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Background

Prostate cancer is the most common malignancy in men. 
An estimated 233,000 cases will be diagnosed in the United 
States in 2014 (1). PSA screening has led to earlier stage 
diagnoses; in 1998, 92% of prostate cancers were diagnosed 
with clinically organ-confined disease (2). The 7th edition 
of the AJCC Staging Manual (3), adopted in 2010, added 
Gleason score and PSA to the TNM staging system. 
Nearly 50% of patients (4) diagnosed with prostate cancer 
fall in prognostic Group 1, which includes patients with a 
clinical stage of T1-T2a, PSA <10, and Gleason 6. Active 
surveillance has become a suitable alternative for AJCC stage 
I, also referred to as “low-risk”, patients (5). The PIVOT 
trial randomized PSA-era diagnosed patients between 
radical prostatectomy and observation; in the low risk group, 
treatment afforded no cancer-specific or overall survival 

benefit, bolstering the argument against definitive treatment 
in this subgroup. In intermediate- and high-risk patients, the 
PIVOT trial showed surgery afforded, respectively, 50% and 
60% reductions in prostate cancer deaths. This clear benefit 
justifies treatment in these subgroups.

According to the NCI Consensus Conference (6) and 
the Prostate Cancer Panel of the American Urological 
Association in 1995 (6), treatment options that should be 
discussed include radical prostatectomy, external beam 
radiation therapy (RT), interstitial brachytherapy and 
watchful waiting.

Historical evolution of radiotherapy for prostate 
cancer

Radiotherapy was first used to treat prostate cancer in the 
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first half of the 20th century; the application of radium or 
kilovoltage therapy yielded disappointing results (7,8). The 
development of megavoltage external beam platforms in 
the 1950’s (9-11) allowed higher doses to be delivered, with 
encouraging outcomes. The next important development 
was CT imaging and computerized treatment planning, 
which facilitated 3-dimension conformal external beam 
planning and intensity modulated radiotherapy (IMRT). 
These more sophisticated treatment plans yielded better 
dose conformity to the target, allowing further dose 
escalation. Conformal, dose-escalated techniques have 
yielded varying disease-free outcomes, approximately 
similar to those seen with radical prostatectomy (see Table 1), 
although not without toxicity.

Several randomized trials (28-30) have confirmed 
that dose escalation yields improved relapse-free survival 
rates. Fowler’s dose-response analysis in intermediate-risk 
patients (31) (see Figure 1) indicate doses exceeding 90 Gy 
are necessary to minimize recurrence rates. A meta-analysis 
of seven randomized dose-escalation trials yielded the same 

conclusion (32). A variety of strategies have been employed 
to further escalate dose and/or reduce toxicity to surround 
normal tissues.

Modern radiotherapy plans still had to account for 
variations in patient positioning, inaccuracies in treatment 
delivery, and internal organ motion. Radiation oncologists 
account for these uncertainties by adding a radial margin 
around the intended target, creating a “planning target 
volume (PTV)”. This expanded target extends the high-dose 
treatment region into the surrounding normal structures. A 
PTV expansion of about 1 cm in required when skin marks 
are used for positioning. Set-up uncertainty can be reduced 
by placing gold fiducials in the prostate and imaging prior 
to treatment delivery. This does not account for movement 
within a given treatment session, or “intrafractional” 
motion. Kupelian (33) demonstrated that in 15% of 
treatment sessions, the prostate moved more than 5 mm. 
A study from the Mayo Clinic (34) recommended a 5-mm 
margin to account for intrafractional motion. The expanded 
PTV required in IMRT employing pre-treatment image 

