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Introduction

Breast cancer is the most commonly diagnosed cancer in 
women in the United States, with an estimated 246,660 new 
cases diagnosed in 2016 (1). Breast cancer incidence varies 
dramatically across and within states (2,3). Reducing breast 

cancer disparities, including geographic disparities, is an 
overarching goal of the Healthy People 2020 initiative (4).

Progress has been made in reducing geographic 
disparities in breast cancer outcomes, but disparities remain 
(5,6). Understanding the complex and multilevel factors 
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that influence these disparities is essential in order to design 
and implement effective interventions. Complex multilevel 
factors include individual factors; family, friends, and social 
support factors; healthcare provider and organizational 
factors; and policy and community factors (7). Because 
public health programs and policies are frequently designed 
and implemented at the county-level, there is value to 
examine disparities at this level. Such local information 
can also be used by hospitals and healthcare systems to 
understand local needs for medical care and to improve 
population health management as part of the Affordable 
Care Act. Identifying determinants at the individual- and 
area-levels may help explain geographic disparities, namely 
why some areas experience higher breast cancer incidence 
rates while other areas experience lower rates. Individual-
level determinants include both modifiable (e.g., being 
overweight, use of hormones, physical inactivity, alcohol 
consumption) and non-modifiable risk factors for breast 
cancer (e.g., age, longer menstrual history, family history 
of breast cancer) (8). Theoretical models also suggest 
that population health is affected by population/area-
level determinants (9-12), which are factors that influence 
breast cancer incidence on a wider scale. Examples include 
access to medical care, local socioeconomic conditions, 
and racial segregation (13,14), which act on all individuals 
in a population including women at risk for breast cancer. 
While prior research has focused predominantly on either 
individual-level determinants of individual breast cancer 
risk or examined population-level determinants of area-
level breast cancer incidence, there is little evidence of the 
relative impact of both types of determinants on breast 
cancer incidence at the population level. Identifying 
reasons for elevated breast cancer incidence will allow 
for development and implementation of evidence-based, 
multilevel interventions to reduce geographic disparities. 
If population-level determinants are driving disparities 
over and above individual-level determinants, then this will 
help identify which types of interventions would be most 
beneficial (15).

We focused on the State of Arkansas because of the 
large geographic disparities and burden of breast cancer 
across counties that exist. Arkansas is a primarily rural state 
in the Midwest part of the United States, with areas of 
greater population density surrounding its larger cities in 
the central, northwest, northeast, and southwest areas of 
the state. White non-Hispanic residents are the majority 
racial group, with about one in six residents being African 
American. About 75 percent of Arkansas residents have 

completed high school or above. In 2018, 16 percent of 
Arkansas residents lived below the federal poverty line (16). 
While unemployment in Arkansas is typically similar to that 
in the United States, it varies substantially across Arkansas 
with higher rates in the eastern part of Arkansas. Extensive 
racial disparities exist in health outcomes with African 
Americans having higher rates of diabetes, risk factors for 
chronic diseases, and incidence and mortality following 
chronic disease diagnosis compared to white residents 
(17-20). According to countyhealthrankings.org, health 
behaviors, access to high-quality medical care, social and 
economic factors, and health outcomes appear to be worse 
in the eastern part of Arkansas.

During 2008–2012, 11,556 women were diagnosed with 
ductal carcinoma in-situ or invasive breast cancer across 
Arkansas’ 75 counties. The overall age-adjusted rate was 
132.1 (95% CI: 129.6–134.6) per 100,000 population. Of 
11,556 breast cancers, 1,429 (12.4%) were among African 
Americans and 9,837 (85.1%) among whites. Invasive 
cancers accounted for 81.7 percent of breast cancers. 
Breast cancer incidence varied across counties and ranged 
from 80.9 to 161.6 per 100,000 population (Figure 1). The 
number of breast cancer cases by county ranged from 16 
to 1,762. Incidence appeared to be higher in the central 
counties, although some counties with high rates were 
bordered by counties with low rates.

We used a novel micro-macro statistical approach in 
public health (21), which adjusts aggregated individual-level 
data to account for aggregation-induced biases, to identify 
determinants of county-level breast cancer incidence rates 
at both the individual and county level.

Methods

Breast cancer incidence data

County-level breast cancer incidence data from 2008 to 
2012 was obtained from the Arkansas Central Cancer 
Registry (ACCR). Specifically, the ACCR provided county-
level age-adjusted breast cancer incidence rates for women 
diagnosed with ductal carcinoma in situ or invasive disease 
during 2008–2012. The ACCR is certified by the North 
American Association of Central Cancer Registries, and 
is a population-based registry financially supported by 
the Centers for Disease Control and Prevention (CDC) 
through their National Program of Cancer Registries and 
collects data on all cancers of Arkansas residents. Mandated 
reporters are required by Arkansas law (20-15-202) to 
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submit all cancer-related diagnoses. Additionally, the ACCR 
has a case-sharing agreement with 18 other states to capture 
cancer cases among Arkansas residents who may have been 
diagnosed or treated elsewhere. The ACCR is gold certified 
by the North American Association of Central Cancer 
Registries, which means that the Registry was estimated 
to capture at least 95% of the expected number of cancer 
cases.

