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Introduction

Identification of molecular subtypes of cancer using high-
throughput genomic data has received a great deal of attention 
in the current literature (1,2). Traditionally, cancer subtype 
diagnosis has been based on non-molecular, clinicopathologic 
parameters such as the morphological and functional 
characteristics of the cancer cells. However, classification 
criteria defined using such technologies may not be sufficient 
and likely overly general as patients with the same cancer 
diagnosis can differ significantly in their response to treatment 
and long term prognosis (3). These differences have been 
hypothesized to arise as a result of molecular heterogeneity at 
genomic, epigenomic, transcriptomic, and proteomic levels, 
and efforts to exploit such molecular data for the discovery of 

novel, clinically relevant cancer subtypes, have grown rapidly 
in the past decade. For example, molecular heterogeneity 
within individual cancer subtypes has been demonstrated in the 
variable presence of chromosomal translocations, deletions/
insertions of tumor suppressor/inhibitor genes and numerous 
chromosomal abnormalities (4). More recently, microarray 
based gene expression data has been used to identify tumor 
subtypes across numerous cancer types (5-7), and the 
molecular subtypes identified through such efforts have been 
shown to correlate with clinically important endpoints, such 
as disease prognosis and response to treatment. Specifically, 
Sørlie et al. (1) used gene expression patterns of breast cancer 
carcinomas to distinguish tumor subclasses. Lapointe et al. (5), 
used gene expression profiling in order to identify subtypes 
of prostate cancer. Also given the plasticity of epigenetic 
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modifications and their role in controlling gene expression and 
expression potential, there has been significant interest in the 
use of epigenomic data to identify novel tumor subtypes (8-10). 

Cancer subtype discovery using different omic data types is 
the most frequently facilitated through use of clustering. While 
there exists countless different clustering methodologies, 
the objective is the same and involves the grouping of 
objects across a discrete set of classes (i.e., clusters), such 
that objects within the same class are more similar to one 
another compared to objects in different classes. In the 
context of transcriptomic data, clustering methods can be 
used to cluster either genes or samples: (I) if applied to genes, 
clustering results in classes with similar gene expression levels 
across the samples, enabling the identification of biological 
pathways or gene expression networks; (II) if applied to the 
samples, clustering results in classes of subjects that share a 
similar expression across the panel of genes. In this review we 
focus our attention on the clustering of samples with goal of 
identifying molecular subtypes of disease. 

Cancer is a complex disease that manifests as a result 
of coordinated alterations on the genomic, epigenomic, 
transcriptomic and proteomic levels. This, along with the 
decreasing cost of high-throughput techniques has served to 
motivate integrative genomic studies; studies involving the 
simultaneous investigation of multiple different omic data 
types collected on the same set of patient samples. One of the 
research networks established to generate the comprehensive 
catalogue of genomic abnormalities is The Cancer Genome 
Atlas (TCGA). TCGA is sponsored by NCI and NHGRI and 
represents a coordinated effort aimed at exploring genomic 
alterations and interactions across biological assays in the 
context of human cancer. TCGA collects and analyzes tumor 
samples and makes the data freely available for researchers 
to use. Integrative genomic research has received a great 
deal of attention in recent years and the number of research 
publications in this area has been steadily increasing as shown 
by recent PubMed data (result of PubMed data search with 
key word “Integrative Genomics”) (Figure 1). The growing 
interests in integrative analyses indicate that the multi 
dimensional characterization of the genomic features will 
soon be standard practice. Comprehensive and coordinated 
analytic methods that can utilize all such information in a 
single comprehensive analysis are very important in order to 
understand the molecular basis of cancer and their subtypes. 
The goal of this paper is to review several non-integrative 
clustering methods and three recently proposed integrative 
clustering methods using; (I) joint latent variable model (11);  
(II) non negative matrix factorization (NMF) (12) and 

Gaussian mixture model (13). 

Clustering methods 

A clustering is a collection of objects that are more similar to 
each other within a group compared to objects between the 
groups. Microarrays generate datasets, such as gene expression 
or methylation signals, which results in a set of m features 
assayed across n samples; generally m is larger than n. More 
formally, clustering of samples can be defined as a method of 
determining a classification of the n subjects into K discrete 
classes (K << n) for a given dataset X = {x1,x2,x3,…,xn}, with 
each subject xi, i=1,2,…,n characterized by m features, xi = 
(xi1,xi2,…,xim). The main aim of clustering is to discover and 
describe the underlying structure in the data.

Clustering methods for a single data type at a time

Several clustering methods have been developed that consider 
single data type at a time (14-16) and a few methods that 
consider multiple types of the datasets simultaneously (11-13). 
However, the choice of the appropriate clustering methods 
for a given data (or datasets) is far from straightforward. 
The choice is often subjective and generally driven by 
the context of the study and characteristics of the data 
under examination (17). In the context of genomic studies, 
clustering methods consider the molecular profile, such as 
gene expression or DNA methylation, either considering 
the datasets separately or together, to identify the subtypes 
based on some dissimilarity criteria. Following clustering, the 
resultant clusters are then typically compared with regard to 
clinical characteristics collected on the study subjects (e.g., 
survival time, time to recurrence, progression) as a means for 
understanding their phenotypic importance. A plethora of 

Figure 1 Bar chart showing the number of publications on 
integrative genomics analyses in the last decade over time (Source: 
PubMed data).
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algorithms has been developed in the literature that considers 
one data at a time. We describe a few of them as follows:

K-means clustering

K-means clustering method partitions the samples into k 
clusters given the data points and k number of centroids in 
an automated fashion (18). This is one of the most widely 
used classification algorithm both in microarray and other 
studies such as engineering and computer science. Typically, 
the method partitions the subjects making sure that the inter 
cluster distances are maximized and within cluster distances are 
minimized. The intended number of clusters (k) is determined 
to initialize the algorithm and k centroids as cluster centers 
are randomly selected. The samples are assigned to clusters 
within the nearest centroid using the defined distance and new 
centroids are calculated as an average distances between the old 
centroid and subjects in that cluster. This process is repeated 
until the samples stop changing the cluster assignment (19). 
K-means clustering methods have been used in the studies of 
tumor types (19). Extended version of k-means method that 
accounts for the geometrical complexity of the data has been 
used in Kim et al. (20).

