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Background: Bayesian predictive probability design, with a binary endpoint, is gaining attention for the 
phase II trial due to its innovative strategy. To make the Bayesian design more accessible, we elucidate this 
Bayesian approach with a R package to streamline a statistical plan, so biostatisticians and clinicians can easily 
integrate the design into clinical trial. 
Methods: We utilize a Bayesian framework using Bayesian posterior probability and predictive probability 
to build a R package and develop a statistical plan for the trial design. With pre-defined sample sizes, the 
approach employs the posterior probability with a threshold to calculate the minimum number of responders 
needed at end of the study to claim efficacy. Then the predictive probability is applied to evaluate future 
success at interim stages and form stopping rule at each stage. 
Results: An R package, ‘BayesianPredictiveFutility’, with associated graphical interface is developed 
for easy utilization of the trial design. The statistical tool generates a professional statistical plan with 
comprehensive results including a summary, details of study design, a series of tables and figures from 
stopping boundary for futility, Bayesian predictive probability, performance [probability of early termination 
(PET), type I error, and power], PET at each interim analysis, sensitivity analysis for predictive probability, 
posterior probability, sample size, and beta prior distribution. The statistical plan presents the methodology 
in a readable language fashion while preserving rigorous statistical arguments. The output formats (Word or 
PDF) are available to communicate with physicians or to be incorporated in the trial protocol. Two clinical 
trials in lung cancer are used to demonstrate its usefulness.
Conclusions: Bayesian predictive probability method presents a flexible design in clinical trial. The 
statistical tool brings an added value to broaden the application.  
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Introduction

Recent modern biomedical research has generated golden 
opportunities of exploring various potential experimental 
drug agents and/or combinations of existing drugs to fight 
against cancer, such as nivolumab (1-3), ipilimumab (4,5), 
and pembrolizumab (6,7) in immunotherapy, ceritinib (8-10)  
and crizotinib (11-13) in targeted therapy, and the 
combinations with other drugs (4,5,14-19). The drug 
efficacy is often evaluated in phase II clinical trials. Many 
phase II clinical trials utilize Simon two-stage design (20) to 
early terminate ineffective drugs and identify effective drugs 
to warrant a phase III trial (14-19,21-23). The method 
deterministically defines the interim and final analyses 
and sample sizes for given type I and II errors. While it is 
popular, some studies may require pre-determined sample 
sizes and therefore could limit Simon two-stage design’s 
application. This also presents a challenge of how to design 
a statistically justified interim analysis under the constraints 
of pre-defined sample sizes. The issue could be easily 
addressed by the Bayesian approach. 

Many Bayesian approaches have been proposed for 
phase II single arm design either by posterior probability, 
predictive probability, or even incorporating with frequentist 
approach. Most of them are limited to a Simon like 
two-stage, such as Tan and Machin (24) using posterior 
distribution for decision, Sambucini (25,26) and Liu et al. (27)  
using Bayesian predictive strategies, and Wang et al. (28) 
using a hybrid of frequentist and Bayesian error rates. For 
continuously monitoring a schema Thall and Simon (29) 
used posterior probability to define stopping rules while 
Lee and Liu (30) and Saville et al. (31) used predictive 
probability to construct the boundary. 

In this study, we util ize the Bayesian posterior 
probability and predictive probability by Lee and Liu (30) 
to construct a statistical plan in clinical trial design for a 
binary endpoint. This approach has several useful features, 
such as flexible options to manage the futility assessment 
at the interim analysis, as well as integration of both the 
posterior probability and the predictive probability to 
define the stopping rule for futility. Here we present the 
developed R package for this Bayesian design and share 
our experiences of the real application, so the oncology 
research community can easily adapt the design into their 
clinical trial protocols. 