Individual-level breast cancer risk factors

Individual-level sociodemographic information and 
breast cancer risk factors were obtained from the cross-
sectional Arkansas Rural Community Health (ARCH) study 
(described in more detail elsewhere) (22,23). Briefly, the 
ARCH study recruited women during community events 
designed to increase breast cancer awareness, as well as 
non-cancer related community events. After providing 
written consent, women completed a questionnaire about 
breast cancer risk factors using validated instruments (22). 
We limited the study participants for this analysis to those 
who were between the ages of 35 and 85 at the time of 
enrollment, were white or African American, did not have a 
prior diagnosis of breast cancer, were enrolled in the study 
between September 2007 and December 2012, and resided 
in Arkansas at the time of enrollment. The self-reported 
residential street address of each study participant was 
geocoded using ArcGIS version 10.2.2 to obtain the county 
of residence for linking with the corresponding county-
level measurements. Predicted breast cancer risks were 

estimated using the Gail model (24) for white women and 
the Women’s Contraceptive and Reproductive Experiences 
study (CARE) model for African American women (25). 
The Gail model uses a woman’s personal medical and 
reproductive history and the history of breast cancer among 
her first-degree relatives (mother, sisters, or daughters) to 
estimate absolute breast cancer risk. The CARE model uses 
age at menarche, number of affected mother or sisters, and 
number of previous benign biopsy examinations to estimate 
risk. Because the number of biopsies collected per woman 
was not measured, women who reported having a biopsy 
were considered as having had one biopsy for the purpose of 
risk prediction. Likewise, the questionnaire did not collect 
data on atypical hyperplasia, so this was set to missing for 
all women. Five-year and lifetime breast cancer risk were 
estimated using the SAS macro programs obtained from the 
National Cancer Institute for the Gail model (26) and for 
the CARE model (27).

Self-reported height and weight were used to calculate 
body mass index (BMI) both at the time of completion of 
the survey and at age 18. Alcohol consumption in grams 
per day was calculated as the sum of the daily number of 
drinks multiplied by the average alcohol content per type 
of alcoholic beverage (13 g of alcohol per serving). Daily 
alcohol use was categorized as <10 or ≥10 g/day based on 
its association with breast cancer risk in women aged 40 or 
older (28). Breast feeding was measured as the duration (if 
any) of breast feeding (22). Physical activity was categorized 
as highly active, active, insufficiently active, or inactive based 
on CDC guidelines of ≥30 minutes of moderate physical 

Arkansas rate: 107.9 per 100,000
70.7–90.0
90.1–101.9
102.0–112.8
112.9–135.1
Missing

Figure 1 County-level age-adjusted breast cancer incidence (per 100,000) in Arkansas, 2008–2012.
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activity 5 or more days per week or vigorous physical activity 
for ≥20 minutes 3 or more days per week) (29).

County-level breast cancer determinants

County-level determinants were obtained from multiple 
data sources (e.g., Behavioral Risk Factor Surveillance 
System, Area Resource File, American Community 
Survey). We used the County Health Rankings model 
to classify the county-level determinants into four 
broad exposure categories (Health Behaviors, Clinical 
Care, Social and Economic Environment, and Physical 
Environment) (30). The County Health Rankings model 
was augmented by adding a Population Health Status 
category (31). Because county data from the Arkansas 
Behavioral Risk Factor Surveillance System (BRFSS) 
yields reliable data for only one county (Pulaski), the 
Arkansas Department of Health has estimated county-
level prevalence using survey data from adjacent counties 
with subsequent adjustment to the age, race, and gender 
distribution of the county (32).

Health behavior determinants consisted of: (I) breast 
cancer screening prevalence (percentage of women aged 
≥40 who reported not having had a mammogram during the 
past 2 years); and (II) prevalence of the population meeting 
the CDC’s physical activity guidelines.

Clinical care determinants consisted of access to and 
quality of medical care, which included: (I) the population 
per primary care physician; (II) the hospitalization rate 
for ambulatory-care sensitive conditions (preventable 
hospitalizations); and (III) the population aged <65 without 
health insurance (uninsured rate).

Social and economic determinants consisted of: (I) 
the Theil index of racial segregation (33); (II) poverty 
rate (percentage of the population below the federal 
poverty line); (III) percentage of adults without social/
emotional support; (IV) the violent crime rate (per 100,000 
population); and (V) the high school graduation rate. We 
obtained the Theil index to estimate racial inequality from 
CommunityCommons.org, which measures the "evenness" 
of all races across a county based on the racial composition 
of the population at census blocks. For any given county, 
the index measures the average difference between each 
census block’s racial distribution (entropy), and the racial 
distribution (entropy) of the county as a whole. Values 
range from 0 to 1. Areas with higher values have less 
uniform racial distributions and areas with lower values 
have more uniform ethnic distributions. The population 

groups used in the measurement were non-Hispanic White, 
non-Hispanic Black, non-Hispanic Asian, non-Hispanic 
American Indian/Alaska Native, non-Hispanic Native 
Hawaiian/Pacific Islander, and Hispanic or Latino.

Physical environment determinants consisted of: (I) 
lead emissions and (II) population density per square mile. 
County-level estimates of lead emissions were obtained 
from the Environmental Protection Agency’s Toxic Release 
Inventory data that contains facility location and onsite lead 
release (in pounds). Lead has been shown to increase breast 
cancer risk (34-36). The Toxic Release Inventory is publicly 
available data that contains detailed information on selected 
chemical releases and waste management activities reported 
annually (37).