The main disadvantage of the K-means clustering method 
is that it requires initial guess of the number of clusters and 
also is highly dependent on the centroids initialized at the 
beginning leading to a local minimum solution. Another 
problem with K-means clustering is that it does not account 
for variance in the data. Also, the frequently used Euclidean 
distance places the highest influence on the largest distance 
which causes lack of robustness against outliers that result 
in large distances. To resolve this issue, instead of assigning 
the most centrally located sample, medoids can be specified 
which is called k-medoids or partition around the medoids 
(PAM) (21). Again, k-medoids method requires initial guess 
of the number of clusters which we generally do not know. 
Inappropriate choice of k can result in poor results.

Hierarchical clustering

Hierarchical clustering is probably the most widely used 
clustering method in biological studies. This method 
constructs a hierarchy of nested clusters which does 
not require cluster number specification as in K-means 
method. As the name suggests, the method produces 
hierarchical representations in which the clusters at 
each level of hierarchy are created by merging clusters 
at next lower level. At the highest level there is only one 

cluster and, at the lowest level, each cluster contains a 
single observation (18). Therefore, this method requires 
a study-specific (user defined) threshold in order to get 
meaningful clusters. The graphical display of the entire 
process is called the dendogram and is often viewed as a 
graphical summary of the data. Hierarchical clustering has 
successfully been able to identify clinically relevant tumor 
subtypes in the previous several studies (4,6,22,23). 

There are two types of hierarchical clustering methods: 
agglomerative and divisible. The agglomerative, also known 
as bottom up, merges the sample points iteratively to 
make clusters within the similarity distance. The divisible 
which is also known as top down starts with all the samples 
and subdivides them into smaller groups iteratively. The 
hierarchical clustering methods vary with respect to choice of 
the distance metric and cluster merging known as linkage. The 
calculation of the distances between two clusters is based on 
the dissimilarity between the samples from the two clusters. 
The commonly used distances between the two clusters is 
the average linkage method. In this method the distance 
between the two clusters 1 and 2 is defined as the average of all 
distances between each element in cluster 1 and each element 
in cluster 2. Other distance methods used are single linkage (or 
nearest neighbor) and complete linkage (or furthest neighbor). 
In single linkage method, the distance between cluster 1 and 
cluster 2 is the shortest distance from any member of cluster 1 
to any member of cluster 2. In contrast, the complete linkage 
method defines the maximum distance from any member of 
cluster 1 to any member of cluster 2. Thus, in the presence of 
outliers, using single linkage, those outliers are accounted at 
last while using complete linkage the outliers are considered 
at first. Therefore, average linkage is commonly used to avoid 
this sensitivity to outliers and the resulting clusters are based 
on the average density. Besides these, the distance between the 
centroids or medoids of clusters is also used. 

The advantage of this approach is that the end results 
can easily be visualized, from which, coordinately regulated 
patterns can be relatively easily discerned by eye (24). One of 
the drawbacks of such methods is that, as they are carried out 
in several stages, the possible mis-clustering at the one stage 
cannot be corrected in the subsequent stages and even magnifies 
as the process progresses, i.e., there is no compensation for the 
greedy nature of the algorithm (25). Therefore when n is large, 
accumulation of the mis-clustering will be huge resulting in 
lack of robustness. Also, the developed tree structure is highly 
sensitive to the distance metric used to assess similarity and 
requires subjective evaluation to define the clusters which can 
differ from person to person.
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Fuzzy C-means clustering

Unlike general clustering techniques which exclusively 
assigns each sample to a single cluster, this method allows 
samples to be members of more than one clusters thus 
resulting in overlapping clusters (26,27). The fuzzy C-means 
clustering algorithm is a variation of the k-means clustering 
algorithm, in which a degree of membership of clusters 
is assigned for each data point (28). The membership is 
assigned with a weight ranging from 0 to 1 where 0 implies 
excluding from the cluster and 1 implies including in the 
cluster. Other weights, 0< wi <1, implies probability of 
including the sample in that cluster. The membership 
weight for a cluster member is determined as the proportion 
of its contribution to the cluster mean. Such membership 
values are iteratively recalculated (adjusted) until the change 
between the two iterations falls below a pre-specified 
threshold. As the method permits the samples to be in more 
than one cluster, it is called fuzzy clustering. 

Similar to the many other methods, fuzzy C-means 
method can be used to cluster the subjects as well as 
genomic features. This method has especially been 
recommended for clustering the genomic features that are 
considered noisy and are equally likely to belong to more 
than one cluster (27). However, this method suffers from 
the similar drawbacks of K-means method as the fuzzy 
algorithm is similar in computation to that of K-means 
algorithm. In addition, this method requires estimation of 
the fuzziness parameter but there is no general consensus 
on the estimation or specification of such parameter.

