3, 
OVCAR3 & HEY1B ovarian cancer cell lines using MTT 
assay. The IC50 values for each anti-cancer agent were 
summarized in Table 1. The data revealed that SKOV3 
cell growth inhibition ranged from 0.010 to 0.039 µM. 
While, OVCAR3 cell line showed cell growth inhibition 
ranges from 0.052 to 5.989 µM. Also, HEY1B cell growth 
inhibition ranged from 0.013 to 208.8 µM. The data 
analysis showed that our agents have potent anti-cancer 
activity and almost all of the agents showed activity with 
SKOV3 cell line but some of the agents have potential only 
towards OVCAR3, and others only towards HEY1B cell 
line. However, the anticancer agents BM 1, 5, 8, 11, 13, 14, 
15, 16, 17 had the potential towards both OVCAR3 and 
HEY1B cell lines, and selectively towards SKOV3 cell line, 
which is highly adapted cell growth inhibition Figure 3.  
Further in depth, analysis of the data revealed that BM 11, 
13, 14, 15, 16 &17 were more potent compounds when 
treated with SKOV3, than BM 1, 5 and 8. This potency is 
related to the presence of the shared propyl side chain in 
the chemical structure Figure 4A. Further, in comparing 

the most potent compounds BM13 and BM17 (IC50 values 
and structures), their strengths related to the methoxy 
substituent on the benzene ring Figure 4B. In sum, all 
agents showed potent anticancer activity Figure 4C,D.

Conclusions

HSP27 and HER2 over-expression in ovarian carcinoma 
is still a matter of debate. Our anticancer agents were 
synthesized to target HSP27 protein function and decrease 
HER2 receptor’s stability through HER2 pathway. 
Interestingly, western blot assay data showed parallel results 
to the MTT assay’s data. Western blot analysis revealed 
that HER2 over-expression cell line is SKOV3 cell line, 
and the synthesized agents showed great anticancer activity 
towards it. In conclusion, suppression of HSP27 by anti-
cancer agents reduced its function and decreased HER2 
stability through HER2 pathway found in SKOV3 cells. 
The MTT assay data also revealed that SKOV3 cell line 
adapted cell growth inhibition more than OVCAR3 and 
HEY1B cell lines. Overall, our findings indicated that down 
regulation of HSP27 in SKOV3 cells lead to reduction of 
HER2 stability. These preliminary data indicated that we 
can synthesize novel anti-cancer agents, which are effective 
in targeting two proteins in cancer rather than operating 
only on a single protein. 

Table 1 IC50 values for ovarian cancer cell lines treated with anticancer agents

BM
IC50 values to inhibit  

SKOV3 cell growth, µM
IC50 values to inhibit OVCAR3 

cell growth, µM
IC50 values to inhibit  

EY1B cell growth, µM
IC50 OVCAR3/IC50  

SKOV3, SI
IC50 HEY1B/IC50  

SKOV3, SI

1 3.74±2.95 5.54±2.93 5.98±3.14 1.47 1.59

5 4.11±3.18 5.35±3.74 4.35±2.90 1.30 1.10

8 2.01±1.01 3.65±1.55 27.6±19.1 1.80 13.7

11 0.23±0.09 0.29±0.14 13.8±4.62 1.25 59.3

13 0.05±0.03 0.38±0.24 2.33±0.90 6.70 40.7

14 0.29±0.14 0.31±0.17 1.10±0.48 1.01 3.70

15 0.73±0.46 0.74±0.38 6.84±2.70 1.01 9.30

16 0.34±0.23 2.97±1.25 29.5±15.2 8.50 85.0

17 0.02±0.001 0.15±0.07 2.58±1.28 8.30 143

SKOV3, OVCAR3 and HEY1B ovarian cancer cell lines.
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Figure 4 New HSP27 inhibitors suppress SKOV3 cell growth. (A) Propyl side-chain in the chemical structure is the reason for the potency 
of compounds BM11 to BM17; (B) the potency of compounds BM13 and BM17 is related to the methoxy substituent; (C) agents’ structures; 
(D) all agents showed anticancer activity.
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