Population Health Status comprised: (I) diabetes 
prevalence (percentage of the population who reported 
having been diagnosed with diabetes, excluding gestational 
diabetes); (II) infant mortality rate; and (III) prevalence of 
fair or poor health status. Infant mortality was based on the 
number of infant deaths <1 year old per 1,000 live births 
obtained from the Area Health Resource File. Diabetes and 
infant mortality are often used as an indicator of the level 
of health in a county (38,39). The Area Health Resource 
file suppresses data for counties with <10 infant deaths 
between 2008 and 2012, therefore we compared these data 
with the 2006 to 2010 infant mortality rate estimates from 
the Area Health Resource file for which such data were not 
suppressed. We found a correlation of 0.94 suggesting that 
infant mortality rates for counties with ≥10 infant deaths 
during 2008-2012 were stable.

Statistical analysis

Data for county-level mean lead exposure were missing 
for 26 of the 75 counties. Missing values were imputed by 
regressing the log mean lead measurement on all other 
county-level predictors. The antilog of the fitted values 
from the regression was then imputed for the 26 counties 
with missing lead measurements.

We examined the univariate association of each 
individual-level and county-level determinant with breast 
cancer incidence. Nonlinear functions of the predictors 
were examined by visually investigating scatterplots and 
including logarithmic transformations in the univariate 
models. Next, we investigated multivariable linear models 
for county-level age-adjusted breast cancer incidence 
rates including: (I) all county-level predictors; (II) all 
individual-level predictors; and (III) all county-level 
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and individual-level predictors. For models including 
individual-level predictors, we aggregated individual 
data to the county level using a micro-macro model to 
adjust for bias due to group-level aggregation (21). The 
micro-macro model has been applied to fields such as 
education and organizational psychology and management  
(40-45) ,  but  to  our  knowledge has  not  yet  been 
implemented in public health research. Ordinary least 
squares (OLS) regression using aggregated individual 
data to predict a group-level outcome will result in biased 
estimates of regression coefficients, a phenomenon 
sometimes called the atomistic fallacy. The micro-macro 
model adjusts the group-aggregated average to provide 
an unbiased estimate of the relationship between the 
aggregated predictor and the outcome. The adjustment 
comes from a linear combination of: (I) the group-
aggregated average; (II) the full sample mean of the 
individual-level values; and (III) the deviation from 
the overall average of included group-level predictors. 
The model also adjusts standard errors to account for 
imprecision in the newly created predictor. We also 
examined interactions between 5-year predicted breast 
cancer risk and each of the county-level determinants, 
hypothesizing that higher breast cancer incidence rates 
were due to the synergistic effects of individual- and 
county-level determinants.

We used a backward stepwise selection with BIC criteria 
to arrive at a final model for predicting county-level breast 
cancer incidence based on individual- and county-level 
determinants, with lower BIC values indicating better 
model fit. Beginning with the full model including all 
individual- and group-level predictors, predictor variables 
were removed until the model with lowest BIC was 
reached (i.e., removing any variable from the model would 
increase BIC). Since the BIC criteria are a direct numerical 
comparison without a formal hypothesis test, it is possible 
for the best fit model to contain predictors with non-
significant coefficients.

The stability of our results may be affected by the 
standard error of the county breast cancer rates. We 
examined the robustness of our findings by performing a 
sensitivity analysis regressing the upper and lower bounds 
of the 95% confidence intervals of the county rate using the 
variables in our best-fit model. We also joined the residuals 
of our best-fit model with a map of the Arkansas counties 
and calculated Moran's I (both an empirical method and a 
Bayesian method) to determine the need for a spatial model. 
Analyses were performed using R (version 3.3.1) (46).

Results

Study population

In all, 20,007 women in the ARCH study completed 
questionnaires, 13,554 of whom met the study’s inclusion 
criteria. The number of completed questionnaires ranged 
from 8 to 4,166 across Arkansas counties. In our study 
sample, 12.5% were age 65 or older, 20.8% were African 
American, and 75.2% had attended at least some college 
(Table 1). Nearly 40% of participants had a BMI considered 
to be obese (BMI ≥30). Many of the sociodemographic 
characteristics of the participants varied across counties.

Univariate models of individual- and county-level 
determinants

For many characteristics, the variation across Arkansas 
counties was large (Table 2). In many instances, the counties 
with the maximum values for some of these adverse county-
level factors were more than double those of the counties 
with the minimum values. Several individual- and county-
level factors were associated with higher breast cancer 
incidence in univariate models (Table S1). The explained 
variance of any determinant was highest for infant mortality 
rate (R-squared =16.4%).

Multivariable model of individual- and county-level 
determinants

Table 3  compares the variance explained (adjusted 
R-squared) and model fit (BIC) across four models: all 
county-level factors (Model 1), all individual-level factors 
(Model 2), all county- and individual-level factors (Model 
3), and the model of best fit (Model 4). Model 1 had higher 
adjusted R-squared and better fit than Model 2. Although 
the adjusted R-squared was higher for the model with all 
predictors (Model 3), its fit was significantly worse than 
either Model 1 or 2. Model 4, the best fit model, contained 
the individual-level determinants (Gail/CARE predicted 
breast cancer risk) and county-level determinants [lead 
exposure (log transformed) and population density (log 
transformed)] and yielded an adjusted R-squared of 14.1%. 
As shown in Table 4, the county breast cancer incidence rate 
increases by 0.64 cases per 100,000 population for every 
percentage increase in a woman’s risk of breast cancer, 
controlling for other variables in the model. The county 
incidence rate increased by 6.8 per 100,000 population 
for every unit increase in the log-transformed population 
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Table 1 Characteristics of the study population based on survey 
data (n=13,554), 2007–2012