Table 1 bDFS outcomes for low-risk prostate cancer

Rx Institution/Author Details # pts
Median

f/u yrs

5-yr bDFS & definition (%)
Ave‡

Nadir +2 ASTRO PSA ≥0.2

HDR + 

EBRT

Seattle, Kiel, Beaumont (12) 45-50 Gy +2-4 fx boost 46 5 96 92

CA Endocurietherapy (13) 36 Gy +5.5-6 Gy ×4 

boost

70 7.25 93 90

HDR 

alone

CA Endocurietherapy (14) 6-7.25 Gy ×6 117# 8 96 97

Beaumont (15) 9.5 Gy ×4 95† 4.2 98

LDR RTOG 9805 (16) 145 Gy I125 alone 95 5.3 99 93 88

11 inst meta-analysis (17) I125 & Pd103 alone 1,444 5.25 86 88

Exter

Beam

Clev Clin (18) hypofract IMRT: 70 Gy, 2.5 Gy/fx 36 5.5 97 97 88

MSKCC (19) IMRT: 81 Gy, 1.8 Gy/fx 203 7 93 85

9 instit meta-analysis (20) 3dRT/IMRT: >72 Gy 70 5.7 79

Thames meta-analysis (21) 3dRT/IMRT: 70-76 Gy 231 6.3 95

MDA rand dose-esc (22) 3dConformal: 78 Gy 32 >5 93 92

MGH Loma Linda: PROG (23) Proton boost to 79.2 Gy 116 5.5 95

Radic

prost

Baylor: Hull (24) 299 3.9 92.5* 94

Clev Clin, MSK: Kupelian (25) 524 5.5 92

Univ Penn: D’Amico (26) 322 5 88

Johns Hopkins: Han (27) 899 5.9 98

bDFS estimated based on proportions within each risk group. #, 75% low risk, 25% intermediate; †, Included T2b in low-risk group; ‡, 

weighted average of ASTRO bDFS or of stated bDFS definition in prostatectomy series; *, PSA ≥0.4; bDFS, biochemical disease-

free survival; EBRT, external beam radiotherapy; IMRT, intensity modulated radiotherapy; LDR, low dose rate brachytherapy; HDR, 

High-dose rate brachytherapy.
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guidance has limited the maximum safe dose around 82 Gy, 
if delivered at 2-Gy per fraction.

Proton therapy offers the prospect of prostate dose 
escalation while limiting exposure to normal tissues. Proton 
beams deposit radiation until after passing beyond the 
target, where the dose then falls off rapidly. This reduces 
the radiation dose to normal tissues, potentially yielding 
fewer side effects. However, like IMRT, proton beam plans 
must account for prostate motion, thus the same large 
PTVs must be targeted. Also, since most proton beam plans 
employ only two beams, conformal dose sculpting around 
the prostate is not possible. While proton therapy reduces 
the volume of normal tissues receiving low dose radiation, 
large volumes of the rectum still receive high-dose radiation. 
In one study (35), protons yielded a 50% greater incidence of 
rectal toxicity compared to IMRT. The American College of 
Radiology Study 03-12 demonstrated (36) significant (8%) 
late grade 3+ rectal toxicity when proton dose was escalated 
to 82 Gy. Proton dose escalation beyond 82 Gy is thus not 
possible with current technology, and long-term toxicity 
GI toxicity appears to be no better, and perhaps inferior to 
IMRT.

Transperineal ultrasound-guided brachytherapy allows 
the delivery of conformal, high-dose radiotherapy to 
the prostate, with a rapid dose fall-off outside of the 
implanted region. In low dose rate (LDR) implants, 70-
100 iodine-125 (I-125) or palladium-103 (Pd-103) sources 
are permanently placed within the prostate; these “seeds” 
slowly deliver radiation over the ensuing 2-6 months. 
For patients with low-risk prostate cancer, a single 

LDR implant (monotherapy) yields favorable long-term 
outcomes (37-39). Patients with intermediate- or high-
risk disease usually require a five-week course of external 
beam radiotherapy plus the LDR implant (40,41). When 
post-implant dosimetry demonstrates the prostate received 
a biologically equivalent dose (BED) of around 200 Gy, 
LDR brachytherapy yields exceptionally high relapse-free 
survival rates (42). This is equivalent to about 110 Gy at  
2 Gy/fx, assuming α/β=1.5. Unfortunately toxicity following 
LDR brachytherapy appears to be greater than IMRT. Fox-
Chase (43) reported 3-year grade 2+ GI and GU toxicities 
rates were three- and five-fold greater following seed implants. 
Sanda’s patient-reported quality of life (QOL) study (44) did 
not directly compare treatments, however greater declines 
in urinary and bowel scores were observed following 
brachytherapy than after external beam radiotherapy.