Methods

Concept 

The Bayesian posterior probability and predictive 
probability (30) uses a few simple but powerful concepts 
to construct the design. The posterior probability is defined 
as a probability that the targeted treatment’s response rate 
is greater than the one in the null hypothesis. A large value 
indicates a high degree of promising treatment results. 
Thus, it can be used to determine efficacy. The predictive 
probability is likelihood to reach treatment efficacy at the 
end of the study given the number of responders observed 
at the current status. When it is close to 0, the chance to 
claim success becomes unlikely. Therefore, the predictive 
probability is a useful tool to outline the stopping rule in 
interim analysis to reflect the chance of early termination. 
Specifically, given the null hypothesis, sample size, and prior 
information, the design first utilizes the posterior probability 
to decide treatment efficacy. If the probability is higher than 
a threshold, it indicates effectiveness of the treatment. As a 
result, it defines the minimum number of responders needed 
for efficacy for a given total sample size. Then the predictive 
probability is applied at each interim analysis to construct 
the stopping rule with a cutoff. If the predictive probability 
is below the cutoff, it indicates the treatment is futile and the 
action of early termination should be considered.  

Algorithm 

The concept above leads to the following algorithm (Figure 1  
summarizes the algorithm).

Select beta prior for the treatment response data 
Information about response data of the experimental 
treatment helps determine the beta prior distribution, 
beta(a,b), for the response rate where a represents the 
degree of response (e.g., number of responders) while b 
indicates magnitude of non-response (e.g., number of non-
responders). The mean response rate is a/(a+b) with a>b 
for tendency of more drug-sensitive, a<b for more drug-
resistant, and a=b for undetermined. In addition, when a+b 
becomes large, the belief of prior information gets strong 
and likely dominates the result. While many experimental 
treatments are usually the first study, some of them are 
a combination of standard treatment with new drug or 
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modification of standard treatment. Thus, utilization of 
historical data could help better shape prior distribution 
within the Bayesian framework. Often prior information 
provided by a physician is not the values of a and b, but a 
response rate estimate. Conversion to the two parameters 
(a and b) can be done by a formula with a hypothesized 
standard deviation (SD) of response rate: 

ap
a b

=
+

  [1]

( ) ( )
2

2 1
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 + + + 
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where p is the mean response rate. 

Setup hypothesis and sample size
We consider a null hypothesis of treatment with a response 
rate ≤ p0 and an alternative hypothesis of the response rate 
≥ p1. In addition, sample size at each stage is allocated with 
ni denoting the sample size of patients in the ith interim 

analysis and n as the total sample size.

Define treatment efficacy by posterior probability and 
determine minimum number of total responders 
We claim that the treatment is promising (efficacy) if the 
posterior probability is higher than a threshold, δ, for 0< 
δ <1 [i.e., prob(response rate > p0 |data)> δ]. Thus, with a 
total of n patients, the minimum of responders, k, to claim 
efficacy can be determined by the following mathematical 
form with a posterior beta(a+k,b+n-k) distribution for the 
response rate: 
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0
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where B(a,b) is the beta function. Calculation of k will be 
done by the equation: 
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[6]

Calculate the predictive probability for early 
termination 
Given the number of responders, s, in the first n1 patients, 
we calculate the predictive probability of ≥ k-s responders in 
future n* (where n* =n-n1) patients, i.e.,

Algorithm for futility interim analysis

Setup
(a) Hypothesis: H0:p0 vs. H1:p1
(b) Sample size at each stage: 

n1, n2, ...
(c) Beta prior: a and b

Define efficacy by posterior probability 
of response rate: efficacy if posterior 
probability >δ

By beta posterior distribution

Calculate minimum of responders, k, needed at end of study to claim efficacy by comparing 
the posterior probability and δ

Calculate predictive probability for early termination: at each interim analysis, calculate the 
chance of reaching a total k responders or more at end of study given s responders up to at 
current stage (predictive probability)

Define stopping rule: stop the trial if the predictive probability is below a cutoff, γ

(a) Calculate power, type I error, and probability of early termination of the design
(b) Perform sensitivity analysis by varying key parameters to assess robustness of the 

design

By beta binominal distribution

Figure 1 Flow chart of the Bayesian approach for futility interim analysis.
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The beauty of this predictive probability is that the formula 
follows a beta binominal distribution, BetaBinom(n*,a-
s,b+(n1-s)). Thus, we are able to analytically calculate 
the predictive probability for the number of responders 
among the remaining n* patients given the currently 
updated response rate, which has a beta distribution, 
beta(a+s ,b+n1-s). The predictive probability is also 
calculated similarly for each of the remaining interim 
analyses to evaluate the chance of k-s or more responders in 
the remaining n* patients given s responders in the current 
stage of interim analysis. That is, for the lth stage with the 
cumulative sample size, 

1l

l
cum ii
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=
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the predictive probability becomes a beta binominal 
distribution, 
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where *
lcumn n n= − , the future sample size.