Risk factors Percentage
County range 

(%)

Age (years)

35–49 50.4 −

50–64 37.1 −

65 or older 12.5 4.4–47.8

Race

African American 20.8 0.0–75.9

White 79.2 −

Education

Less than high school 3.5 0.0–23.6

High school or GED 21.2 −

At least some college 75.2 −

Unknown 0.1 −

Age at menarche (years)

<12 24.0 16.7–40.0

12–13 52.3 −

14 or older 23.7 −

Body mass index at time of survey (kg/m
2
)

<18.5 1.3 −

18.5–24.9 28.3 −

25.0–29.9 29.8 −

30 or more 39.7 0.0–63.2

Unknown 1.0 −

Body mass index at age 18 (kg/m
2
)

<18.5 22.5 −

18.5–24.9 63.1 −

25.0–29.9 8.5 −

30 or more 4.4 0.0–12.5

Unknown 1.5 −

Lactation

No (no child birth,  
duration 0–6 months)

76.9 −

Yes (6 or more months) 21.7 0.0–50.0

Unknown 1.4 −

Table 1 (continued)

Table 1 (continued)

Risk factors Percentage
County range 

(%)

Alcohol use

0–<10 g/day 86.8 −

10 g/day or more 12.4 0–19.5

Unknown 0.1 −

Physical activity

Inactive 6.4 0–18.2

Insufficiently active 14.9 −

Active 16.9 −

Highly active 61.8 −

Mean 5-year predicted breast 
cancer risk, % (st dev)

1.3 (1.0) 1.0–1.9

Mean lifetime predicted breast 
cancer risk, % (st dev)

9.9 (5.2) 7.5–11.9

GED, graduate equivalency degree.

density. Although log-transformed county lead exposure 
was included because of the improvement in the model’s 
fit, it was not statistically associated with breast cancer 
incidence rate (P=0.090). The best fit model was checked 
for linear model assumptions and collinearity. The linear 
model passed visual inspection for violations of linearity, 
homoscedasticity, and normality via residual plots which can 
be found in Figures S1,S2. All variance inflation factors were 
less than 2, indicating minimal concerns about collinearity.

Generally, our conclusions were similar in sensitivity 
analyses modeling the upper and lower bounds of the 
95% confidence intervals. Though there were numerical 
differences across the models, the results were qualitatively 
similar. Also, there was no clear evidence for the need for a 
spatial model using the empirical and Bayesian methods to 
calculate Moran’s I and the residuals of our best-fit model (P 
values >0.05).

Discussion

Because breast cancer incidence rates varied significantly 
across Arkansas counties, our purpose was to identify 
individual- and county-level determinants in an attempt 
to identify opportunities for intervention to reduce county 
variability in incidence rates. Using the County Health 



S329Translational Cancer Research, Vol 8, Suppl 4 July 2019

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(Suppl 4):S323-S333 | http://dx.doi.org/10.21037/tcr.2019.06.08

Table 2 Characteristics of 75 counties in Arkansas

County-level factors Median Mean Range Data source

Health behaviors

Women ≥40 without mammogram in past 2 years (%) 31.3 31.4 14.4–46.3 BRFSS [2009]

Meeting physical activity recommendations (%) 46.8 46.8 33.7–63.1 BRFSS [2009]

Clinical care

Population per primary care physician 1,419 2,152 673.9–14,130 Area Health Resource file

Hospitalization rate for ambulatory-care sensitive 
conditions (per 1,000 Medicare enrollees)

81 86 51–145 Dartmouth Atlas of Health Care from  
County Health Rankings [2011]

Uninsured rate (age <65 years) (%) 20 21 16–31 Small Area Health Insurance Estimates [2011]

Social & economic factors

Theil index of racial segregation 0.455 0.452 0.285–0.633 CommunityCommons.org [2010]

Poverty rate (%) 20.4 21.0 8.4–32.3 American Community Survey [2010]

Adults without social/emotional support (%) 22 22 11–39 BRFSS [2005-2010]

Violent crime rate (per 100,000) 270 352 30–1,724 FBI Uniform Crime Reporting [2009-2011]

High school graduation rate (%) 84 84 66–96 American Community Survey [2010]

Physical environment

Lead (pounds) 51.31 152.2 0–2,538 Toxic Release Inventory

Population density (per square mile) 115.5 194.2 10.5–468.9 Area Health Resource file

Population health status

Diabetes (%) 10.6 10.9 5.0–17.9 BRFSS

Infant mortality rate (per 1,000 live births) 7.4 7.5 0.0–15.1 Area Health Resource file

Fair-poor health status (%) 22 22 12–36 BRFSS

BRFSS, Behavioral Risk Factor Surveillance System.

Table 3 Comparison of the fit of four regression models

Model R-squared Adjusted R-squared BIC

Model 1: all county-level predictors 0.287 0.102 647.5

Model 2: all individual-level predictors 0.275 0.055 657.3

Model 3: all predictors 0.628 0.338 672.5

Model 4: best fit model 0.176 0.141 606.6

BIC, Bayesian Information Criterion.