Hypofractionation

High-dose rate (HDR) brachytherapy has been used in 
the treatment of prostate cancer since the 1980’s (45-52). 
Catheters are placed temporarily in the prostate, and then 
loaded with a high-dose Iridium-192 source, delivering 
a few fractions of very high-dose RT. Initial protocols 
employing HDR combined conventionally fractionated 
external beam RT with an HDR boost. More recent 
reports have employed HDR as monotherapy (14,15,53-56). 
Adjusting for pre-treatment risk factors, these studies yield 
biochemical disease-free survival (bDFS) outcomes at 
least as favorable to those seen with LDR brachytherapy 
or conformal dose-escalated RT or IMRT (see Table 1). A 
prospective study from William Beaumont Hospital (15) 
comparing HDR monotherapy versus LDR brachytherapy 
(Pd-103) showed a superior 5-year event-free survival 
(98% vs. 85%, P=0.01) and a trend towards improved 
freedom from cancer failure (98% vs. 92%, P=0.1) in the 
HDR cohort. The same group showed toxicity and QOL 
following HDR brachytherapy was more favorable than 
either LDR brachytherapy or conformal external beam RT 
(54,57). These results suggest prostate cancer favorably 
responds to hypofractionated regimens.

Radiation oncologists fractionate RT dose to reduce 
toxicity to surrounding normal tissues. For most cancers, 
by delivering dose over several weeks, equivalent cancer-
killing effect is achieved with reduced long-term toxicity. 
The effect of dose fractionation on both cancer and normal 
tissues can be estimated using the “linear-quadratic model”. 
In this model, the alpha-beta ratio reflects the response 
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Figure 1 Relationship between dose and 5-year freedom from PSA 
failure for intermediate-risk patients treated with EBRT. [Adapted 
from Fowler (31)].
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of normal tissues or cancers to changes in RT dose per 
fraction. Most cancers respond to RT as do rapidly-dividing 
normal tissues (e.g., skin or mucous membranes), and thus 
have high α/β ratios, in the 8-12 Gy range (58). Tissues with 
lower α/β ratios are more sensitive to large dose per fraction 
(also known as hypofractionated) RT.

The results of HDR and other hypofractionated 
regimens led radiobiologists to reconsider α/β ratio of 
prostate carcinoma. Numerous studies have concluded that 
prostate cancer has an unusually low/ratio of about 1.5 Gy 
(31,59-62). A pooled analysis (63) of 5,093 patients yielded a 
α/β ratio of 1.55 Gy. A low α/β ratio is consistent with other 
biologic properties of prostate cancer: an unusually long 
tumor doubling times (64), and a very low proportion of 
proliferating cells (65). If the α/β ratio for prostate cancer is 
smaller than the α/β ratios for late effects in the surrounding 
normal tissues (3-5 Gy), then a therapeutic gain could be 
achieved by hypofractionation. In this setting, larger doses 
per fraction should result in equivalent or improved cancer 
control with reduced toxicity (66-68).

Several prospective clinical trials have evaluated the 
efficacy of hypofractionated radiotherapy in organ-
confined prostate cancer. A large prospective study from the 
Cleveland Clinic (69) demonstrated favorable relapse-free 
survival and low toxicity with 70 Gy given in 2.5 Gy fractions. A 
trial from Royal Adelaide Hospital in Australia (70) randomized 
217 patients between 64 Gy in 2 Gy/fx versus 55 Gy in 
2.75 Gy/fx; these schedules are isoeffective if prostate  
α/β=2.5. The hypofractionated arm showed a significantly 
better bDFS (53% vs. 43%), with equal toxicity in the two 
arms. In an Italian trial (71), 168 high-risk patients were 
randomized between 62 Gy in 3.1 Gy/fx versus 80 Gy in  
2 Gy/fx (isoeffective if prostate α/β=1.8; both arms received 
9 months of androgen ablation). Toxicities were equal. 
Overall relapse rates were equivalent, although improved 
cancer control was suggested if presenting PSA was 20 or 
less. Thus the radiobiologic assertion that the α/β ratio for 
prostate cancer is low (1.5-1.8) has been confirmed by class 
1 evidence.

