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Introduction 

Biomarkers are measurable biological indicators of the 
status of an organism in a particular health condition 
or disease state. Biomarkers have been discovered and 
developed to provide information in determining disease 
diagnosis and prognosis, predicting response to therapies 
and drug-induced toxicities, and helping in new drug 
development. Biomarkers have also been utilized in 
personalized medication to optimize treatment efficacy 
and safety in clinical practice. In recent years, many cancer 
treatments benefit only a fraction of the patients to whom 
they are administered. A high proportion of patients are 
subject to post-surgery adjuvant chemotherapy; however, 
approximately 70% of lung cancer patients in stage I are 

cured by surgery alone (1-3). Recently, development of 
new cancer drugs have shifted toward molecularly targeted 
pathways (4-6); it is expected that only a subgroup of 
patients is likely to benefit from a targeted drug. A goal of 
cancer trials has become development of a biomarker-based 
classifier to identify subgroups of patients for whom a new 
targeted treatment is beneficial. The term ‘biomarker’ has 
been defined and used in numerous ways for different data 
types, purposes, and applications (7,8). In drug development, 
biomarkers can be classified into four categories: prognostic 
biomarkers, predictive biomarkers, pharmacodynamic 
biomarkers, and surrogate endpoints (7-11). Prognostic 
biomarkers predict patients with differing risks of an overall 
outcome of disease, regardless of treatment. Predictive 
biomarkers predict the likelihood of patient’s response 
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to a particular treatment. Both prognostic and predictive 
biomarkers are baseline pretreatment measurements. 
Prognostic markers classify patients into high-risk and low-risk 
groups with respect to no-treatment or a standard-treatment. 
Predictive markers separate patients for whom a particular 
treatment is effective from patients for whom the treatment is 
not needed. 

Pharmacodynamic biomarkers indicate drug effect on 
the target in an organism. A pharmacodynamics biomarker 
provides a link between drug regimen and target effect 
from the treatment, such as levels of gene expression 
or microRNA, which is altered by the treatment (12). 
Pharmacodynamic biomarkers are often used in earlier phases 
of drug development to demonstrate drug activity, provide 
information on likely clinical benefit and go/no-go decisions. 
Pharmacodynamic biomarkers play critical role throughout 
drug development, from selection of lead compounds in 
preclinical models to first-in-human trials. A surrogate 
endpoint is a measure of the effect of a treatment that 
correlates well with a clinical endpoint (9,10). A surrogate 
endpoint is used as a biomarker intended to substitute for a 
clinical endpoint with a faster and more sensitive evaluation 
of treatment effect (9). Statistical methods for investigation 
and validation of surrogacy of a biomarker have been 
reviewed (13-15). Both pharmacodynamic biomarkers and 
surrogate endpoints measure biological changes from the 
treatment as indicators of drug activity or treatment efficacy. 
These biomarkers can be identified only after treatment has 
been administered to the patients. 

Predictive biomarkers are used to develop (binary) 
classifiers to identify patients as either good or poor 
candidates for a specific treatment to optimize treatment 

selection. Development of a predictive-biomarker-
classifier consists of two stages: (I) development of the 
binary classifier and (II) clinical validation of the classifier. 
Classifier development involves assay development, 
biomarker identification, and classification algorithm 
and performance assessment. Clinical validation involves 
conducting prospectively randomized clinical trials to 
demonstrate treatment efficacy in the classifier identified 
patient subpopulation. The patient subpopulation may 
be included in a whole study patient population (both 
biomarker positive and biomarker negative patients), or 
include only biomarker positive patients. Many types of 
clinical trial designs incorporating predictive biomarkers 
have been proposed and discussed. These include standard 
randomized all-patients design, biomarker by treatment 
interaction design (biomarker-stratified design), biomarker-
strategy design, enrichment design (targeted design), 
and hybrid design (16-19). Figure 1 plots four commonly 
known designs for biomarker studies. Figure 1A illustrates 
randomized all patient design in which all patients are 
randomized first and then test afterwards to determine 
their biomarker status. Figure 1B illustrates biomarker by 
treatment interaction design in which patients are tested 
first and divided into biomarker-defined subgroups. 
Patients within each biomarker subgroup are randomly 
assigned to different treatments. Figure 1C illustrates 
enrichment design, the study patients are selected 
based on a pre-specified biomarker status and randomly 
assigned to different treatments. Figure 1D illustrates 
biomarker-strategy design with a standard control; 
all patients are randomized to either biomarker-based 
strategy arm or non-biomarker-based strategy arm. In 

Figure 1 (A) Randomized all-patient design; (B) biomarker by treatment interaction design; (C) enrichment design; (D) biomarker-strategy 
design with standard control.
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the biomarker-based arm, the biomarker positive patients 
receive the treatment and biomarker negative patients 
receive the standard treatment. All patients in the non-
biomarker-based arm receive the standard treatment. 
Clinical designs for validation of predictive or prognostic 
biomarkers have been given in detail by Sargent et al. (16) 
and Buyse et al. (10) and will not be considered in this 
review. 