Table 4 Model with the best fit of individual- and county-level factors associated with county breast cancer incidence, 2008–2012

Variable Beta Standard error P value

Individual-level factors

5-year predicted breast cancer risk (Gail/CARE models) 0.639 0.121 <0.001

County-level factors

Lead (log) −0.667 0.396 0.097

Population density per square mile (log) (%) 6.815 1.908 0.001
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Rankings model as our guide, we identified two county-
level determinants of breast cancer incidence, mean lead 
emission (log transformed) and population density (log 
transformed). In other words, breast cancer incidence rate 
differences reflect factors beyond those captured solely by 
the woman’s predicted breast cancer risk. This is evidenced 
by the fact that this model displayed much better fit 
than the model that considered only individual-level risk 
factors; it explained 14.1% of the variance in breast cancer 
incidence.

Our results support theoretical models that claim that 
population-level determinants of area-level disease are key 
drivers beyond individual risk (47,48). Thus, examining 
determinants of geographic variability in breast cancer 
incidence and opportunities for intervention should 
include individual-level as well as area-level determinants. 
Our results further suggest that reducing the variability 
of only individual-level risk factors cannot be reasonably 
expected to reduce variability in incidence rates among 
counties. Typically, interventions targeting individual-
level determinants in the face of powerful population-
level determinants are expected to have a minimal impact 
on population-level disease (11). Interventions focusing 
on multiple levels may have a larger impact than those 
focusing solely on individual-level determinants (15). Our 
results also suggest that strategies should incorporate 
various social determinants of health to better understand 
the impact of modifiable and non-modifiable risk 
factors that contribute to an individual’s risk of disease 
(breast cancer in this case). Failure to recognize this will 
perpetuate ignoring area-level (environmental/social 
contextual) factors (49).

Two county-level determinants were found to be 
associated with breast cancer incidence. First, our results 
of a positive association between higher population density 
and breast cancer incidence confirm observations that 
urban women had higher breast cancer risk than rural 
women (47,48). This suggests that targeting women in 
urban counties in Arkansas by reducing their risk may 
reduce the existing variability in breast cancer incidence. 
Their increased risk may be due, in part, to increased 
traffic-related air pollution in urban areas. A recent study 
showed increased premenopausal breast cancer incidence 
associated with residential air pollution (50). Second, mean 
lead emission (log transformed) was included in the best-
fitting model. Lead exposure has been shown to increase a 
woman’s breast cancer risk (34-36). Our results suggest that 
county-level lead emission may be associated with breast 

cancer incidence rates, but additional research should be 
conducted to further delineate this association.

Third, just as important was our finding that county-level 
health behaviors (including mammography use), availability 
of medical care, social and economic determinants, and 
population health status were not associated with breast 
cancer incidence. This lack of association suggests that 
intervening on these determinants would not reduce the 
variability in breast cancer incidence at the county level. 
Moreover, the rate of in-situ and invasive breast cancer 
were very similar for white and African American women in 
Arkansas. County poverty rate, all too often associated with 
racial composition, and the Theil index of racial segregation 
were not associated with county breast cancer incidence 
rate. Thus, county racial composition is unlikely to explain 
higher breast cancer rates in some counties. Our results 
confirm for breast cancer incidence that the use of medical 
care provided to patients accounts for only a minor portion 
of population health status (12).

The only individual-level determinant associated with 
breast cancer incidence in our best-fitting model was 
predicted risk of breast cancer based on the Gail/CARE 
model, which consists of woman’s age, education, age at 
menarche, number of biopsies, number of first-degree 
relatives that have been diagnosed with breast cancer, age 
at first childbirth, and the presence of atypical hyperplasia 
(24,25). Although this predicted risk was associated with 
county-level breast cancer incidence, none of these variables 
are modifiable. While behavior represents the single 
most prominent domain of influence over health (12),  
interestingly, previously observed risk factors for breast 
cancers, such as BMI at age 18 or at the time of the survey, 
breast feeding, physical activity, and alcohol use, were not 
associated with breast cancer incidence in our best fitting 
model. This suggests that modifying these behaviors 
would have little direct impact on reducing geographic 
variability in breast cancer incidence at the county level. 
Other modifiable risk factors for breast cancer, including 
diet, body shape at menarche, use of hormone replacement 
therapy, and dietary patterns (51), may have played a role 
but were not assessed in our survey. Future studies should 
include these variables, building upon our best fitting 
model, recognizing that our model explained only 14.1% of 
the variance in the county breast cancer incidence rate.

Our findings should be interpreted in light of some 
limitations. First, our data were observational data and 
our results should be interpreted as reflecting statistical 
associations, not causal relationships. Because some data 
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were at the county level, we were unable to address issues 
of cross-border receipt of medical care or exposures. 
Second, the use of county-level data based on sampling (e.g., 
BRFSS) is subject to uncertainty. Although the number of 
participants in the ARCH survey varied across counties, 
our micro-macro statistical model was able to negate this 
variability. Third, data from women who participated in 
the ARCH survey were typically of higher income and 
education. Controlling for educational status may have 
alleviated some of this limitation but perhaps not all of it. 
Fourth, because our understanding of risk factors for breast 
cancer is still incomplete (51,52), unmeasured and unknown 
risk factors may have played a role. Fifth, generalizability of 
our findings beyond the State of Arkansas may be limited 
because of the unique characteristics of the state. Sixth, 
we made no distinction between pre- or post-menopausal 
breast cancer, in situ or invasive breast cancer, nor among 
various molecular breast cancer types (e.g., triple negative 
breast cancer) because of the potentially small number 
of breast cancers in many counties which would have 
resulted in unstable rates. Seventh, the standard error of 
the breast cancer rates varied across counties based on 
the number of breast cancers. However, our sensitivity 
analyses regressing the upper and lower bounds of the 95% 
confidence intervals of the county rates showed our results 
to be qualitatively similar to our analysis of the county 
rates. Eighth, variable selection and model development 
is an inherently exploratory process. There is a tradeoff 
between explaining the largest proportion of variation in 
the outcome and excluding spurious relationships with the 
goal of producing replicable models. In our case the best 
fitting model produces a much lower adjusted R-squared 
than the full model as much of the variation is due to minor 
improvements from many variables. Removal of those 
variables yields a lower adjusted R-squared but a model in 
which we can be more confident about the relationships 
that were uncovered. Finally, genetic aspects of breast 
cancer beyond family history were not included, but this 
is expected to play only a minor role at the population 
level (53).