Set up a stopping rule 
The predictive probability is a useful tool as a stopping rule. 
It can be used to end a trial early for futility purpose when 

the probability is low. By setting a cutoff of the predictive 
probability, γ, to indicate unfavorable likelihood for success, 
the number of responders, 

lcumk , for the stopping boundary 
at lth stage can be easily calculated by the beta-binomial 
distribution. That is, 
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For  example  of  a  two-stage  des ign with  p0=0.3 , 

( )11=25 25cumn n = , n2=25 (n*=25), a=1, b1=1, and δ=0.95 (lead 
to k=21), if the number of responders in the 1st stage is 0 
(s=0), the predictive probability to have 21 responders in 
the 2nd stage (k-s=21) is close to 0 (<0.0001). For s=1-7, the 
predictive probability to have 20-14 responders in the 2nd 
stage is <0.05. When s=8 and 9, the predictive probability to 
have 13 and 12 responders in the 2nd stage is 0.11 and 0.25, 
respectively. Thus, for a cutoff of 0.2 (γ=0.2), the stopping 
boundary is 8 responders in the 1st stage (

1
8cumk = ). 

Another function is to stop the trial for efficacy if the 
predictive probability is very high. However, due to the 
nature of small sample size in early phase II trial, it is less 
feasible. 

Evaluate performance of the design 
The stopping rule characterizes the study design and 
provides the stopping boundary at each stage, 

lcumk  for stage l. 
We further decompose the boundary, 1

1lcum ii
k k

=
=∑  where 

ki is the additional number of responders needed in stage 
I. With the decomposition, sample size of each stage, and 
response rate of null and alternative hypotheses (p0 and p1), 
the analytical form can be derived for probability of early 
termination (PET) of the trial, type I error, and power to 
assess performance of the design.  

(I) PET: It is a probability to stop the trial before going to the final stage. For a two-stage design, it is the probability of 
trial termination at the 1st stage, i.e., 
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by binominal distribution. For a 3-stage design, it becomes 
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For a m-stage design (m >3),
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(II) Type I error: It is a probability of accepting treatment efficacy when the true response rate is p0. The probability is 
1-the sum of PET(p0) and the probability of failure to reach the efficacy at the final stage. That is, 
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For a two-stage design,
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(III) Power: It is defined as the probability of claiming efficacy when the true response rate is p1. That is, 
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Perform sensitivity analysis 
Sensitivity analysis will  be conducted to evaluate 
performance of the design in terms of PET, type I error, and 
power. Four parameters associated with the performance 
are explored: (I) γ, cutoff of the predictive probability. The 
cutoff will form a stopping boundary, and therefore affect 
PET, type I error, and power, (II) δ, threshold for posterior 
probability of response rate. It determines minimum 
number of total responders to claim efficacy and decides 
power and type I error, (III) sample size, and (IV) prior 
information of the response rate. Both sample size and 
prior information also control the minimum number of 
total responders for efficacy and stopping boundary for 
futility. The impact of each parameter on performance will 
be examined when other parameters are fixed. Sensitivity 
analysis provides opportunity to evaluate robustness of the 
design and tune up the design by changing key parameters. 

Results

Demonstration

We use three cases to illustrate utility of the approach: two-,  
three-, and multi-stage (details are in the Supplementary 

materials for demonstration). The following setting is used 
for demonstration: the response rate is 30% in the null 
hypothesis (unfavorable response rate) and 50% in the 
alternative hypothesis (the minimum favorable response 
rate). The pre-defined sample size is 50 subjects in total. A 
non-informative beta prior, beta(1,1), is used to calculate the 
response rate. The treatment is considered promising if the 
posterior probability is higher than 0.95 [i.e., prob(response 
rate>30% |data)>0.95]. Thus, with a total of 50 patients and 
by solving the equation, 

( ) ( )
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we will need at least 21 responders (i.e., k=21) to claim 
efficacy by the beta posterior probability.