The clinical designs mentioned above have been 
developed based on the premise that the biomarker or set 
of biomarkers is available for clinical validation before the 
start of phase III trial. The study is expected to evaluate 
a treatment effect in the biomarker defined population. 
Furthermore, these candidate biomarkers would have 
been well studied in the phase II developmental stage, 
the performance characteristics of the classifier are well 
established in one or more validation studies, and the assay 
and predictive performance are reproducible and robust 
experimentally and analytically. However, completely phase 
II validated biomarkers for uses in the phase III trial are 
often unavailable (20-22). Clinical trials for targeted drugs 
can be developed under the framework of drug-diagnostic 
co-development, which prospectively co-develop a 
diagnostic test for patient identification in conjunction with 
a trial for therapeutic efficacy (22-24). 

This review is concerned with statistical aspects 
of biomarker adaptive design for the development of 
predictive biomarker classifier. The presentation is in terms 
of microarray gene expression experiments, such as gene 
expression variables and clinical covariate variables, referred 
to as genomic variables.

Development of biomarker adaptive designs 

Development of predictive classifiers generally consists 
of three components: biomarker identification, classifier 
development, and performance assessment (25). These 
three components represent three major steps involved 
in the development of prediction models for application 
to diagnostic, prognostic, and prediction of response. 
Recently, Freidlin and Simon (20) proposed the adaptive 
signature design (ASD), which involved biomarker 
identification and classifier development to the selection 
of candidate patients and combined with a statistical 
test for treatment effect in the selected patients. In this 
section, the ASD is presented as an integrated part of 
the development of biomarker adaptive clinical trial 
design. 

Biomarker identification

Consider a two-arm experiment with m genomic variables. 
For a given patient, let xi denote the measurement for 
the i-th genomic variable (i =1, …, m), t denote the 
arm indicator (t =0 for control and t =1 for treatment), 
and yit denote the binary clinical outcome (yit =1 for 
positive outcome and yit =0 otherwise). Let pit denote the 
probability of positive outcome from the i-th variable and 
arm t. Freidlin and Simon (20) proposed an approach to 
identifying predictive biomarkers by fitting a (reduced) the 
logistic regression model without the main effect term xi, 

[1].logit p b b t b x t eit i i i it( ) = + + ∗( ) +0 2 3

This model can be generalized in terms of a generalized 
linear model (26), by replacing logit link function with the 
Cox proportional hazards function for survival time data (27), 
or linear regression function for continuous response data. 

The coefficient b2i is the treatment effect regardless 
of the value of xi, and the interaction b3i is differential 
treatment effects between the biomarker-positive patients 
and biomarker-negative patients; that is, treatment effect 
depends on the value of the predictive biomarkers, xi. These 
are the markers that predict differential treatment effects. 
A set of candidate predictive biomarkers can be obtained by 
identifying those variables xi’s with a significant interaction 
b3i. The set of significant interaction variables b3i, denoted as 
U, is used to develop the binary classifier. 

Classifier development

A classifier is a mathematical function that translates the set 
of biomarker values to a set of categories. Two categories are 
considered; these two categories correspond to predictive 
outcomes, either positive or negative. Let n denote the total 
number of patients, and D = (s1, s2, …, sn) be the sampled 
dataset consisting of n labeled observations. Each sample k 
(k = 1, 2, …, n) consists of two parts, sk = (xk, yk), where xk 
is a vector for the set of biomarkers in U, and yk is the class 
label (1 for positive and 0 for negative) for the k-th observed 
outcome. The objective is to build a classification rule from 
the observed dataset D to accurately predict outcome of new 
sample with the biomarker set x*: p(x* | D) = y* (0 or 1). Given 
the set of (candidate) predictive biomarkers U, development 
of a classifier involves two components: (I) selecting a 
classification algorithm; and (II) specifying the training 
parameters for the selected algorithm (25). 

For binary outcomes such as positive and negative, 
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numerous classification algorithms have been proposed 
and evaluated for various applications. There include 
nearest neighbor classification, logistic regression, several 
variants of linear discriminant analysis, partial least squares 
analysis, neural network algorithms, naïve Bayes algorithms, 
shrunken centroids, several variants of classification trees, 
regression trees, and support vector machines (SVM) 
(28,29). Recently, Baek et al. (25) found that random forests 
(RF) (30), SVM (31,32), and diagonal linear discriminant 
analysis (DLDA) (33) performed well when the number of 
predictors is large. These three classification algorithms are 
commonly used in classification and prediction. 

Once the classification algorithm is determined, the 
prediction model needs to be specified before model fitting. 
Model specification means specifying all aspects of the 
model parameters, such as specific functional form of the 
prediction model and tuning parameters. For example, SVM 
can use either the linear kernel or radial basis function; in 
the k-nearest neighbor classification, k can be pre-specified 
or estimated while performing model validation. The 
ASD approach requires specifying two tuning parameters 
in classification of patients into subgroups (details are 
described below). 