In conclusion, variability in breast cancer incidence rates 
reflects determinants beyond those captured by individual-
level variables. Not considering upstream determinants 
assumes that traditional determinants (e.g., mammography 
use, breast cancer risk) play a large role in breast cancer 
incidence disparities. Additional research should be 
conducted to further explain county-level breast cancer 
incidence rates.

Acknowledgments

Funding: None.

Footnote

Provenance and Peer Review: This article was commissioned 
by the Guest Editors (Hui-Yi Lin, Tung-Sung Tseng) for 
the series “Population Science in Cancer” published in 
Translational Cancer Research. The article has undergone 
external peer review.

Conflicts of Interest: All authors have completed the ICMJE 
uniform disclosure form (available at http://dx.doi.
org/10.21037/tcr.2019.06.08). The series “Population 
Science in Cancer” was commissioned by the editorial office 
without any funding or sponsorship. The authors have no 
other conflicts of interest to declare.  

Ethical Statement: The authors are accountable for all 
aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are 
appropriately investigated and resolved. The study was 
conducted in accordance with the Declaration of Helsinki 
(as revised in 2013). The study was approved by the 
Institutional Review Boards of the University of Arkansas 
Medical Sciences (No. 89071) and Saint Louis University 
(No. 26910) and written informed consent was obtained 
from all patients.

Open Access Statement: This is an Open Access article 
distributed in accordance with the Creative Commons 
Attribution-NonCommercial-NoDerivs 4.0 International 
License (CC BY-NC-ND 4.0), which permits the non-
commercial replication and distribution of the article with 
the strict proviso that no changes or edits are made and the 
original work is properly cited (including links to both the 
formal publication through the relevant DOI and the license). 
See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

1. American Cancer Society. Cancer facts & figures, 2015. 
Atlanta, GA: American Cancer Society, 2015.

2. American Cancer Society. Cancer facts & figures, 2016. 
Atlanta, GA: American Cancer Society, 2016.

3. Keller D, Guilfoyle C, Sariego J. Geographical influence 
on racial disparity in breast cancer presentation in the 

http://dx.doi.org/10.21037/tcr.2019.06.08
http://dx.doi.org/10.21037/tcr.2019.06.08
https://creativecommons.org/licenses/by-nc-nd/4.0/


S332 Schootman et al. Determinants of high breast cancer incidence rates

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(Suppl 4):S323-S333 | http://dx.doi.org/10.21037/tcr.2019.06.08

United States. Am Surg 2011;77:933-6.
4. U.S. Department of Health and Human Services. 

Healthy People 2020. 2014. Available online: http://
www.healthypeople.gov/2020/about/foundation-health-
measures/Disparities.

5. Schootman M, Lian M, Deshpande AD, et al. Temporal 
trends in geographic disparities in small-area breast cancer 
incidence and mortality, 1988-2005. Cancer Epidemiol 
Biomarkers Prev 2010;19:1122-31. 

6. Sighoko D, Murphy AM, Irizarry B, et al. Changes in 
the racial disparity in breast cancer mortality in the ten 
US cities with the largest African American populations 
from 1999 to 2013: The reduction in breast cancer 
mortality disparity in Chicago. Cancer Causes Control 
2017;28:563-8.

7. Purnell TS, Calhoun EA, Golden SH, et al. Achieving 
health equity: Closing the gaps in health care disparities, 
interventions, and research. Health Affairs 2016;35:1410-5.

8. Markin A, Habermann EB, Chow CJ, et al. Rurality 
and cancer surgery in the United States. Am J Surg 
2012;204:569-73.

9. Glass TA, McAtee MJ. Behavioral science at the crossroads 
in public health: Extending horizons, envisioning the 
future. Soc Sci Med 2006;62:1650-71.

10. Rose G. Sick individuals and sick populations. Int J 
Epidemiol 2001;30:427-32.

11. Frohlich KL, Potvin L. Transcending the Known in 
Public Health Practice: The Inequality Paradox: The 
Population Approach and Vulnerable Populations. Am J 
Public Health 2008;98:216-21.

12. McGinnis JM, Williams-Russo P, Knickman JR. The 
case for more active policy attention to health promotion. 
Health Affairs 2002;21:78-93.

13. Lian M, Struthers J, Schootman M. Comparing GIS-based 
measures in access to mammography and their validity in 
predicting neighborhood risk of late-stage breast cancer. 
PLoS One 2012;7:e43000.

14. Boscoe FP, Henry KA, Sherman RL, et al. The 
relationship between cancer incidence, stage and poverty 
in the United States. Int J Cancer 2016;139:607-12.