Stereotactic body radiotherapy (SBRT) is the precise 
external delivery of very high-dose radiotherapy to targets in 
the body, with treatment completed in one to five fractions. 
Dose conformality is achieved using cross-firing ionizing 
radiation beams and image-guidance. By concentrating dose 
in the targeted cancer, SBRT maximizes cell-killing. Rapid 
dose fall-off minimizes radiation-related injury to adjacent 
normal tissues. Organ-confined prostate cancer should be 
ideally suited for SBRT as (I) dose escalation should yield 

better outcomes; (II) the toxicity from treatment is due to 
high-dose radiation exposure to the organs immediately 
adjacent to the prostate; and (III) the unique radiobiology 
of prostate cancer favors hypofractionation.

SBRT platforms

Several external beam platforms can theoretically deliver 
stereotactic radiotherapy for prostate cancer. Table 2 
summaries the capability of these devices. At a minimum, 
target localization prior to daily treatments is required. 
This can be performed using x-ray imaging of implanted 
fiducials, or on-board CT imaging. If intra-fractional 
image guidance is not employed, then at least 5 mm PTV 
expansions are required to account for target motion. If 
the target can be localized during treatment, then smaller 
PTV expansions can be employed, potentially reducing 
dose to surrounding organs. The accuracy of different 
real-time localization systems can vary considerably. For 
example, with the Novalis or Varian TrueBeam systems, the 
operator may opt to perform intrafractional localization and 
correction multiple times during treatment, or only once 
prior to treatment. With the Calypso system, the operator 
sets a threshold (typically 3-5 mm) beyond which treatment 
is interrupted and the patient positioning corrected. With 
the CyberKnife, continuous image acquisition and target 
correction occurs routinely; the Stanford group showed that 
when intrafractional correction is done every 40 seconds, 
this device achieves sub-millimeter accuracy (72).

Correction for target motion must account for 
translational (i.e., anterior/posterior, right/left, and 
superior/inferior) motion. Since rotational motion, 
particularly pitch, can be substantial, correction for 
rotations may be beneficial, although this potential benefit 
has not been quantified. The use of multiple non-coplanar 
beams should yield better dose conformality than single-
plane treatments. While non-coplanar delivery is possible 
for any platform, in practice centers employing gantry-
based linacs treat in a coplanar fashion, as non-coplanar 
delivery adds complexity and time. The intrinsically non-
coplanar CyberKnife platform is reported (73) to yield more 
conformal treatment plans than IMRT.

Clinical SBRT outcomes

The first report (74) of hypofractionated stereotactic 
radiotherapy treated 40 low-risk patients using a 
conventional linear accelerator with daily localization of 
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implanted fiducials. 33.5 Gy was delivered in 5 fractions 
to the prostate plus a 4-5 mm margin. Toxicities were 
acceptable. Four-year nadir +2 bDFS was 90%, suggesting 
further dose escalation would be beneficial.

The feasibility of SBRT employing further dose escalation 
was first reported by King at Stanford University (75) 
using the CyberKnife platform. 36.25 Gy in 5 fractions of  
7.25 Gy was delivered to the prostate plus a 3-5 mm 
margin. In the most recent update (76) of long-term 
outcomes in 67 patients, there were no grade 4+ toxicities. 
Two patients had a grade 3 urinary toxicity, and there were 
no grade 3 GI toxicities. Toxicities compared favorably to 
other radiation modalities. Five-year Kaplan-Meier PSA 
relapse-free survival was 94%. The majority of subsequent 
reports of prostate SBRT have employed the same platform. 
In a series of 304 patients treated with CyberKnife at 
Winthrop hospital, five-year bDFS was 97%, 90.7%, 
and 74.1% in low-, intermediate- and high-risk groups, 
respectively. Five grade 3 complications were reported, 
all GU, for an incidence rate of 2%. In a pooled analysis 
of eight institutions (77), 1,100 patients were treated with 
CyberKnife SBRT and followed a median of 36 months. 
Five-year bDFS rates were 95%, 84%, and 81% in low-, 
intermediate- and high-risk groups, respectively. In a multi-
center study (78) Cyberknife treated 129 intermediate-risk 
prostate cancers 40 Gy in 5 fractions of 8 Gy each, with 
only one grade 3 toxicity reported (GU: bladder injury). 
More recent reports (79,80) have shown similar favorable 
outcomes with gantry-based platforms.