For quantitative outcomes such as time-to-event outcomes, 
e.g., survival or disease-free survival, development of a binary 
classifier is more complex. A common approach is to convert 
the set of marker measurements into a univariate predictive 
score, l(x) = ∑ wj xj, where xj’s are biomarker values and wj’s 
are weights assigned for the j-th biomarker. The weights can 
be determined by fitting a multiple regression model or by 
a dimensional reduction approach (34). Specifically, if the 
number of variables xj’s in U is not large, a multiple logistic 
regression (or Cox proportional hazards) model is fit using 
all variables xj’s as predictors. The regression coefficients 
βj’s of the fitted model are the weights of the biomarker 
variables xj’s, that is l(x) = ∑ βj xj. Alternatively, the weights 
can be estimated using the first principal component of the 
variables xj’s (35). The quantitative predictive scores need to 
be converted to a binary variable by assigning a threshold 
cutoff value to divide patients into biomarker-positive and 
biomarker-negative subgroups. The threshold cutoff is 
commonly specified at a percentile of the predictive scores or 
predictive outcomes, such as the median of predictive scores 
or median of survival time for convenience.  

The predictive classifiers described above are to be used 
in phase III clinical trial designs for biomarker-guided drug 
development, such as enrichment designs or biomarker-
strategy designs. However, it may be difficult to fully 

establish a biomarker signature before the start of phase III 
trials (20-22). In some cases, if the candidate biomarkers 
are known, but, the classifier to define biomarker-
positive patients has not yet been fully established or if 
candidate biomarkers are not known at trial initiation, 
then biomarker-adaptive designs may be applied (21). The 
adaptive design combines a test for overall treatment effect 
in all randomly assigned patients and a classifier to identify 
biomarker-positive patients with a test for treatment effect 
in the biomarker-positive patients. In a particular case 
with one single biomarker, Jiang et al. (36) presented an 
“adaptive threshold design” to estimate an optimal cutoff 
by maximization over a number of possible cutoff values. 
Freidlin and Simon (20) proposed an “adaptive signature 
design” for a set of potential biomarkers described below. 

Adaptive signature designs (ASD)

Biomarker adaptive designs identify most suitable target 
subpopulations with respect to a particular treatment, 
based on either clinical observations or known biomarkers, 
and evaluate the effectiveness of the treatment on that 
subpopulation in a statistically valid manner.

The ASD consisted of two stages. The data were initially 
divided into a training set and a test set. The first stage 
used the training set to identify a set of candidate predictive 
biomarkers using Eq. [1]. For each gene, the logit model 
was fit to the training data; the genes with a significant 
interaction coefficient b3i were selected as predictive 
biomarkers based on a pre-specified type I error cutoff 
threshold. The second stage used the training set to identify 
biomarker-positive and biomarker-negative patients. The 
ASD used a machine learning voting (MLV) method to 
identify a biomarker positive subgroup. The procedure 
requires two pre-specified tuning parameters R and G; the 
patients are classified as biomarker positive if the predicted 
treatment versus control odds ratio exceeds a specified 
threshold R for at least G of the significant genes, that is, 
exp{b2i + b3i xi} > R or b2i + b3i xi > ln(R), xi ϵ U. 

The ASD analysis of the trial consisted of two tests with 
proper allocation of the significance level of each test to 
keep the overall type I error controlled at an acceptable 
level. The first test is a comparison between the treatment 
and control arms in the whole trial population, the second 
test is a comparison in the biomarker subgroup population. 
The ASD design identifies and validates predictive 
biomarkers with two tests for treatment effect in a single 
prospective trial. Here, the validation in the subgroup is 
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to test if the predictive classifier is useful for treatment 
selection. 

Performance assessment

Two aims need to be considered in the evaluation of 
biomarker adaptive design: (I) whether the classifier can 
classify biomarker-positive and biomarker-negative patients 
accurately; and (II) whether the treatment is beneficial 
to the biomarker-positive patient subgroup. Regarding 
the first aim, the classifier can be evaluated in terms of 
sensitivity, specificity, and accuracy, as well as positive 
predictive value (PPV) and negative predictive value 
(NPV). PPV is the probability that a selected biomarker-
positive patient is truly biomarker-positive and NPP is the 
probability that a selected biomarker-negative patient is 
truly biomarker-negative. PPV and NPP are more relevant 
measures of predictive performance; these two quantities 
directly measure the proportions of correct identifications 
for these two subgroups. Additionally, receiver-operating 
characteristic (ROC) curves are a statistical graphic method 
widely used to provide a summary measure for evaluation 
of medical diagnosis. A ROC curve is a plot of sensitivity 
as function of (1-specificity) for different cut-off points 
of a decision threshold. The area under the ROC curve, 
called the AUC or c-statistic, is a measure of how well a 
model discriminates patients into two classes. Regarding 
the second aim, primary evaluation is the power to detect 
a treatment effect in the biomarker-positive group. The 
power depends on the performance of the first aim, sample 
size, and type I error allocation between the overall test and 
subgroup test. For a given sample size and significance level, 
a classifier with higher sensitivity and specificity should be 
more powerful to detect treatment effect. 

The most important consideration in the evaluation 
of a procedure is to unbiasedly assess its “performance”, 
which includes the classifier’s accuracy and power to detect 
treatment effect. To obtain unbiased estimates, the current 
sampled data are divided into a training set and a separate 
test set. The training set is used for model development, 
and the test set is used for performance assessment. The 
key principle is that the test data should never be used in 
the model development, including biomarker identification, 
classifier development, and testing for treatment effect in 
subgroup analysis. 