Self organizing map (SOM)

SOM was originally developed to apply in neural network 
studies (29,30) but, in recent years, this has been used in 
pattern identifications of gene expression datasets as well 
(31-34). SOM allows partial structure on the clusters as 
opposed to no structure of K-means clustering and rigid 
structure of hierarchical clustering enabling intuitive 
visualization and clustering. The algorithm starts with 
selecting geometry of nodes (cluster centers) usually in 
two dimensional grids, called map. The nodes are then 
randomly mapped to k-dimensional space of the data and 
then iteratively adjusted. At each iteration, a data point P is 
selected randomly from the data and the nodes are adjusted 
by moving towards that data point. The movements of the 
nodes are proportional to its distance from the data point; 
the closest node moves most followed by other nodes. The 

magnitude of movement decreases per iteration. The process 
is repeated until the movements stabilize or a fixed number 
of iteration is used. In this way, the neighboring points in the 
initial geometry are mapped in k-dimensional space.

The advantage of SOM is that it reduces the computational 
complexity as the optimization is restricted to lower 
dimensional space (typically two dimensional). Also, SOM 
provides natural way of obtaining the clusters based on the 
initial input geometry. However, it is difficult to come up with 
appropriate input nodes and may result in non-convergence 
problem of the algorithm. Also, SOM is sensitive to choice of 
number of nodes like K-means method.

Tight clustering

Tight clustering is a resampling based approach for 
identification of tight pattern in the data and is especially 
appropriate for the data having potential outliers (35). 
The method utilizes the subsampling technique to create 
variability enabling to distinguish the scattered samples 
from the samples inherently tightly clustered together. 
The scattered points are not necessarily forced to be in 
the clusters in the subsequent steps. K-means clustering is 
used as an intermediate step in the tight clustering where 
the initial values for the k-means algorithm can be derived 
from Hierarchical clustering. After series of subsampling 
and clustering is carried out, a tight and stable cluster is 
identified which is then removed from the data and the 
iteration is continued to identify second cluster and so on.  

The method is an appealing with application in 
microarray data as the method allows highly scattered 
points without being clustered (36). However, the method 
has the potentiality of suffering from the same drawback of 
k-means algorithm. Also, since all the data points are not 
necessarily included in clustering, the method can not address 
the possibility of importance of the abandoned points.

Model based clustering

Model based clustering assumes that the data follows 
mixture of known distribution such as Gaussian distribution 
(37-40). The problem of selecting the good number of 
clusters and the class memberships of the individuals are 
carried out as model selection problems in the probability 
framework (41). In essence, the method defines clusters as sub-
groups following the specified distribution. Likelihood function 
of the mixture model is defined and expectation maximization 
(EM) algorithm is used to find the clustering assignments 
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maximizing the likelihood. In addition, a few algorithms use 
the Bayesian Information Criteria (BIC) (42) as an optimization 
criterion to suggest optimum number of clusters. 

An advantage of this approach is that it has statistically 
more solid foundation for estimation and model selection 
which is more suitable framework for statistical inference 
and interpretation. However, the distributional assumptions 
are difficult to justify for high dimensional datasets in 
general. Although some transformations have been 
suggested to transform the data into known distribution, it 
is difficult to identify correct transformation function. As 
a result, the method may result in spurious clusters due to 
the lack of satisfying distributional assumptions and possible 
local minima in the optimization of the likelihood.

Non negative matrix factorization (NMF)

NMF is a dimension reduction technique that factorizes a non 
negative matrix into two non-negative matrices (43-45). The 
idea behind the NMF is that, for a given data, either a factor 
is present with a certain positive effect or it is absent simply 
having a zero effect. Suppose Xn×p is a non-negative data 
with n samples and p features. Then, NMF approximately 
factorizes the matrix Xn×p into two non-negative matrices 
Wn×k and Hk×m

Xn×p ≈ Wn×k Hk×p [1]

where Wn×k is the matrix of basis vectors with n samples 
and k groups (pre-assigned) and Hk×p is the matrix of 
coefficient vectors with k groups and p features. Each 
column of X can be written as x ≈ Wh where x and h are 
the corresponding columns in X and H respectively. Each 
data vector x is approximated by a linear combination 
of the columns of W weighted by the components of h. 
Therefore W is regarded as a matrix of basis vectors which 
is optimized for the linear approximation of the data in 
X (44). In order to approximate the optimum factors 
several objective functions (also called cost functions) have 
been proposed but the most frequently used is based on 
Euclidean distance as defined by,

F(W,H)= || X–WH ||2 [2]

W and H are initialized and the objective function is 
minimized iteratively until convergence. A drawback of this 
algorithm is that the function F is convex in W only or H 
only but not on both when considered together. Therefore, 
there is a possibility of ending up with local minima instead 
of global minima. To avoid this problem several different 

initializations with multiple repetitions of the algorithm has 
been proposed. The most important characteristic of NMF 
is that it reduces the data set from its full dimensionality to 
a lower dimensional space and identifies patterns that exist 
in the data using only the subset of the data. 

Lee and Seung (44) proposed one of such algorithms 
and pointed out the application of NMF on the pattern 
recognition and its efficacy comparing with traditionally used 
singular value decomposition (SVD) or principal component 
analysis (PCA). They used the algorithm to decompose human 
faces into part-features such as eyes, nose, ear etc. In that 
study context, they noted that NMF was able to differentiate 
the features and were visually clear. In contrast, they noted 
that the use of PCA to the image data yielded components 
with no obvious visual interpretation. The reason behind such 
contrasting results was described in terms of the disparities of 
the constraints imposed on the linear combination. As NMF 
imposes the non negativity constraint, the linear combination 
has only the additive effect, if the effect is present, and is 
likely to be compatible with the intuitive notion of combining 
parts to form whole. But, the mixture of positive and negative 
signs in the linear combination of SVD or PCA may create 
subtractive effects for some important features and therefore 
may not always be discernible.