The mature series evaluating dose-escalated SBRT are 
summarized in Table 3. In low-risk patients treated to 35-
36.25 Gy in 5 fractions, 5-year bDFS ranges from 94-97%. 
In the low-risk patients treated in the 8-institution pooled 
analysis (77) and in Katz’ series (84), no difference in 5-year 
bDFS was seen when dose was escalated from 35 to 40 Gy. 
Sunnybrook (79) demonstrated 97% 5-year bDFS in 84 
low-risk patients treated to 35 Gy in 5 fractions with a 
gantry-based system. In a series (80) of 98 low-risk patients 
treated to 40 Gy in 5 fractions with real-time tracking 
on a gantry-based linac, only one biochemical failure was 
reported at 5 years. Current data shows no evidence of a 
dose response beyond 7 Gy ×5 in low risk patients. These 
SBRT outcomes compare favorably to the 92-94% 5-year 
bDFS typically reported with conventionally fractionated 
external beam radiotherapy (see Table 1).

In intermediate-risk patients treated with SBRT, 
bDFS outcomes vary. In a multi-center study (85) of 137 
intermediate-risk patients given 8 Gy ×5 fractions on 
the CyberKnife platform, 5-year bDFS was 97%. In a 
pooled analysis of eight institutions (77), 5-year bDFS in 
intermediate-risk patients was only 84%. However, those 
patients that received biologically higher doses (38 Gy in 4 
fractions or 40 Gy in 5 fractions) had 5-yr bDFS of 96.7%. 
The apparent improvement in bDFS in the higher-dose 
cohort was not statistically significant. Longer follow-up 
and comparisons of larger populations will be necessary to 
confirm trends suggesting dose escalation beyond 7.25 Gy 
×5 yields better relapse-free survival in intermediate risk 

Table 2 SBRT platforms

Platform Description Target localization method Real-time correction
Rotational 

correction

CyberKnife Linac on robotic arm, non-coplanar 

delivery, variable aperture or multileaf

Orthogonal X-rays image 

implanted fiducials

Continuous, automated 

sub-mm correction

Yes, 

continuous 

automatic

Varian (Trilogy, 

TrueBeam etc) w/

Novalis, BrainLab

Linac on gantry. Multileaf collimator.

Volumetric arc therapy available

Cone-beam CT; 

orthogonal X-rays image 

implanted fiducials

Intermittant; tx 

interruption & manual 

correction

6D couch 

available

Electa (Synergy, 

VersaHDetc)

Linac on gantry. Multileaf collimator.

Volumetric arc therapy available

Cone-beam CT No 6D couch 

available

Calypso Used with gantry-based linacs Implanted beacons 

provide real-time 

localization

Continuous; tx 

interruption & manual 

correction

No

Tomotherapy Linac, helical delivery, multileaf 

collimator

Megavoltage CT No No
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patients. These 5-year relapse-free survival rates compare 
favorably to fractionated EBRT (23,86) outcomes, which 
are typically around 85%.

Mature data evaluating SBRT in high-risk prostate 
cancer are limited. The largest series is a pooled analysis of 
8 institutions (77), in which 125 high-risk patients received 
Cyberknife with or without androgen deprivation therapy 
(ADT). 5-year bDFS was favorable at 81%. Katz (84) 
reported on a series of 97 high risk patient treated with 
either 5 fractions CyberKnife (35-36.25 Gy) or CyberKnife 
boost (19-21 Gy in 3 fractions following 45 Gy pelvic RT). 
46 of the 97 patients received ADT. 5-year bDFS was 68%. 
The addition of pelvic radiotherapy or ADT had no impact 
on relapse free survival, although pelvic RT was associated 
with greater GI toxicity.