The split-sample and cross-validation methods are 
commonly used to assess performance of a classifier. The 
split-sample method randomly splits the data into two 

subsets (either the entire data or a designated test dataset), 
a training set for model building and a test set for model 
validation. Split-sample validation is known to have large 
variance, especially when the sample size is small. The 
precision may be improved using resampling techniques. 
Specifically, cross validation involves repeatedly splitting 
the sampled data into a training set and test set to generate 
different training and test sample partitions to repeatedly 
estimate “accuracy”. The averaged “accuracy” from different 
training-test partitions is the classifier “accuracy” (25). The 
split-sample method provides a single performance analysis. 
The cross-validation can be regarded as a multiple split-
sample validation. The cross-validation provides more stable 
estimates and the uses of the data efficiently. The original 
ASD (20) used a split sample validation for performance 
assessment. A more powerful version, “cross-validated 
adaptive signature design” (37), was proposed recently. The 
cross-validation method was applied to tune the parameters 
to improve performance of the classifier (37,38).

Statistical issues in the development of 
biomarker adaptive designs

Interaction test

The traditional statistical approach to determining if the i-th 
variable xi is associated with a treatment response yit is to 
fit the full generalized linear regression model, including xi 
and treatment t as main effects and the interaction (xi*t): 

[2].h p b b x b t b x t eit i i i i i i it( ) = + + + ∗( ) +0 1 2 3

The difference between Eqs. [1] and [2] is that Eq. [2] 
includes the main effect b1i xi for an association between the 
i-th gene xi and the response yi0. In the standard statistical 
modeling, the initial model typically starts with main effects 
and adds interaction terms as appropriate. Therefore, it 
would not test interactions without the main effects present 
in the model. However, it is well known that the power 
for assessing interaction effects using Eq. [2] is often poor; 
a primary reason is that the sample size is calculated to 
address the main effects. Eq. [1] should have more power to 
detect an interaction effect than Eq. [2], and, therefore, is 
useful for identification of predictive biomarkers.

If the interaction b3i is significant, then the predictive 
variable xi may be regarded as a (candidate) predictive 
biomarker. It should be noted that a significant interaction 
does not automatically imply that the variable is predictive. 
When the interaction effect is significant, the hazard ratio 
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(HR) is a useful statistic for quantifying the treatment effect 
and the interaction effect. The HR of the treatment to the 
control with respect to xi is HR(xi) = exp(b2i + b3i xi). 

Subgroup analysis

Subgroup analysis is referred to as an evaluation of treatment 
effects in specific subgroups of patients defined by baseline 
characteristics. Subgroup analysis has a long history of 
addressing the heterogeneity of treatment effects across 
patient subgroups of interest (39-45). In general, there are 
two possible situations that may involve subgroup analysis: 
(I) an overall treatment effect and a differential subgroup 
effect; and (II) no overall treatment effect but a differential 
subgroup effect. In the first situation, subgroup analysis is 
conducted to demonstrate that there is consistency in the 
effect across various subgroups, and/or that certain subgroups 
may experience greater benefits or harms than others. In the 
second situation, subgroup analysis is conducted to show 
that there is a ‘statistically significant’ treatment effect in one 
or more subgroups. The second situation commonly occurs 
when the overall treatment effect has marginal significance (or 
no significance). One major criticism is that the subgroups are 
determined in the post hoc analysis. These types of subgroup 
analyses are considered as descriptive and exploratory, and 
do not provide validation evidence for subgroup treatment 
effects. When the interaction effect is significant, there may 
be four possible comparisons of interest: comparisons of 
control versus treatment arms for the biomarker positive 
and biomarker negative patients, and comparisons between 
biomarker positive versus biomarker negative patients 
within the control arm and within the treatment arm. In 
confirmatory clinical trials, the subgroup should be defined 
by baseline characteristics and analysis should be pre-
specified with proper control of the type I error rate. More 
comprehensive discussion of subgroup analysis in tailing 
clinical trials is published in the reports (44,45).

An interaction test between the treatment and subgroup 
is a commonly used statistical method for assessing the 
heterogeneity of treatment effects among subgroups of a 
baseline (predictive) variable. This approach performs one 
statistical test irrespective of the number of subgroups. 
Each variable defines a characteristic of a subgroup. The 
set of predictive biomarkers jointly defines the biomarker 
positive and negative subgroups. In order to identify all 
potential predictive biomarkers, the interaction test must 
be performed for each genomic variable among all variables 
considered in the study. Since many tests are performed, the 

level of significance needs to be adjusted to account for false 
positive findings. 

Multiple testing

Subgroup analysis typically involves a test of hypothesis 
of treatment effect in all patients and a test in biomarker-
positive subgroup; it may test or estimate the treatment 
effect in the biomarker-negative subgroup depending on the 
study objectives. A P value is computed in each test. When 
the P value is less than or equal to the predetermined level 
of significance α. the test concludes that there is a significant 
treatment effect with the type I error rate of no more than 
α. The level of significance is defined under a single test. If 
more than one test is conducted, the level of significance of 
individual tests needs to be adjusted so that the overall type 
I error rate is no more than α. The Bonferroni adjustment 
is the simplest method to account for the multiple testing 
problem; the Bonferroni adjustment divides the significance 
level of each test by the number of tests performed. If two tests 
are performed, Bonferroni uses 2.5% significance level for 
each test to ensure an overall 5% error rate. In subgroup 
analysis, the overall 5% type I error can be allocated among 
the test to be performed. For example, the procedure can be 
performed at 4% significance level for the overall effect and 
1% for the subgroup effect. 