NMF method has been successfully used in the microarray 
datasets (12,15,45,46). Brunet et al. (15) utilized the NMF 
technique in the gene expression data from a leukemia study 
to find the cancer subtypes. The algorithm as proposed by 
Lee and Seung (44) was used on the gene expression data Xn×p 
in order to obtain Wn×k and Hk×p where n, p and k represent 
number of samples, number of genes and number of clusters 
respectively. To determine the cluster membership, the 
maximum value of each row of matrix W is used. For example, 
suppose the first row of W has the maximum value in the 2nd 
column. Then the first sample is assigned for the 2nd cluster. 

The most important part of the method proposed by 
Brunet et al. is the estimation of the optimum number of 
clusters, k. They utilized consensus clustering (47) and 
cophenetic correlation to determine k as follows: For each 
run of the algorithm, a connectivity matrix C of size n×n 
is defined based on the sample assignment to the clusters. 
If two samples i and j belong to the same cluster then the 
corresponding entry of the connectivity matrix is 1 (cij =1) 
otherwise it is 0 (cij =0). Consensus matrix, C , is computed 
as an average of the connectivity matrices over the many 
clustering runs until convergence. The entries of C , ranging 
from 0 to 1, reflects the probability of clustering the 
samples i and j together. Then, I - C , the distance between 
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the samples induced by the consensus matrix is computed. 
In parallel, using average linkage HC on C , the distance 
between the samples induced by the linkage used in the 
ordering of C  is computed. Then, Pearson correlation 
is computed between the two results which is called the 
cophenetic correlation (ρk). The process is repeated for each 
pre-assigned k and the value of k that results in maximum ρk 
is chosen as optimum k. However, the method proposed by 
Brunet considers one data type at a time. For other details 
of the algorithm see Brunet et al. 2004 (15).

Clustering multiple datasets

The recent development of high throughput genomic 
technologies have generated several types of genomic datasets 
on same set of patient samples, e.g., mRNA expression, 
DNA methylation, DNA copy number etc. The interaction 
of biological processes manifesting in different data types 
measured by such genomic assays can have important 
implications for disease development and progression. 
Therefore it is important to take into account the multiple 
datasets together in order to optimize strength of biological 
information across multiple assays relevant to the disease 
of interest. Traditionally, approaches for clustering samples 
based on multiple ‘omic’ datasets have involved the manual 
integration of results obtained from the individual clustering 
of each of ‘omic’ data types. Such methods require great 
deal of understanding of all the data types and the biology 
associated with them in order to fully utilize the available 
information. Although such approaches will be able to 
capture the strong effects across multiple data types, there 
may be weak but consistent genomic alterations present 
across the data types which will be equally informative. 
Such genomic variation may be missed by separate analyses 
followed by manual integration. In addition, this approach is 
tedious, ad hoc and can be inconclusive in the assignment of 
subjects to molecular cancer subtypes. 

These problems can be addressed by the use of fully 
integrative clustering techniques. One such approach is 
iCluster (11), which uses a joint latent variable model within 
a likelihood framework with an L1 penalty to produce a 
“sparse” solution. A second example of integrative subtype 
detection is by Zhang et al. (12) that identifies common 
correlated subsets across the multiple data sets termed 
as multi-dimensional module. However the focus of this 
method is to identify the multi-dimensonal module rather 
than finding the unique clusters of samples based on the 
genomic data. Another example of integrative clustering is 

the mixture model based method proposed by Kormaksson 
et al. (13). These methods are briefly discussed below.

Integrative clustering of multiple data types using iCluster 

Shen et al. (11) proposed a joint latent variable model for 
integrative clustering of multiple genomic datasets. This 
method models the tumor subtypes as an unobserved latent 
variables which are simultaneously estimated from the 
multiple data types. The key idea of the method is based on 
two previous works by Tipping et al. (48) and Zha et al. (49).  
Tipping et al. showed that the principal axes of a set of 
observed data, in PCA, can be determined through maximum 
likelihood estimation of parameters in the Gaussian latent 
variable model which is closely related to factor analysis. 
In Gaussian latent variable model the correlations among 
the variables are modeled through the latent variables with 
additional term for the residual variance. 

X W Z Z N and Np n p k k n p n× × −( ) −( )× ×= + ( ) ( )1 1 0 1 0ε ε ψ , , [3]

where X is the mean centered matrix of p features with n 
samples, Z is matrix of latent variables, W is the coefficient 
matrix and k is number of clusters. Thus X~N(0,WWT + ψ) 
and the model parameters are determined using maximum 
likelihood method using EM algorithm (50). Important 
point to note here is that the maximum likelihood estimates 
of the columns of W in general do not correspond to the 
principal subspace of the data. Tipping et al. showed that 
assuming the isotropic error model with covariance matrix 
ψ = σ2I, the maximum likelihood estimation of W has 
connection with the PCA. They further established that 
the posterior mean of the latent factor Z conditional on the 
data [Ê(Z/X)] is a function of W and σ2 and represents the 
principal axes of the data. 