SBRT toxicity

Rates of late physician-reported GI and GU toxicities 
from mature SBRT series and from 3D conformal, IMRT, 
proton and LDR brachytherapy series are summarized in 
Table 4. Since median follow-up on the SBRT series is the 
3-5 year range, these rates may underestimate the true rates 
of toxicities, as more toxicities may develop with longer 
follow-up. Nevertheless, Figure 2A, which illustrates the 
rates of grade 2+ toxicities for various modalities, suggests 
SBRT late urinary toxicity rates compare favorably to 

external beam. Late rectal toxicity rates appear to be 
consistently less than those seen with external beam 
radiotherapy (Figure 2B). These series employed a robotic 
non-coplanar delivery platform which corrected for target 
motion in real-time (Cyberknife), although recent reports 
of SBRT employing conventional gantry-based platforms 
(79,80) also suggest favorable toxicity. A recent study (88) 
comparing Medicare claims found SBRT was associated 
with 38% more diagnoses of urethritis, incontinence 
and obstruction, compared to IMRT. This study did not 
evaluate patients treated with G0039 and G0040 codes 
(used with CyberKnife delivery) so the increased toxicity 
may be related to the differences in treatment technique 
and/or platforms. Finally, most SBRT series limited PTV 
doses to 35-40 Gy in 5 fractions. In a multi-center dose-
escalation SBRT study (89), 5 of 91 patients treated to 50 Gy 
in 5 fractions required colostomy for rectal injury. This 
emphasizes the need to respect dose constraints for critical 
structures surrounding the prostate.

Patient-reported toxicity

Following definit ive therapy for prostate cancer, 
prospective patient-completed QOL questionnaires 
more accurately estimate treatment-related toxicity, 
compared to physician reports (90,91). In Katz’ report of 
304 patients treated with CyberKnife SBRT, urinary and 

Table 3 Prostate SBRT series with mature follow-up

Institution Platform Details Median F/U yrs Risk group # pts 5-yr bDFS† (%)

Virginia Mason (74) Gantry-based linac 6.7 Gy ×5 3.4 Low 40 90*

Stanford (76) CyberKnife 7.25 Gy ×5 2.7 Low & low-interm 67 94

Stanford, Naples (81) CyberKnife 7-7.25 Gy ×5 5 Low & low-interm 41 93

Winthrop Hospital (82) CyberKnife 7-7.25 Gy ×5 5 Low 211 97

Intermed 81 91

High 12 74

San BortoloHosp (83) CyberKnife 7 Gy ×5 3 Low, interm & high 100 94

Pooled 8 institutions (77) CyberKnife 36-40 Gy in 4-5 fxs 3 Low 641 95

Interm 334 84

High 125 81

Katz & Kang (84) CyberKnife 7-7.25 Gy ×5 5 High 97 68

Multi-institution (85) CyberKnife 8 Gy ×5 3 Interm 137 97

Sunnybrook (79) Gantry-based linac 7 Gy ×5 4.75 Low 84 97

21st Century Onc (80) Gantry-based linac 8 Gy ×5 5 Low 98 99
†, Nadir+2 definitions; *, 4-year bDFS reported; bDFS, biochemical disease-free survival; SBRT, stereotactic body radiotherapy.
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bowel QOL decreased immediately following treatment, 
and then returned to baseline. Patient-reported QOL 
outcomes from a prospect ive  mult i- inst i tut ional 
study (85) of 309 patients treated with Cyberknife are 
illustrated in Figures 3-6 below. QOL outcomes of 
various organ domains from the validated EPIC instrument 
are superimposed on the benchmark external beam and 
brachytherapy outcomes reported in Sanda’s (92) study. 
Long-term changes in urinary incontinence scores 
following SBRT were similar to those observed in 
external beam and in brachytherapy (Figure 3). Urinary 
irritation/obstruction scores following SBRT appeared 
to be less adversely affected than after brachytherapy 

(Figure 4). While there were small changes in bowel 
QOL following SBRT (Figure 5), these declines appeared 
less prominent than following EBRT and brachytherapy. 
EPIC sexual score declined progressively during the 
four years after treatment (Figure 6). Because this 
methodology does not account for potential differences 
between SBRT and EBRT/LDR patient populations, 
no firm conclusions can be drawn. Nonetheless, these 
patient-reported SBRT QOL outcomes are encouraging.