The hierarchical (fixed sequence) testing procedure is 
a useful approach to applying to subgroup analysis (46) 
without adjustment of the level of significance. The testing 
procedure is hierarchically structured starting with the 
test of the primary hypothesis. If the null hypothesis is 
not rejected, the procedure stops; only the rejection of the 
hypothesis permits testing the next hypothesis. When the 
treatment effect on the biomarker-positive patients is the 
primary interest, the testing procedure can be structured as 
follows. Suppose the test for treatment difference between 
treatment and control in all patients is set at 2% significance 
level. The subgroup analysis can start with the test in the 
biomarker-positive patients using 3% significance level if 
the test in all patient hypotheses is significant. If the test 
in the biomarker positive patients is not significant, then 
the procedure stops. Otherwise, it is possible to compare 
the treatment to the control in the biomarker-negative 
patients using 3% significance level if formal testing of this 
hypothesis is part of the study objectives. This sequential 
approach controls the overall false positive rate at 0.05. 

When the number of tests is large, such as performing 
an interaction test for each variable in the study for 
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identification of important baseline factors, the approach 
controlling the overall type I error is not practical during 
the biomarker discovery stage. For example, with 1,000 
genomic variables, the significance level for each individual 
test should be set at 0.00005 in order to ensure 5% overall 
error rate. This criterion is very stringent and can result 
in very few or no significant biomarker variables being 
selected. False discovery rate (FDR) is an alternative error 
measure commonly used in multiple testing when the 
number of tests is large (47-52), mostly in the discover 
stage. The FDR approach considers the proportion of 
significant findings over the total number of significant 
findings. For example, if 20 biomarkers are declared as 
significant, a FDR of 5% implies that there can be 1 or 
fewer false positive out of the 20 significant results. The 
FDR approach allows the findings to be made, provided 
that the investigator is willing to accept a small fraction of 
false positive findings. Since predictive biomarkers are used 
to identify biomarker-positive patients, a small fraction of 
false positive biomarkers may not have a serious impact 
on classifier performance. FDR can be applied to the 
first stage gene feature selection of the ASD. Sometimes, 
the comparison-wise error rate with a pre-specified fixed 
significance level is used to select interesting gene features 
that interact with the treatment. 

Imbalanced subgroup size

One frequent  problem encountered in  subgroup 
identification is that subgroup sizes may differ considerably. 
That is, the number in the biomarker-positive patients is 
much smaller than the number in the biomarker-negative 
patients, or vice versa. When the subgroup sizes are very 
different, most standard binary classifiers would give high 
accuracy in predicting the majority (large) subgroup and 
poor accuracy in predicting the minority (small) subgroup. 
This can result in an erroneous conclusion of subgroup 
effect and lead to inappropriate treatment selection. Lin 
and Chen (53) reviewed several algorithms for classification 
of imbalanced class size data and correction strategies to 
improve accuracy in minority group prediction. They 
evaluated the three commonly used algorithms: DLDA (33), 
RF (30), and SVM (31,32). They showed that the standard 
DLDA algorithm performed reasonable well if the total 
sample size is reasonable large. All three algorithms can be 
improved by incorporating an ensemble algorithm (53,54). 
In particular, the DLDA has been shown to perform well 
in the analysis of genomic data (25) and is robust against 

imbalanced data (53) without incorporating correction 
strategy. 

Power and sample size

In designing a clinical trial, sample size must be estimated 
to ensure a high probability of having a significant test 
result, if indeed there is a treatment effect. In a typical 
trial, sample size estimation depends on: (I) the level 
of significance α, (II) the desired probability to detect 
treatment effect (1-β), and (III) targeted effect size (ES) 
for the treatment effect (the smallest different or ratio 
between treatment and control arms). For example, setting 
α =5% and (1-β) =80%, if the background probability 
of response for the control arm is 0.4 and the targeted 
probability of response for the treatment arm is 0.6 (ES =0.2), 
then the needed sample size is 97 per arm. The needed 
sample size is 145 per arm with α =1%. 

In subgroup analysis, needed sample size to assess 
subgroup treatment effect will likely be much larger. First, 
if the prevalence for the biomarker-positive subgroup 
is 50%, then the needed sample size will be double per 
arm. More samples are needed if the prevalence for 
the subgroup is smaller. Second, prior to conducting 
subgroup analysis, subgroups need to be identified. 
This step involves interaction test to identify predictive 
biomarkers. Unfortunately, sample size determination for 
subgroup analyses has not been well studied. The needed 
sample size for the interaction test is much larger than 
the needed sample size to assess a treatment effect (53). 
Furthermore, the interaction test needs to be performed 
for each genomic variable. The level of significance needs 
to be adjusted to account for multiple testing. Third, the 
binary classifier to identify a biomarker positive subgroup 
would have misclassification error; there might be both 
false positive and false negative errors that would affect 
the power of testing subgroup treatment effect. Finally, 
the ASD (20) and cross-validated ASD (37) two-stage 
approach used only a fraction of samples to validate 
treatment effect. The performance of the cross-validated 
ASD (37) also depended on the choice of the two threshold 
parameters R and G. In general, when the proportion 
of the biomarker positive subgroup is small, say, 10% 
or less, to ensure sufficient power to observe a sufficient 
number of treatment responses so that biomarker positive 
subgroup can be identified, sample size not only depends 
on the overall effect size, but, also true effect size in the 
biomarker positive subgroup, which are unknown. Further 
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studies on the sample size and power in the context of 
adaptive clinical trial designs for treatment selection would 
be worthwhile. 