Two-stage case 
One interim analysis is considered at the first 25 subjects 
(equal split). That is, the 1st stage enrolls 25 patients and the 
final stage has an additional 25 patients if the trial passes the 
1st stage (Table 1). 

Given the number of responders, s, in the first 25 
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Table 1 Stopping boundary for two-, three-, and multi-stage cases

Design
Stage of interim 

analysis
Sample size at 

each stage
Sample size up to  
the current stage

Stopping 
boundary

Performance

Two-stage 1 25 25 8 88% power; 4% type I error;  
68% probability of early termination

Final 25 50 20

Three-stage 1 15 15 4 85% power; 4% type I error;  
77% probability of early termination

2 15 30 10

Final 20 50 20

Multi-stage 1 10 10 2 83% power; 4% type I error;  
91% probability of early termination

2 10 20 6

3 10 30 10

4 10 40 15

Final 10 50 20

patients for the 1st stage, we calculate predictive probability 
of 21-s or more responders in the remaining 25 patients, i.e., 

( ) ( ) ( )( )
( )( )

25 25
21

1 ,1 25 25
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beta s i s i
beta s s= −

+ + + − + −

+ + −∑   [20]

Calculation of the predictive probability is based on beta 
binominal distribution for the number of responders in 
the remaining 25 patients given a beta distribution for the 

response rate, beta(1+s,1+25-s). For example, if there are 8 
patients with response in the first 25 patients, the predictive 
probability of 13 or more patients with response in the 
future remaining 25 patients would be 

( ) ( ) ( )( )
( )( )

25 25
13

1 8 ,1 25 8 25
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Figure 2 lists the predictive probability for all scenarios 

Figure 2 Predictive probability for the first interim analysis in the two-stage example.
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Figure 3 PET, type I error, and power of the study design in the two-stage example.

of number of responders in the first 25 patients (interim 
analysis) and number of responders needed in the remaining 
25 patients to have at least a total of 21 responders. 
With γ=20%, the stopping rule (Table 1) is if there are 8 
responders or less for the first 25 patients in the interim 
analysis, we consider the treatment as ineffective and the 
trial will be stopped. Performance of this stopping rule 
(Figure 3) shows that if the true response rate is 30%, the 
chance to reach a total of 21 responders at end of the study 
is 0.04 (type I error) with 68% PET. On the other hand, if 
the true response rate is 50% (20% higher than the 30% 
response rate), the power is 88% to reach a total of at least 
21 responders at end of the study. 

Sensitivity analysis shows that when the cutoff of the 
predictive probability for the stopping rule is 0.01–0.3, 
the range is 0.34–0.81 for PET, 0.04–0.05 for type I 
error, and 0.84–0.9 for power. When the threshold for 
posterior probability to define efficacy is 0.8–0.99, the 

range is 0.51–0.81 for PET, 0.01–0.19 for type I error, and 
0.73–0.97 for power. When the sample size of each stage is 
in the magnitude from decrease by −5 to increase by 5, the 
range is 0.61–0.77 for PET, 0.04–0.07 for type I error, and 
0.82–0.92 for power. When the beta prior varies from non-
informative prior to the one with a response rate at the null 
or alternative hypothesis and a series of standard deviation 
(SD), the range is 0.19–0.98 for PET, 0–0.31 for type I 
error, and 0.45–0.99 for power.

Three-stage case 
Two interim analyses are planned with 15, 15, and 20 
patients in the 1st, 2nd, and final stage (Table 1). Given the 
same 20% cutoff of the predictive probability, the stopping 
rule will be: the trial will be stopped if there are 4 and 
10 or less responders in the 1st and 2nd interim analysis, 
respectively (Table 1). The design has 85% power, 4% type 
I error, and 77% of early termination. Details including 
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sensitivity analysis are in Supplementary materials for 
demonstration.

Multiple-stage case 
The design includes 4 interim analyses with 10 patients in 
each stage (Table 1). With a 20% cutoff for the predictive 
probability, the stopping rule (Table 1) will be: the trial will 
be stopped if there are 2, 6, 10, and 15 or less responders in 
the 1st to 4th interim analysis, respectively. The design shows 
83% power, 4% type I error, and 91% of early termination. 
Details including sensitivity analysis are in Supplementary 
Materials for Demonstration.