Cost effectiveness

Although delivery of SBRT is technically more involved that 

Table 4 Toxicity rates for SBRT vs. EBRT, protons, brachytherapy

Technique Institution Details
Median  

F/U yrs
# pts

Late GU toxicity (%) Late GI toxicity (%)

Gr2 Gr3 Gr2 Gr3

SBRT 

CyberKnife

Stanford (76) 7.25 Gy ×5 2.7 67 5.3 3.5 2 0

Winthrop Hosp (82) 7-7.25 Gy ×5 5 304 8.2 1.6 4.6 0

San BortoloHosp (83) 7 Gy ×5 3 100 3 1 1 0

Multi-institutional (78) 8 Gy × 5 3 129 11 0.8 1 0

3D-ConfRT Dutch Random Trial (28) 78 Gy 4.2 333 26 13 27 5

MDA Random Trial (87) 78 Gy 8.7 151 7.3 3.3 19 6.6

IMRT Memorial SKCC (86) 86.4 Gy 4.4 478 13 2.5 3.3 0.4

Protons MGH PROG (30) 79.2 Gy 8.9 196 21 1.5 24 1

LDR brachy RTOG 9805 (16) 145 Gy 8.1 94 20 3.1 5 0

SBRT, stereotactic body radiotherapy; EBRT, external beam radiotherapy; IMRT, intensity modulated radiotherapy; LDR, low dose 

rate; RT, radiation therapy.

Figure 2 Late urinary (A) and GI (B) toxicity rates following SBRT, external beam radiotherapy, and brachytherapy. SBRT, stereotactic body 
radiotherapy; LDR, low dose rate.
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Figure 5 EPIC bowel scores at baseline and at various intervals following treatment (months) from Sanda (92) (black: left graph is external 
beam RT and right is brachytherapy) and SBRT (red). SBRT, stereotactic body radiotherapy; RT, radiation therapy; LDR, low dose rate.

Figure 3 EPIC urinary incontince scores at baseline and at various intervals following treatment (months) from Sanda (92) (black: left graph 
is for external beam RT and right is for brachytherapy) and SBRT (red). SBRT, stereotactic body radiotherapy; RT, radiation therapy; LDR, 
low dose rate.

Figure 4 EPIC urinary irritation/obstruction scores at baseline and at various intervals following treatment (months) from Sanda (92) (black: 
left graph is external beam RT and right is brachytherapy) and SBRT (red). SBRT, stereotactic body radiotherapy; RT, radiation therapy; 
LDR, low dose rate.
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IMRT, treatment is completed in only 5 fractions, rather 
than the 39-48 fractions required for IMRT. A Markov 
decision analysis model (93) showed the mean cost of 
$22,152 for SBRT versus $35,431 for IMRT. Another study 
of Medicare claims (88) reported mean costs of $13,645 and 
$21,023 for SBRT and IMRT, respectively. Furthermore, 
the substantial time-cost to patients (94) for conventional 
prostate treatment can be mitigated with SBRT.

Conclusions

SBRT offers a cost-effective alternative to external 
beam radiotherapy which is much more convenient for 
the patient. The radiobiology of prostate cancer would 
predict that this approach should yield superior outcomes 
compared to conventional protracted courses. For low- 
and intermediate-risk prostate cancer patients treated on a 
robotic, non-coplanar RT platform, five-year relapse-free 
survival rates are at least equivalent, or possibly superior 
to conventionally fractionated RT. Physician-reported late 
urinary toxicity appears to be similar to external beam RT, 
and late GI toxicity appears to be less than with external 
beam and LDR brachytherapy. Patient-reported QOL 
outcomes show urinary and bowel function return to near 
baseline levels two years following robotic SBRT. Long-
term changes in rectal QOL appear to be superior to those 
reported after IMRT or LDR brachytherapy. For high-risk 
prostate cancer, initial CyberKnife series suggest favorable 
outcomes. Emerging outcomes in low-risk patients treated 
on gantry-based platforms are similarly encouraging. A 
prospective randomized trial would be required to confirm 
these favorable SBRT outcomes relative to other modalities. 
But given these excellent cancer control rates and toxicity 
profiles, SBRT delivered on platforms which have real-time 

image guidance appears to be an acceptable approach for 
stage I-II prostate cancer. Further studies are also required 
to determine if similar favorable outcomes are possible with 
SBRT delivered on other platforms, and in patients with 
high-risk disease.
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