Validation of predictive classifiers

Biomarker classifiers are typically developed using available 
samples from a single trial. A predictive classifier developed 
from a single study does not reflect many sources of 
variability outside research conditions, such as historical, 
geographic, methodologic, spectrum, and follow-up interval 
aspects (55,56). Validation of a classifier developed from a 
single data source does not account for potential sources 
of variation encountered in clinical applications. There 
are studies showing that several published lung cancer 
biomarkers were not reproducible (57-62). For example, 
several lung cancer studies have identified biomarker 
signatures associated with survival outcomes in their 
original discovery datasets; however, a study has shown that 
the largest number of overlapping predictive biomarkers 
between two independent studies was only four, and most 
often even zero (63). The lack of reproducibility would be 
difficult to justify to conduct a clinical trial. In evaluation 
of a classifier, two most important considerations (53) are 
(I) predictability—ability to accurately identify biomarker 
positive patients; and (II) generalizability—ability to 
predict samples generated from different batches (different 
locations or times). The term “generalizability” includes 
the meaning of “reproducibility” (ability to reproduce the 
performance) and “transportability” (ability to accurately 
classify similar data generated from different experimental 
conditions). The term “reproducibility” is a terminology 
commonly used in the evaluation of different platforms, 
studies, gene signatures, etc. (64,65). Assessment of 
reproducibility of a classifier within a study is referred to 
as an internal validation, and across studies is as an external 
validation. 

In theory, some classifiers may have good predictability 
but poor reproducibil ity,  or vice versa.  However, 
predictability appears to be a necessary condition for a 
classifier to have good reproducibility. Classifiers with 
high predictability and reproducibility are obviously 
desirable. A predictive classifier should perform well in 
both predictability and reproducibility. To completely 
validate a predictive classifier, more than one retrospective 
and prospective trial may be needed. Predictive classifier 
should be internally and externally validated prior to clinical 
validation. 

For survival outcomes, the predictive scores are estimated 
before assigning a threshold cutoff to define biomarker-
positive and biomarker-negative patients. The predictive 
scores are derived from the weighted sum of predictive 
biomarker values ∑ wj xj. The predictive scores represent 
the relative rankings of patients’ survival probability in the 
control and treatment arms. There are several measures 
and methods for the evaluation of the estimated predictive 
scores (34). These measures primarily evaluate agreement 
between the predictive scores and the observed survival 
times. They include the concordance index (66-68), Brier 
scores (69), log-rank P value and several others (70-73). A 
prediction model should have a high concordance score 
before determining the threshold cutoff to classify positive 
and negative biomarker subgroups. 

Adaptive clinical trial design is used not only to validate 
a predictive biomarker classifier, but also to optimize 
treatment selection. Validation of a biomarker adaptive 
design involves: (I) evaluation of the “accuracies” of the 
classifier in patient classification; and (II) evaluation of 
treatment effect in the biomarker positive subgroup 
identified by the classifier. Ideally the classifier should have 
high sensitivity and specificity, at least 95% or higher, and 
hence high accuracy. Performance of a classifier depends on 
the prevalence proportion, sample size, and the biomarker 
set identified. It is worth mentioning that for prediction 
problems, the omission of biomarkers (false negatives) 
would have more serious impact on accuracy than the 
inclusion of non-biomarkers (false positives) in the classifier. 
The FDR approach uses a less stringent criterion to select 
potential predictive biomarkers, it should be a appropriate 
error measure for the interaction test to identify predictive 
biomarkers. 

The ASD was proposed as a supplementary test when the 
test for overall treatment effect is not significant. For ASD, 
a reduced significance level at 4% (instead of 5%) for the 
overall treatment effect and 1% for the subgroup effect has 
been suggested. The 5% type I error rate can be allocated in 
various ways for the two analyses. Scher et al. (22) suggested 
using 1% or 2% significance level for the overall effect and 
4% or 3% for the subgroup effect since the sample size in the 
subgroup is smaller. Reducing the significance level requires 
an increase of the trial sample size. Furthermore, the power 
of the subgroup test depends greatly on the prevalence 
proportion and the effect size in the specific subgroup of 
interest. In general, a larger sample size is often needed in an 
ASD design if detection of the subgroup effect is of primary 
interest and the effect size in the subgroup is not large. 
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Example: analysis of a synthetic dataset 

An in silico experiment was conducted to illustrate 
development of a biomarker adaptive design in a two-arm 
control and treatment study. The number of patients per 
arm was 200; the proportion of the biomarker positive 
subgroup was 0.1. The probability of response for all 
patients in the control arm was 0.2, the probability of 
response was 0.2 for the biomarker negative subgroup and 
the probability was 0.6 for the biomarker positive subgroup. 
The total number of genomic variables was 5,000, among 
which there were 10 predictive biomarkers. The genomic 
variables were generated from an independent normal 
distribution with mean 0 for the non-predictive biomarkers 
and with mean 1.791 for the predictive biomarkers. The 
standard deviation was 0.3 for all genomic variables. 