The three different stage cases show a similar statistical 
power ranging 83–88% and a 4% type I error. However, the 
PET increases as the frequency of interim analysis increases 
(68% to 91%). 

Detailed sensitivity analysis for the two-stage case
(I) Cutoff of the predictive probability, γ: as the cutoff of 

the predictive probability decreases from 0.3 to 0.01 
(Figure 4), power increases (90% down to 84%), but 
PET decreases (81% down to 34%) and type I error 
increases (4% up to 5%). The impact is substantial on 
PET, moderate on power, and little on type I error.

(II) Threshold of the posterior probability, δ: when the 
threshold for posterior probability increases from 0.8 
to 0.99 (Figure 5), power decreases from 97% to 73%. 
In contrast, PET increases from 51% up to 81% and 
type I error decreases from 0.19 down to 0.01. All 
the three metrics (PET, type I error, and power) are 
largely impacted by the threshold of the posterior 
probability.

(III) Joint effect of γ and δ: three thresholds of the 

Figure 4 Sensitivity analysis by varying cutoff of the predictive probability in the two-stage example.
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posterior probability (δ=0.90, 0.95, and 0.99) are 
evaluated with the cutoff of the predictive probability 
from γ=0.01 to 0.3 to examine the joint effect in 
Figure 6. PET increases as both γ and δ increase. For 
δ=0.9, PET has 48% difference (from 19% to 68%) 
when γ increases from 0.01 to 0.3. However, as δ 
increases to 0.99, the change of PET decreases (39% 
difference) for the same range of γ (0.01 to 0.3). For 
type I error, when δ=0.9, it ranges 7% to 8% (~1% 
difference) for a γ of 0.01 to 0.3. As δ increases to 
0.99, the difference of type I error becomes negligible 
(<0.005). In evaluation of power, δ of 0.9 gives a range 
of power from 91% to 94% (3% difference) for a γ of 
0.01 to 0.3. As δ increases to 0.99, power decreases to 
68–76% (8% difference) for the same range of γ. The 
results indicate the joint effect has a large impact on 
PET, mild effect in power, and little influence in type 

I error. 
(IV) Sample size: change of sample size does not always 

increase power and PET and reduce type I error 
(Figure 7). It does not follow a monotonic form, 
but a quasi-systematic up- and down-pattern. For 
example, when sample size increases from 21 to 23 in 
each stage, it decreases PET (from 0.72 to 0.62) and 
increases power (from 82% to 89%). The type I error 
is 5%, 4%, and then 6% (down then up). The similar 
pattern occurs for a sample size of 24 to 27 in each 
stage. The cycle restarts for a sample size of 28–29. 
While the irregular pattern presents some challenges 
in determining a right sample size, the effect is 
mild on the three metrics. This may be due to the 
discreteness of the beta-binominal distribution.  

(V) Beta prior: non-informative priors have mild impact 
on power (84–91%) and type I error (4–7%), but a 

Figure 5 Sensitivity analysis by varying threshold of the posterior probability in the two-stage example.
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Figure 6 Sensitivity analysis of joint effect of both cutoffs of the predictive probability and the posterior probability in the two-stage 
example.
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large change on PET (68–81%) as shown in Figure 8.  
The prior based on a response rate at the null or 
alternative hypothesis also gives a similar effect when 
the SD is large (e.g., ≥0.3). When SD is small (e.g., 
≤0.1), the sum of two beta parameter values (a and 
b) significantly increases and therefore dominates 
the results. For example, when the prior is based on 
the response rate at null hypothesis (30%) with SD 
=0.05, the values of two beta parameters increase: a 
=24.9 and b =58.1. It will need a total of at least 23 
responders (out of 50 patients) to claim efficacy. The 
trial will be stopped early if there are 12 responders or 
less in the 1st stage. As a result, the trial design could 
be easily terminated in the 1st stage with a 98% PET, 

with a low power of 45%. On the other hand, for a 
prior using the response rate at alternative hypothesis 
(50%) with SD =0.1 (a = b =12), a total of at least 16 
responders is needed to claim efficacy. The design 
has a low chance to terminate the trial (PET =19%) 
because it only requires 5 responders or less in the 
1st stage to stop the trial. While the design has a high 
power of 99%, it also has a high type I error, 31%.  