Zha et al. (49) proposed alternative algorithm of the K-means 
clustering by using PCA of the gram matrix of the data. They 
reformulated minimization of the within cluster squared 
distance as used by k-means algorithm to a maximization of 
trace of ZXTXZT. They showed that the trace maximization 
problem has a closed form solution and corresponds to Z equal 
to largest (k-1) eigenvectors of XTX. Such eigenvectors give 
rise to first k-1 principal axes of the data. Zha et al. (49) further 
mentioned that such matrix of eigen vectors Z of dimension 
(k-1)×n can be considered as a transformation of the original 
data of n dimensional space into new k-1 dimensional subspace 
and can be considered as a cluster indicator matrix. Then, they 
suggested QR decomposition or the k-means algorithm on the 
cluster indicator matrix to compute the cluster assignment for 
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the samples. 
Shen et al.’s (11) method uses the principals of these 

two methods and extends the algorithm of Tipping and 
Bishop to integrative clustering of the multiple data types. 
The method computes the posterior mean of the latent 
factor matrix Z given data using Gaussian latent variable 
model and uses the standard k-means algorithm to compute 
the cluster membership. In addition they incorporate 
the shrinkage and feature selection technique using least 
absolute shrinkage and selection operator (Lasso) type 
penalty function. Lasso (51) is a shrinkage method which 
sets some of the small coefficients (likely non-informative 
features) to exact zero while other bigger coefficients 
shifting towards zero using a threshold, λ, called tuning 
parameter. The idea behind using the shrinkage is to classify 
the samples based on important features only, reducing the 
possible noise. The basic steps of the implementation of the 
algorithm can be summarized as follows:

Suppose X1, X2, …, Xm are m data types on the same set 
of subjects with dimensions, p1×n, p2×n, …, pm×n where p1, 
p2, …, pm are number of features in each dataset and n is the 
number of samples. Then the mathematical form of the 
integrative model can be given as 

Xi = WiZ + ɛi, for i = 1, 2 ,…, m 
[4]

Z ~ N(0, I), ɛi ~ N(0, ψi), 

where Wi is the coefficient matrix of dimension pi×(k-1) and 
Z with dimension (k-1)×n is the latent variable component 
that connects m sets of models inducing dependencies. The 
latent variable is intended to explain the correlations across 
the data types and ɛi’s represent the remaining variances that 
are unique to each data types. The integrated data matrix 
X= (X1, X2, …, Xm) is then multivariate normal with mean 
zero and covariance matrix Σ = WWT+ ψ. Then the log-
likelihood function is defined imposing L1 penalty on W 
and EM algorithm is used to estimate the parameters. The 
latent variables Z are considered as missing and estimated 
in the expectation step of the algorithm that are then 
updated in the penalized maximization step. The posterior 
mean of the latent factor, Ê(Z|X), is estimated and then 
standard K-means clustering algorithm is used on Ê(Z|X) 
to draw inference on cluster memberships. The tuning 
parameter, λ, for the L1 penalty function and optimum 
number of clusters, k, are estimated by minimizing the 
proportion of deviance (POD) where the POD is defined 
as the sum of absolute differences between the product of 
posterior mean of latent factors given data [Ê(Z|X)TÊ(Z|X)] 
(Standardized) and perfect diagonal block structure. Shen 

et al. (52) also propose alternative method of choosing the 
tuning parameter using sub-sampling technique. In this 
method the data is repeatedly partitioned into training 
and testing datasets. The algorithm is used in the training 
set to estimate the parameters and then utilized to predict 
the cluster membership in the test set. The algorithm is 
also utilized in the testing set in parallel and the cluster 
membership is obtained. Then the agreement index is 
computed between the two clustering assignments and 
maximized to obtain set of tuning parameter λ, and number 
of clusters, k. In recent work of Shen et al. (52), flexibility of 
using two more penalty functions, elastic net (53) and fused 
lasso (54), has been provided in addition to lasso.

The method proposes appealing approach of integrative 
clustering analysis incorporating the variable selection 
feature in the algorithm. Capturing the correlation across 
the multiple data types in the form of latent variable, this 
method nicely integrates several datasets collected on 
the same patient samples simultaneously. The drawback 
of the method is that if the assumption of the isotropic 
error model is not satisfied, optimum solution may not be 
obtained. Also, as k-means algorithm is used for the cluster 
membership at the end, the method still possibly share the 
drawbacks of k-means algorithm.  

Integrative clustering of multiple data types using non-
negative matrix factorization 

Zhang et al. (12) extended the algorithm proposed by 
Lee and Seung (44) for the multiple data types in a single 
comprehensive clustering analysis. The purpose of their 
algorithm is to identify the subsets of multidimensional 
genomic data that have correlative profiles, termed as 
multidimensional module (md-module), across several types 
of measurements on the same samples. The first step of the 
algorithm involves the joint factorization of the data sets. 
Suppose, X1, X2, …, Xm are datasets with dimensions n×p1, 
n×p2, …, n×pm respectively where n represents the number of 
samples and pi represents the number of features. Then the 
joint factorization is carried out as

Xi ≈ WHi for I =1, 2, …, m [5]

where Wn×k is the basis matrix which is common across the 
multiple data types and Hi(k×pi) are the coefficient matrices 
specific to each data type separately. The matrices W and 
Hi’s are estimated by minimizing the objective function 
given by min X WHi Ii

m
−

=∑ 2

1  for I =1, 2, …, m, where W and 
Hi’s are initialized multiple times and updated separately 
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until convergence in order to get the optimum solution. For 
details of the algorithm, see Zhang et al. (12). 