A typical observed dataset was analyzed for illustration. 
Each arm had 20 (10%) biomarker positive patients and 
180 (90%) biomarker negative patients. The total number 
of biomarker positive patients is 40 and the total number of 
biomarker negative patients is 360. From the control arm, 
the observed positive responses were 3 and 30 for the positive 
and negative subgroups, respectively; from the treatment 
arm, the observed positive responses were 15 and 36 for the 

positive and negative subgroups, respectively. The analyses 
performed 10-fold and 2-fold cross validation using the 
DLDA classification algorithm and the MLV method of 
ASD. The level of significance in the interaction test was set 
at 0.005. For the 10-fold cross validation, the average number 
of significant genes identified was 12.4, of which 9.1 were 
truly predictive biomarkers. For the 2-fold cross validation, 
the average number of significant genes identified were 3.5, 
of which 1.5 were truly predictive biomarkers. 

The analyses focused on comparison of the two classifiers to 
identify biomarker positive patients. Two main considerations 
in the evaluation are: (I) the sensitivity and specificity of the 
classifiers and (II) the power of the subgroup test. The MLV 
procedures require pre-specification of the two parameters R 
and G; we considered ln(R) = 1, 2 and G = 2, 3. These four 
cases cover the best choices for the two parameters. Table 1 
shows the performance of the two classifiers. The 10-fold 
cross validation approach shows much better performance 
than the 2-fold cross validation approach. In the MLV 
method, a small value of ln(R) or G represents a mild tuning 
parameter to select biomarker positive patients resulting in 
higher sensitivity and lower specificity. 

In 10-fold cross validation, both DLDA and MLV[2,2] 
correctly identified all biomarker positive and negative 

Table 1 Performance of the DLDA and MLV[ln(R),G] methods from 10-fold and 2-fold cross validation. From the control arm, the 
observed positive responses were 3 and 30 for the positive and negative subgroups, respectively; from the treatment arm, the observed 
positive responses were 15 and 36 for the positive and negative subgroups, respectively

Cross

validation
Classifier

Positive subgroup 

identification

Negative subgroup 

identification
Performance

TP FP TN FN Sen Spe Acc

10-fold DLDA 40 0 360 0 1 1 1

MLV[1,2] 40 51 309 0 1 0.858 0.964

MLV[1,3] 40 9 351 0 1 0.975 0.978

MLV[2,2] 40 0 360 0 1 1 1

MLV[2,3] 39 0 360 1 0.975 1 0.998

2-fold DLDA 21 7 353 19 0.525 0.981 0.935

MLV[1,2] 21 40 320 19 0.525 0.889 0.853

MLV[1,3] 19 0 360 21 0.475 1 0.948

MLV[2,2] 17 4 356 23 0.425 0.989 0.933

MLV[2,3] 12 0 360 28 0.300 1 0.93

DLDA, diagonal linear discriminant analysis; MLV, machine learning voting; TP, true positive; FP, false positive; TN, true negative; 

FN, false negative; Sen, sensitivity; Spe, specificity; Acc, accuracy.
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patients. MLV[1,2] correctly identified 40 biomarker positive 
patients (high sensitivity), but it also incorrectly identified 
51 biomarker negative patients as biomarker positives (low 
specificity). Table 2 shows the P values of the subgroup 
test on the biomarker positive patients identified by the  
two classifiers. In 10-fold cross validation, both DLDA and 
MLV[2,2] correctly identified all 20 biomarker positive 
patients in each arm. The 20 patients included all 3 positive 
outcomes in the control arm and all 15 positive outcomes 
in the treatment arm. The P value of the subgroup test was 
0.0003. MLV[1,2] identified 91 biomarker positive patients, 
63 from the control arm and 28 from the treatment arm. 
Among of the 63 patients in the control arm, 25 showed 
positive outcomes, but only 3 were biomarker positive 
patients. Among the 28 patients in the treatment arm,  
18 showed positive outcomes of which 15 were biomarker 
positive patients. The subgroup test for biomarker negative 
patients was not significant. 

In this analysis, the number of patients per arm was 
n=200, and the proportion of biomarker positive subgroup 
was P=0.10. Denote uij as the response probability for the 
i-th subgroup (i =0 for biomarker negative and i =1 for 
biomarker positive) in the j-th arm (j =0 for control and j =1 

for treatment). The analysis considered u00 = u01 = u10 =0.2, 
and u11 =0.6. The performance of a biomarker adaptive 
design depends on n, p, u00, u01, u10, and u11. Further 
simulation for various combinations of these parameters will 
be helpful in the development of biomarker adaptive design 
for that analysis of subgroup effects.