 

Development of a statistical tool, BayesianPredictiveFutility 
R package  

A R package, ‘BayesianPredictiveFutility’, with associated 
graphical interface (R Shiny App) is developed for easy 
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Figure 7 Sensitivity analysis by varying sample size in the two-stage example.
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utilization of the trial design (source code at https://github.
com/dungtsa/BayesianPredictiveFutility). The unique 
feature of the statistical tool is to generate a professional 
statistical plan for biostatisticians and clinicians to easily 
incorporate into their clinical trial protocols. The statistical 
plan presents the methodology in a readable language 
fashion while preserving rigorous statistical arguments.

Once the R package is installed and loaded, the 
command line ‘Bayesian_Predictive_App()’ in R console 
will open a R Shiny app tool in a web browser for users to 
input the parameters as shown in Figure 9 with graphical 
illustration.

The tool requires a set of parameters for input: 
(I) Project title: title of the proposed clinical 

protocol.
(II) Authors: list of primary and co-investigators.
(III) Sample size: sample size for each interim analysis 

with comma delimited for separation (e.g., 25, 25 
for 1st and 2nd stage).

(IV)  Probability under the null hypothesis (p0) (e.g., 
p0=30% response rate at H0).

(V) Probability under the alternative hypothesis (p1) 
(e.g., p1=50% response rate at H1).

(VI) Threshold of posterior probability to define 
treatment efficacy: the range is 0–100% but a 
suggested value is 80–99%. A higher threshold 
requires a larger number of responders to claim 
efficacy and leads to a lower power.

(VII) Cutoff of predictive probability to define stopping 
rule: The range is 0–100%, but a suggested value 
is 0.01–0.3. A higher threshold requires a larger 
number of responders to advance to the next stage 
and leads to terminate the trial early.

(VIII) beta a and b parameters: Both parameters 

https://github.com/dungtsa/BayesianPredictiveFutility
https://github.com/dungtsa/BayesianPredictiveFutility
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represent the degree of response and nonresponse, 
respectively, with a>b for tendency of more drug-
sensitive, a<b for more drug-resistant, and a=b for 
undetermined. In addition, when a+b becomes 
large, the belief of prior information gets strong 
and likely dominates the result.

(IX)  Analysis type: two options are available: analytical 
analysis and simulation. Analytic analysis is 
recommended for computation efficiency. 
Simulation may be feasible when many interim 
analyses are required.  

(X) Name of outcome: it could be ‘response’ if 
response rate is the primary endpoint. 

(XI) Name of the arm: the name of the treatment arm.
With the input of  a l l  parameters ,  c l icking the 

‘Calculation’ button will generate a comprehensive report, 
including a summary, details of study design, a series of 

tables and figures from stopping boundary for futility, 
Bayesian predictive probability, performance (PET, type I 
error, and power), PET at each interim analysis, sensitivity 
analysis for predictive probability, posterior probability, 
sample size, and beta prior distribution (labelled as Tables 
1-7 and Figures 1-7, respectively, in the report). The output 
formats (Word or PDF) are available to communicate with 
physicians or to be incorporated in the trial protocol.   

Application of the R package

Application of two clinical trials in lung cancer is used to 
demonstrate its usefulness: one single arm phase II trial and 
one phase IB trial (NCT03377023 and NCT03611738 in 
ClinicalTrials.gov). A non-informative beta prior, beta(1,1), 
is used for the Bayesian posterior probability and predictive 
probability. Two-stage design is employed for both trials 

Figure 8 Sensitivity analysis by varying prior information in the two-stage example.
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Figure 9 Graphical illustration of using the R shiny app.

(detailed statistical justification is in the Supplementary 
Materials for Application).