After W and Hi’s are estimated, in the next step, correlated 
subsets are estimated based on both samples and features. To 
determine the md-module, z-scores are computed for each 
element of the matrices Hi’s by row. Then a data driven (or user 
defined) threshold T is identified and the z-scores greater than 
the threshold are assigned to be in the md-module. Similarly, 
for the clinical characterization, the samples are divided into 
two groups, module specific and non module specific, by using 
W. Z-scores for the elements of W are computed by column 
and again data driven (or user defined) threshold is utilized for 
grouping. Clinical differences between the identified groups 
are assessed using several statistical methods, such as survival 
analysis using Kaplan-Meier curves and log-rank tests.

This method is focused on finding the correlated 
substructure across the multiple data types in which some 
features can belong to multiple modules while others may 
not belong to any. Therefore, this does not cluster the 
samples (or features) exclusively assigning each sample 
into unique clusters. However, this method identifies 
the correlated subsets reducing the dimensionality of the 
multiple data sets simultaneously.

Mixture-model based integrative clustering of multiple 
data types 

Kormaksson et al. (13) proposed a model based clustering 
method imposing specific Gaussian mixture distribution on 
each cluster. The method constructs likelihood for any given 
partition of the subjects and the estimation is carried out using 
EM algorithm. The method has been formulated initially for 
a single data type specifically considering methylation data, 
although in general any other microarray data sets can be used. 
Then the method has been extended to multiple data types in a 
single comprehensive analysis. One of the strong assumptions 
of this method is that each probe set j can be dichotomized as 
high and low signal groups for each patient i and then two-
component Gaussian mixture model can be applied for each 
patient. Suppose, C is the true partition of the n samples and 
for each cluster c ϵ (1,2,…,K), there is latent indicator vector 
w = {wc} such that wcj =1 if probe set j has high signal for all 
subjects in cluster c otherwise wcj =0. Another assumption is 
that all subjects in cluster C have similar relative signal status 
(high/low) for probe set j. Then the density of data Y={yi},  
i ϵ (1,2,…,n), conditional on the unobserved latent variable w 
with parameter θi=(μ1i, σ1i

2, μ2i, σ2i
2), is given by 

f y w f y wc C i c i c i, ,θ θ( ) = ∏ ∏ ( )∈ ∈ [6].

The density for each subject is modeled as two component Gaussian 
mixture model as f y w y yi c i j

G
ij i i

W

ij i i

Wcj cj, , ,θ ϕ µ σ ϕ µ σ( ) = ∏ ( ) ( )=

−

1 1 1
2

2 2
2 1

, where 
φ denotes normal density. Bernoulli prior is specified on the 
latent variable w with density, 

f w c C j
G

c
W

c
Wcj cj( ) = ∏ ∏∈ =
−

1 1 0
1π π  , π0c | π1c =1 [7]

where π1c and π0c represent the proportions of probe sets 
having high and low signal status respectively. Then joint 
density f(y,w)=f(y|w,θ)×f(w)is integrated with respect to 
latent variable w and marginal likelihood is given as 

L y yC c C j
G

c i C ij i i c i C ij i iψ π ϕ µ σ π ϕ µ σ( ) = ∏ ∏ ∏ ( ) + ∏ ( )∈ = ∈ ∈1 1 1 1
2

0 2 2
2, ,(( ) [8].

This likelihood function is used as an objective function and 
the parameters are estimated using EM algorithm. In order to 
avoid the problem of local maximization, multiple initializations 
of the parameters is suggested and the parameter values 
corresponding to the maximum of the likelihood are chosen.

The likelihood is extended to multiple datasets as long 
as the datasets satisfy the similar model assumptions as 
defined for the single data type, i.e., the subjects in a given 
cluster have correlated signal profiles across multiple data 
types (e.g., high methylation and low expression or low 
methylation and high expression etc.). The likelihood 
function is derived as before with an additional product 
term ∏ =k

m
1  across m data types. Kormaksson et al. (13) 

have proposed two algorithms to find out the optimum 
partitions; (I) hierarchical clustering; and (II) iterative 
clustering. Hierarchical clustering algorithm is intended 
to come up with good candidate partition and iterative 
clustering algorithm is to improve upon the initial partition. 

The hierarchical algorithm starts with the partition 
where each subject represents its own cluster. The 
likelihood LC1  is defined considering two-component 
Gaussian mixture model for each of the n subjects. EM 
algorithm with several initializations is used to estimate the 
optimum parameters. Next, the likelihood LC2  is defined 
merging two subjects in 2

n( )  ways and is optimized using 
EM algorithm as before. Then three subjects are merged 
and the process is continued until single cluster is left. 
The partition that has highest value of the corresponding 
likelihood is chosen as final clusters. 

In order to run the iterative clustering algorithm, cluster 
membership indicators are defined for each subject i as Xic = 1 
if subject i is in cluster C and Xic = 0 otherwise. Then assuming  
Xi = (Xic)cϵC and X1, X2, …, Xn are independent and identically 
distributed with multinomial distribution, the density of X is 
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defined as f X pi
n

c C c
Xic( ) = ∏ ∏= ∈1  where ∑cϵC pc=1. The classification 

likelihood given the membership indicators Xi’s is defined as 
f y X f y wc C i

n
i c i

Xic( ) = ∏ ∏ ( )∈ =1 ,θ . Multiplying and integrating out X, 
the marginal likelihood is given as f y p f y wi

n
c i c i; ,ϕ θ( ) = ∏ ( )=1  

where ϕ θ µ σ µ σ= ( ) ( ) = ( ){ }∈ ∈
p wc c C c c C i i i i i i

, , , , ,1 1
2

2 2
2 . Initial partition X(0) 

is computed using hierarchical algorithm and then updated 
iteratively in order to maximize the likelihood using EM 
algorithm. Once the optimum parameters are estimated, 
the subjects are assigned the clustering membership 
by computing the posterior expectationE(Xic|y)i,c. Each 
subject is assigned to the cluster to which it has the highest 
estimated posterior probability of belonging. 