15. Paskett E, Thompson B, Ammerman AS, et al. Multilevel 
interventions to address health disparities show 
promise in improving population health. Health Affairs 
2016;35:1429-34.

16. Center for American progress. Talk poverty. 2019. 
Available online: https://talkpoverty.org/state-year-report/
arkansas-2018-report/. Accessed 5/24/2019.

17. Govindarajan R, Shah RV, Erkman LG, et al. Racial 

differences in the outcome of patients with colorectal 
carcinoma. Cancer 2003;97:493-8.

18. Sekikawa A, Kuller LH. Striking variation in coronary 
heart disease mortality in the United States among black 
and white women aged 45-54 by state. J Womens Health 
Gend Based Med 2000;9:545-58.

19. Monzavi-Karbassi B, Siegel ER, Medarametla S, et al. 
Breast cancer survival disparity between African American 
and Caucasian women in Arkansas: A race-by-grade 
analysis. Oncol Lett 2016;12:1337-42.

20. Mujib M, Zhang Y, Feller MA, et al. Evidence of a "heart 
failure belt" in the southeastern United States. Am J 
Cardiol 2011;107:935-7.

21. Croon MA, van Veldhoven MJ. Predicting group-
level outcome variables from variables measured at the 
individual level: a latent variable multilevel model. Psychol 
Methods 2007;12:45-57.

22. Bondurant KL, Harvey S, Klimberg S, et al. Establishment 
of a southern breast cancer cohort. Breast J 2011;17:281-8.

23. Lee JY, Klimberg S, Bondurant KL, et al. Cross-sectional 
study to assess the association of population density with 
predicted breast cancer risk. Breast J 2014;20:615-21.

24. Gail MH, Brinton LA, Byar DP, et al. Projecting 
individualized probabilities of developing breast cancer 
for white females who are being examined annually. J Natl 
Cancer Inst 1989;81:1879-86.

25. Gail MH, Costantino JP, Pee D, et al. Projecting 
individualized absolute invasive breast cancer risk 
in African American women. J Natl Cancer Inst 
2007;99:1782-92.

26. Breast Cancer Risk Assessment SAS Macro (Version 4, Gail 
Model). Available online: https://dceg.cancer.gov/tools/risk-
assessment/bcrasasmacro. Accessed April 29, 2019.

27. CARE Model SAS Macro: Breast Cancer Risk Assessment 
for African American Women. Available online: https://
dceg.cancer.gov/tools/risk-assessment/care. Accessed April 
29, 2019.

28. Chen WY, Rosner B, Hankinson SE, et al. Moderate 
alcohol consumption during adult life, drinking patterns, 
and breast cancer risk. JAMA 2011;306:1884-90.

29. U.S. Department of Health and Human Services. 2008 
Physical activity guidelines for American. ODPHP 
Publication No. U0036 Washington, DC2008.

30. University of Wisconsin Population Health Initiative. 
County health rankings and roadmaps. 2017. Available 
online: http://www.countyhealthrankings.org/our-
approach. Accessed February 22, 2017.

31. Patel SA, Ali MK, Narayan KM, et al. County-level 



S333Translational Cancer Research, Vol 8, Suppl 4 July 2019

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(Suppl 4):S323-S333 | http://dx.doi.org/10.21037/tcr.2019.06.08

variation in cardiovascular disease mortality in the 
United States in 2009-2013: Comparative assessment of 
contributing factors. Am J Epidemiol 2016;184:933-42.

32. Arkansas Department of Health. Methodology for county 
BRFSS estimates. Little Rock, AR. 2017. Accessed 
February 22, 2017.

33. Reardon SF, Firebaugh G. Measures of multigroup 
segregation. Sociol Methodol 2002;32:33-67.

34. Poirier LA, Vlasova TI. The prospective role of abnormal 
methyl metabolism in cadmium toxicity. Environ Health 
Perspect 2002;110 Suppl 5:793-5.

35. Silbergeld EK, Waalkes M, Rice JM. Lead as a carcinogen: 
experimental evidence and mechanisms of action. Am J Ind 
Med 2000;38:316-23.

36. Salnikow K, Costa M. Epigenetic mechanisms of 
nickel carcinogenesis. J Environ Pathol Toxicol Oncol 
2000;19:307-18.

37. Environmental Protection Agency. TRI national analysis 
archive. Washington, DC. 2017. Accessed February 1, 2017.

38. Institute of Medicine. State of the USA Health Indicators: 
Letter Report. Washington, DC: The National Academies 
Press, 2009.

39. Yankauer A. What infant mortality tells us. Am J Public 
Health 1990;80:653-4.

40. Schweig J. Cross-Level Measurement Invariance 
in School and Classroom Environment Surveys: 
Implications for Policy and Practice. Educ Eval Policy 
Anal 2014;36:259-80.

41. Marsh HW, Lüdtke O, Nagengast B, et al. Classroom 
Climate and Contextual Effects: Conceptual and 
Methodological Issues in the Evaluation of Group-Level 
Effects. Educ Psychol 2012;47:106-24.

42. Wood S, Van Veldhoven M, Croon M, et al. Enriched job 
design, high involvement management and organizational 
performance: The mediating roles of job satisfaction and 
well-being. Human Relations 2012;65:419-45.

43. Taris TW, Schreurs PJG. Well-being and organizational 
performance: An organizational-level test of the happy-
productive worker hypothesis. Work Stress 2009;23:120-36.