The phase II trial is an immunotherapy study to 
evaluate a combined treatment of nivolumab, ipilimumab, 
and nintedanib in advanced non-small cell lung cancer 
(NSCLC). Two cohorts are studied: immunotherapy naïve 
and immunotherapy treated previously. For each cohort, 
the two-stage design includes 20 patients in each stage. We 
consider that the treatment is promising if the posterior 
probability of response rate greater than a least favorable 
response rate, p0, is higher than 0.95 [i.e., prob(response 
rate>p0 |data)>0.95]. The p0 is 30% and 7% for the 
immunotherapy naïve cohort and the immunotherapy 
treated previously cohort, respectively. The alternative 

hypothesis is 20% and 13% improvement of the response 
rate (i.e., p1=50% and 20%), accordingly. With a 20% 
cutoff of the predictive probability, for the immunotherapy 
naïve cohort, the stopping rule is 6 or less responders in the 
1st stage. If a total of responders are 17 or more (out of a 
total of 40 patients), the treatment is considered promising 
and deserves further examination in future randomized 
phase II or III trials. The operation characteristics has an 
85% power, a 6% type I error, and a 61% PET. For the 
immunotherapy treated previously cohort, the stopping 
rule is 1 or no responder in the 1st stage. The treatment is 
considered promising if a total of responders are 6 or more. 
The design has an 82% power, a 5% type I error, and a 
59% PET.
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The phase IB trial is to evaluate efficacy of combination 
of two drugs, Ceritinib and Docetaxel, in patients with 
locally advanced or metastatic NSCLC after failure of 
prior platinum therapy. A futility analysis is included in 
the interim analysis to stop the trial earlier if the treatment 
does not work well. A pre-defined sample size is a total of 
30 patients with one interim analysis after 15 patients have 
response data. The hypothesis is a response rate of 12% as 
a least favorable response rate (null hypothesis) and 32% 
as the minimum encouraging response rate (alternative 
hypothesis). The treatment is considered promising if the 
posterior probability of the response rate greater than 
12% is higher than 0.95 [i.e., prob(response rate>12% 
|data)>0.95]. The statistical design is based on a cutoff of 
20% for the predictive probability. The stopping rule is 
2 or less responders in the interim analysis. It requires a 
minimum number of 7 responders at end of the study to 
warrant further randomized trials. The design has an 84% 
statistical power, a 5% type I error, and a 73% PET. 

Comparison to Simon two-stage design
Simon two-stage design (20) has two types: optimal and 
minimax design. The optimal design aims to minimize the 
expected sample size under the null hypothesis while the 
minimax design targets the smallest maximum sample size. 
The optimal design often has a larger sample size compared 
to the minimax design. The optimal design conducts the 
interim analysis usually earlier with less than 50% of the 

total sample size. In contrast, the minimax design tends to 
implement the interim analysis at late stage using more than 
50% of the total sample size.   

For the immunotherapy naïve cohort, the Simon minimax 
design yields a total of 39 subjects with 19 in the 1st stage 
and a 67% PET (Table 2). For the optimum design, the 
sample size increases to 46 subjects, with 15 subjects in the 
1st stage and 72% PET. The Simon minimax design is close 
to the design by Bayesian predictive probability in terms 
of sample sizes and stopping rule. The Bayesian predictive 
probability approach gives a higher statistical power (85% 
versus 80%), but a lower PET (61% versus 67%). The 
optimum design requires a 15% increase of sample size 
(46 versus 40). Both Simon designs are unable to give a 
balanced sample size at each stage. The immunotherapy 
treated previously cohort also gives a similar comparison 
result (Table 2). For the Ceritinib and Docetaxel cohort in 
the phase IB trial, the Simon minimax design gives a smaller 
total sample size (n=27), but it requires the interim analysis 
conducted after 63% patients with response data, rather 
than earlier (Table 2). Also, the statistical power and PET 
are smaller compared to the Bayesian predictive probability 
approach (power: 80% versus 84%; PET: 67% versus 73%). 
The optimal design is similar to the Bayesian approach.