The method provides an attractive framework for 
integrative model based clustering. One of the novelties of the 
method is that it models the subject specific parameters. This 
enables the method to work in typical genomic data in which 
number of features exceeds the number of subjects. Since 
the method does not perform automatic feature selection, 
the user has to pre-select the features based on some criteria 
such as most variable features or features that are significantly 
associated with phenotype of interest. Also, the model 
assumptions that are uniquely defined for this method have to 
be met in order for this method to work. The method has been 
extensively described in the context of microarray methylation 
and expression data sets but the applicability of the method in 
non-microarray platforms has yet to be assessed.

Although the purpose of all three methods is to utilize 
correlated information across the several genomic assays on 
the same set of samples in order to better understand the 
disease, the implementation of the methods are based on 
separate statistical framework. Application of iCluster and 
Gaussian mixture model based methods (sections 4.1 and 4.3) 
require their model assumptions to draw valid conclusions 
while NMF based method (section 4.2) does not rely on 
any model assumptions. iCluster and model based methods 
classify the samples in such a way that each sample can fall in 
unique cluster while in NMF based method a samples can fall 
in more than one subset or can be completely excluded based 
on the correlation structure in the data. In addition, iCluster 
has automatic feature selection step through the use of lasso 
penalty while other two methods do not have that.

Data and examples

Publicly available data on ovarian cancer from TCGA project 
was used to describe the clustering methods mentioned in this 
paper. The data sets we used consist of Agilent gene expression 
data (90,797 probes) and DNA methylation data (27,338 

probes) with clinical outcomes on 499 subjects. In order to 
reduce the dimensionality of the data sets, top thousand probes 
from each of the gene expression and methylation data were 
selected by running Cox proportional hazards model for 
each gene and methylation probes with time to recurrence of 
disease as end point adjusting for age and cancer stage. The 
datasets with these selected probe sets were used further in the 
clustering methods. The examples presented in this paper are 
intended to illustrate the clustering methods discussed in the 
paper rather than serving as substantive analyses.

Single data clustering methods

Gene expression data was used to describe the single data 
clustering methods. For NMF method (15), Matlab software 
was used and for all other single data clustering methods 
software R was used. Except in NMF, none of the other single 
data clustering methods mentioned in the paper has in built 
method to estimate optimum number of clusters. For NMF 
method, the plot of cophenetic correlation against number of 
clusters is used to estimate the number of clusters (Figure 2A).  
The plot shows that the curve starts bending sharply at k =3 
suggesting that three clusters is optimum for this data. To 
further study the differences in time to recurrence among the 
identified clusters Kaplan Meier plot followed by the log-rank 
test of statistical significance was carried out (Figure 2B). The 
time to recurrence was found significant (P value <3.4×10-11  
among the clusters). Next, K-means clustering was carried 
out using the function kmeans in R. This method requires 
the analyst to pre-specify the number of clusters. One of the 
ways to make the initial guess about the number of clusters is 
by plotting the within groups sums of squares (WSS) against 
number of clusters (k) (Figure 3A). Generally, it is hard to 
find the cut-point for the number of clusters looking at the 
plot (in this example it is hard to say whether it is k =3 or 4). 
To become consistent with NMF, k =3 was selected for this 
example and then time to recurrence analysis was carried 
out as before (Figure 3B). Similarly, the optimum number of 
clusters selection in hierarchical method is subjective and is 
based on looking at the dendogram plot. Again in this example 
it is hard to say how many clusters are appropriate (Figure 4A).  
For this and the rest of the methods we pre-assign k =3. 
The resulting clusters from each of the method were further 
assessed with time to recurrence analyses as mentioned above 
(Figure 4B). The results and the software functions used to 
carry out the clustering are summarized in Table 1. Since the 
time to recurrence plots from all of the methods are similar, to 
save space, only the plots for NMF, K-means and hierarchical 
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clustering methods are shown in the paper. 

Integrative clustering methods

Both the gene expression and methylation data were used for 
the integrative clustering methods. R functions are available 
for iCluster and mixture model based clustering methods while 
Matlab codes are available for integrative clustering based on 
NMF. The iCluster resulted in optimum number of clusters 
to be 2. To further study the differences in time to recurrence 
between the identified clusters Kaplan Meier plot followed by 

the log-rank test of statistical significance was carried out. The 
cluster separability plot and Kaplan Meier plot are shown in 
Figure 5A and Figure 5B respectively. However, the mixture 
model based clustering method produced large number of 
clusters (k =48) with our data (Figure 6). One of the reasons 
this happened could be because the model over fitted the 
data. Using the cross validation technique (18, pages 214-216) 
may be helpful in improving the application of the method. 
Further time to recurrence analyses were not carried out 
with that result. On the other hand, the purpose of the NMF 
integrative method mentioned in this paper is to draw the 

Figure 2 (A) Plot showing the cophenetic correlation against 
number of clusters. The curve falls sharply at cluster (k) equals 3 
indicating optimum number of cluster to be 3; (B) plot showing the 
Kaplan Meier survival curves among the clusters found using non 
negative matrix factorization (NMF) method with P value.