44. Zhang Z, Waldman DA, Wang Z. A multilevel investigation 
of leader- member exchange, informal leader emergence, 
and individual and team performance: personnel psychology. 
Pers Psychol 2012;65:49-78.

45. Kostopoulos KC, Spanos YE, Prastacos GP. Structure 
and Function of Team Learning Emergence: A Multilevel 
Empirical Validation. J Manage 2013;39:1430-61.

46. R Core Team. Computing RFfS. editor. R: A language 
and environment for statistical computing. Vienna, 
Austria: R Foundation for statistical Computing, 2016.

47. Akinyemiju TF, Genkinger JM, Farhat M, et al. 
Residential environment and breast cancer incidence and 
mortality: a systematic review and meta-analysis. BMC 
Cancer 2015;15:191.

48. Robert SA, Strombom I, Trentham-Dietz A, et al. 
Socioeconomic risk factors for breast cancer: distinguishing 
individual- and community-level effects. Epidemiology 
2004;15:442-50.

49. Paskett ED. The new vital sign: Where do you live? 
Cancer Epidemiol Biomarkers Prev 2016;25:581-2.

50. Villeneuve PJ, Goldberg MS, Crouse DL, et al. Residential 
exposure to fine particulate matter air pollution and 
incident breast cancer in a cohort of Canadian women. 
Env Epdemiol 2018;2:e021.

51. Dartois L, Fagherazzi G, Baglietto L, et al. Proportion 
of premenopausal and postmenopausal breast cancers 
attributable to known risk factors: Estimates from the 
E3N-EPIC cohort. Int J Cancer 2016;138:2415-27.

52. Coyle YM. The effect of environment on breast cancer 
risk. Breast Cancer Res Treat 2004;84:273-88.

53. West KM, Blacksher E, Burke W. Genomics, health 
disparities, and missed opportunities for the nation's 
research agenda. JAMA 2017;317:1831-2.

Cite this article as: Schootman M, Ratnapradipa K, Loux 
T, McVay A, Su LJ, Nelson E, Kadlubar S. Individual- and 
county-level determinants of high breast cancer incidence rates. 
Transl Cancer Res 2019;8(Suppl 4):S323-S333. doi: 10.21037/
tcr.2019.06.08



Table S1 Univariate models of individual- and county-level factors associated with county breast cancer incidence, 2008–2012

Individual- and county-level factors R-square Beta Standard error P value

Individual-level factors

5-year predicted breast cancer risk 0.000 0.066 1.510 0.965

Age (years) 0.017 −0.176 0.151 0.247

Current body mass index (vs. <18.5) 0.026

18.5–24.9 0.017 0.051 0.738

25.0–29.9 0.010 0.041 0.816

30 or more 0.049 0.040 0.222

Age at menarche (vs. <12 years) 0.030

12–13 years −0.082 0.039 0.040

14 years or older −0.106 0.054 0.056

Body mass index at age 18 (vs. <18.5) in kg/m
2

0.072

18.5–24.9 0.056 0.037 0.136

25.0–29.9 −0.659 0.307 0.035

30 or more −0.074 0.073 0.315

Lactation (yes vs. no) 0.018 0.006 0.006 0.352

Education (vs. less than high school) 0.020

High school or GED 0.090 0.040 0.027

At least some college 0.071 0.030 0.021

Alcohol use (≥10 vs. <10 g/day) 0.010 0.070 0.055 0.205

Physical activity (vs. inactive) 0.013

Insufficiently active −0.132 0.213 0.539

Active −0.064 0.132 0.627

Highly active −0.164 0.235 0.488

County-level factors

Health behaviors

Women ≥40 without mammogram in past 2 years (%) 0.003 0.114 0.262 0.663

Meeting physical activity recommendations (%) 0.021 0.342 0.279 0.224

Clinical care

Population per primary care physician 0.071 −6.367 2.723 0.022

Hospitalization rate for ambulatory-care sensitive conditions 0.050 −0.140 0.072 0.056

Uninsured rate (age <65 years) (%) 0.009 −0.494 0.611 0.422

Social & economic factors

Theil index (linear only) 0.004 −0.108 0.200 0.590

Theil (linear component) 0.085 −5.095 2.008 0.013

Theil (quadratic component) 0.056 0.022 0.015

Population living in the same house 1 year ago (%) 0.000 −0.012 0.448 0.979

Poverty rate (%) 0.024 −0.433 0.330 0.194

Adults without social/emotional support (%) 0.014 −0.369 0.364 0.314

Violent crime rate (per 100,000) 0.024 0.007 0.006 0.189

High school graduation rate (%) 0.017 −0.348 0.307 0.262

Physical environment

Lead (natural log) 0.018 −0.448 0.391 0.256

Population density per square mile 0.108 5.985 2.039 0.004

Population health status −

Diabetes (%) 0.064 −1.171 0.531 0.031

Infant mortality rate (linear only) 0.008 0.443 0.583 0.450

Infant mortality rate (linear component) 0.164 6.984 1.890 0.000

Infant mortality rate (quadratic component) − −0.413 0.114 0.001

Fair-poor health status (%) 0.052 −0.647 0.326 0.051

Supplementary



Figure S1 Residual plot from best fit model. Plot shows no pattern 
or trend in the residuals, indicating linear fit, and homoscedastic 
errors.

Figure S2 QQ plot of best fir model residuals. When plotted 
against normal distribution quantiles the residuals form a nearly 
straight line, indicating approximate normality.
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