Discussion

Development of predictive biomarkers remains challenging 
in clinical trials. Over a decade, only a very limited number 
of genomic signatures/biomarkers move forward to clinical 
practices. Many factors contribute to such slow progress; 
a main reason is that genomic data analysis is considered 
as an exploratory objective for hypothesis generating due 
to the complexity of the high-dimensional nature and 
generally without well-defined clinical hypotheses. The 
ASD attempts to address this issue by integrating the 
signature development into the primary objective for phase 
III randomized trials. This strategy sheds new light on 
plausible use of genomic biomarkers as a trial objective. 
However, vigorous statistical methodology is needed to 
achieve this goal. In this review, we present the key steps 

Table 2 P values of the subgroup analysis using the DLDA and MLV[ln(R),G] methods from the 10-fold and 2-fold cross validation. The 
total number of predicted biomarker positive patients, the observed number of positive and negative outcomes for the two arms, and the 
numbers of correct predictions (in parentheses)

Classifier

Predicted total number 

of biomarker positive

patients

Observed outcomes for the predicted positive patients

Control arm Treatment arm Subgroup test 

Positive (true positive) Negative Positive (true positive) Negative P value 

10-fold

DLDA 40 3 [3] 17 15 [15] 5 0.0003

MLV[1,2] 91 25 [3] 38 18 [15] 10 0.0408

MLV[1,3] 49 5 [3] 19 18 [15] 7 0.0005

MLV[2,2] 40 3 [3] 17 15 [15] 5 0.0003

MLV[2,3] 39 2 [2] 17 15 [15] 5 7×10-5

2-fold

DLDA 28 2 [1] 10 11 [9] 5 0.0093

MLV[1,2] 61 3 [2] 26 12 [8] 20 0.0181

MLV[1,3] 19 1 [1] 8 8 [8] 2 0.0055

MLV[2,2] 21 1 [1] 10 8 [8] 2 0.0019

MLV[2,3] 12 0 [0] 5 6 [6] 1 0.0151

DLDA, diagonal linear discriminant analysis; MLV, machine learning voting.
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in the development of predictive biomarkers to assess 
treatment effect and discuss statistical issues encountered in 
the development of a biomarker adaptive design for clinical 
trials. This involves a statistical test for the interaction effect 
model to identify potentially useful biomarkers to classify 
patients into subgroups. It is worth noting again that the 
biomarker identification and patient subgroup classification 
were developed sequentially in a single trial. In a clinical 
trial dataset involving high dimensional genomic variables, 
such as gene expression data, whole genome scanning data, 
next generation sequencing data, the number of subjects 
studied is often far less than the number of genomic 
variables due to financial feasibility. There can be multiple 
biomarker classifiers that are similarly plausible with 
comparable performances. There are several challenges in 
both biomarker identification and classifier development. 

One major challenge is multiplicity in biomarker classifier 
development. Here, multiplicity does not refer to hypothesis 
testing, but to the selection among multiple plausible 
predictive models. However, some may argue that the 
multiplicity in biomarker classifier development is irrelevant 
as long as a responsive patient subset can be identified. 
Due to the empirical nature of classifier development, the 
predictive models are governed by the pre-specified tuning 
parameter sets if, for example, an ASD classifier is considered. 
Wang and Li (38) showed that the unknown true treatment 
effect size in the biomarker positive patient and the clinical 
utility of a biomarker classifier play important roles in the 
ability to identify a ‘good’ biomarker classifier. In the absence 
of true effect sizes, it is worth noting that there may be no 
clearly predictable relationship between the choices of the 
tuning parameters and the ability to demonstrate treatment 
effect in the biomarker positive subset when the unknown 
true treatment effect size is not large in the biomarker 
positive patients, see scenario V in (38). 

Another major challenge for ASD biomarker development 
in a controlled clinical trial is the availability of an in vitro 
diagnostic assay mid-trial (23) or at trial completion (36) 
when a biomarker classifier is only developed through an 
empirical algorithm. In such cases, the actual diagnostic assay 
containing just the selected gene features may only be feasibly 
available after the details of the biomarker classifier are fully 
developed. It is challenging to argue that the actual diagnostic 
assay is already analytically validated at the time it is to be 
used to classify patients and to test treatment effect either in 
all patients or in the positively classified patients in one trial. 
This bears the question about the biomarker classification 
accuracy, or its PPV and NPV applying to specific subgroups, 

one positively classified and one negatively classified, which 
will impact the test result of treatment effect in the biomarker 
positive patient subgroup.

A third major challenge is how to reconcile the statistical 
testing of a subgroup effect hypothesis while exploring the 
existence of a biomarker classifier potentially predictive of 
treatment effect as confirmatory and unambiguous? The 
issue of a viable in vitro diagnostic assay has been mentioned 
previously. The ASD design attempts to identify a positive 
subgroup via a pre-specified two-step process (38) should 
the test of treatment effect in all patients does not achieve 
statistical significance based on a pre-specified test level. 
In addition, the identification of the biomarker positive 
subgroup relies on the pre-specified choices of R and G 
during the development stage. 

Pre-specification of a biomarker subgroup hypothesis 
in the ASD approach is a useful tool to generate a clinical 
hypothesis of a biomarker classifier that may be predictive 
of treatment effect, which assesses the treatment effect 
in the biomarker classifier defined subgroup either using 
the second stage data alone (21) or via internal cross 
validation (37) when needed. The pre-specified algorithm 
does not necessarily guarantee the existence of a true 
predictive biomarker during biomarker development. 
Treatment effect in the biomarker defined negative 
subgroup may not be formally evaluated with an ASD 
approach. The issues should be equally applicable with 
DLDA, MLA or any other types of prediction algorithm 
used in the two-step process similarly defined to test 
treatment effects for all patients and for the biomarker 
positive patients within the same confirmatory trial.
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