Figure 3 (A) Plot showing the within groups sums of square (WSS) 
against number of clusters (k); (B) plot showing the Kaplan Meier 
survival curves among the clusters found using K-means clustering 
method with P value.
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correlated subgroups (MD module) across the samples rather 
than classifying the samples explicitly into the disjoint clusters. 
However as suggested by the method, for each MD module, 
the samples can be classified into two groups: module specific 
and non-module specific. For our application, we defined  
k =2 and classified the samples into two groups. Then the 
two groups were assessed using time to recurrence analyses as 
mentioned above (Figure 7). The results as well as the software 
functions used are summarized in Table 2. 

Based on the results it can be inferred that the choice of 
the method depends on the purpose of the study and nature 
of the data, whether the data satisfies the model assumptions, 
only single type of data is available or multiple datasets are 

available etc. In the absence of the initial number of clusters 
(which is true in many studies), the method having in-built 
method of estimating such number would be preferable. In 
addition, cross validation techniques (the technique in which 
the data is splitted into two parts, the clustering method is 
applied in one set of data and the results are validated in 
other set of data) (18) are recommended to use together with 
the methods mentioned above in order to make sure that the 
model is not over fitting the data. 

Discussion

Cluster analysis aims to highlight meaningful patterns or 

Figure 4 (A) Plot showing the cluster dendogram for the hierarchical clustering. The samples in the red boxes represent the clusters; (B) 
plot showing the Kaplan Meier survival curves among the clusters found using hierarchical clustering method with P value.

Table 1 Table showing the single data clustering methods with selection of the number of clusters, resulting clusters with number of 
samples assigned in each cluster, the software and function used to carry out the clustering and the P value from the time to recurrence 
analysis among the clusters

Method Selection of k Samples in each cluster Software/function P value 

K-means Subjective 1=157, 2=202, 3=140 R/kmeans 7.2×10-8

Hierarchical Subjective 1=205, 2=94, 3=200 R/hclust 1.0×10-5

Fuzzy C-means Subjective 1=131, 2=168, 3=200 R package “cluster”/fanny 3.7×10-3

Self organizing map Subjective 1=246, 2=26, 3=227 R package “som”/som 3.9×10-14

Tight clustering Subjective 1=28, 2=35, 3=436 R package “tightClust”/tight.clust 1.4×10-2

Model based method Subjective 1=218, 2=133, 3=148 R package “mclust”/Mclust 1.0×10-6

NMF In-built method 1=183, 2=166, 3=150 Matlab code 3.4×10-11

k stands for number of clusters.
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groups inherent in the data that will be helpful in identifying 
the subtypes of the diseases. A reliable and precise classification 
of diseases is essential in precision medicine. Clinical methods 
for classification rely on variety of morphological, clinical 
and molecular variables. However there are uncertainties in 
diagnosis with such procedures. It is likely that the subtypes 
thus detected are still heterogeneous in the molecular level and 
follow the different clinical course. Several types of clustering 
algorithms have been proposed that use several assays of 
molecular variation of cells most of which are designed for one 

type of data at a time. Such methods have been successfully 
implemented in many disease classification studies. As multiple 
types of data are increasingly available due to high throughput 
technologies, an essence of integrative methods of clustering 
has been more evident and attention has been diverted 
appreciably towards integrative analysis of clustering. A few 

Figure 5 (A) Cluster separability plot for iCluster method showing 
two clusters; (B) plot showing the Kaplan Meier survival curves 
between the two clusters found using iCluster method with P value.

Figure 7 Plot showing the Kaplan Meier survival curves between 
the two clusters found using integrative NMF method with P value.

Figure 6 Plot from mixture model based integrative clustering 
method showing the cluster dendogram on the left and number of 
clusters against log-likelihood on the right. The plot on the right is 
used to determine the number of clusters.
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attempts have already been made in an effort of developing 
such methods and have been explained with real data examples. 
Traditional approach of identifying the subtypes or clusters 
across the multiple data types is to separately cluster each type 
of data, followed by manual integration of the results. Manual 
integration of the results requires great deal of understanding 
of the biological information but the conclusions drawn 
will still be subjective. A few comprehensive clustering 
methods (11-13,52) have also been proposed and successfully 
implemented in some studies. In this paper, brief review of 
those methods has been presented.

Integrative clustering methods can also be implemented 
under three broadly classified statistical learning techniques; 
unsupervised, supervised and semi-supervised approaches 
(55,56). The unsupervised method does not use any clinical 
information about the patient but uses only the genomic data 
to create subgroups assuming that there exists an unknown 
mapping that assigns a group “label” to each feature (25) and 
are based on measuring the similarities between the samples 
within the defined geometrical distances. A drawback of such 
methods is that the identified tumor subtypes may not always be 
correlated to clinical outcomes, such as, survival of the patients, 
disease status etc. In contrast, supervised method directly 
focuses the phenotype of interest in order to identify clusters 
assuming a pre-defined basis of categories. For example, patients 
can be classified as “high risk” and “low risk” groups based 
on their survival times (57,58). However, such classification 
may not necessarily agree with molecular classification. More 
flexible semi-supervised method combines both the genomic 
and clinical data sets which involve selecting a list of genomic 
features that are associated with the clinical variable of interest 
and then applying unsupervised clustering method to the subset 
of the data with the pre-selected features (55).

Use of all available genomic information in the determination 
of clinically relevant molecular subtypes is essential to aid in the 
detection of novel loci, development of targeted therapies and 
the understanding of the subsequent biological mechanisms 

responsible for disease etiology, progression and/or treatment 
sensitivity/resistance. As such, the role of an efficient statistical 
method that is able to integrate a disparate number of multiple 
data types is very important to reach the ultimate goal of 
improving the ability to understand and predict etiology of 
complex diseases, such as cancer.
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