Discussion

In general, the Simon two-stage design is widely used 

Table 2 Comparison of Bayesian predictive probability to Simon two-stage design

Method k1 n1 k−1 n Type I error Power PET

Immunotherapy naïve cohort: 30% versus 50% response rate

Bayesian predictive probability 6 20 16 40 6% 85% 61%

Minimax 6 19 16 39 5% 80% 67%

Optimum 5 15 18 46 5% 80% 72%

Immunotherapy treated previously cohort: 7% versus 20% response rate

Bayesian predictive probability 1 20 5 40 5% 82% 59%

Minimax 1 21 5 39 5% 80% 56%

Optimum 1 16 6 50 5% 80% 69%

Ceritinib and Docetaxel cohort: 12% versus 32% response rate

Bayesian predictive probability 2 15 6 30 5% 84% 73%

Minimax 2 17 6 27 4% 80% 67%

Optimum 2 13 6 31 5% 80% 80%



S418 Chen et al. Bayesian predictive probability for futility analysis 

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(Suppl 4):S404-S420 | http://dx.doi.org/10.21037/tcr.2019.05.17

in the single arm phase II clinical trial. Here, we apply 
an alternative approach, Bayesian strategy (30), for 
futility analysis. It employs the predictive probability, to 
construct stopping rule by evaluating the chance of future 
success. It allows flexibility of sample size in each interim 
analysis. It gives freedom for a desirable PET, as well as 
an interpretable stopping rule for interim futility analysis. 
The statistical R package (‘BayesianPredictiveFutility’), 
we developed provides great opportunity to broaden the 
application in clinical trial. We have applied this statistical 
tool for the Bayesian approach in two ongoing clinical 
trials, one for immunotherapy and one for targeted therapy, 
to demonstrate its usefulness as shown in the Section of 
Application of the R Package. 

For clinical investigators, the Bayesian approach holds 
unique strengths over the Simon two-stage design. One 
key feature is the freedom to determine the number of 
patients in the interim analysis. Sometimes the investigator 
may request a customized sample size schema (e.g., a 
balanced sample size across the stages or a pre-determined 
sample size) for futility analysis in single arm phase II trial. 
Examples in the Section of Application of the R Package are 
the cases with equal sample sizes in the 1st and 2nd stages. 
The Simon two-stage design gives an unbalanced design 
with different sample sizes either by minimax or optimal 
criteria. The Bayesian approach can address this issue 
with an interpretable futility analysis plan and comparable 
power and type I error. Moreover, with sensitivity analysis, 
it allows investigators to select a desirable PET to better 
determine an appropriate stopping rule for trials (Sensitivity 
Analysis in Result Section). The other uniqueness is its 
adaption of the predictive probability to evaluate the future 
success at interim stage. The low chance of future success 
could become an ethical reason to stop the trial. In contrast, 
some approaches, such as classic group sequential trials, 
use interim P values for the stopping rule which may allow 
trials with very low probabilities of success to continue (31). 

With the goal to make this Bayesian design more 
accessible, the R package, ‘BayesianPredictiveFutility’, 
provides a graphical user interface for easy implementation. 
Our suggested strategy is to start with two key parameters: 
the threshold of the posterior probability, δ, and the cutoff 
for the predictive probability, γ, because δ dominates power 
and type I error and γ controls the PET (Sensitivity Analysis 
in Result Section). Once all parameters are entered, the 
tool will generate a professional report to describe what the 
study design is (e.g., when to stop the trial), how the design 
is derived (e.g., how the stopping rule is formularized), and 

how robustness the design is (e.g., sensitivity analysis by 
varying key parameters), with a series of tables and plots 
to support the design. The Word or PDF output format 
is another plus to give clinicians to easily incorporate the 
design report into clinical trial protocol.  

In summary, the Bayesian predictive probability 
presents a high degree of flexibility for futility assessment 
at the interim analyses in single arm phase II clinical 
trials. The statistical tool brings potential benefit for easy 
implementation in trial design.  
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Supplementary materials for demonstration

(I) Two-stage: calculation of predictive probability, 
development of stopping boundary, and sensitivity 
analysis;

(II) Three-stage: calculation of predictive probability, 
development of stopping boundary, and sensitivity 
analysis;

(III) Multi-stage: calculation of predictive probability, 
development of stopping boundary, and sensitivity 
analysis.

Supplementary materials for application

(I) Cohort 1 (immunotherapy naïve): calculation of 
predictive probability, development of stopping 
boundary, and sensitivity analysis;

(II) Cohort 1 (immuno therapy pretreated): calculation 
of predictive probability, development of stopping 
boundary, and sensitivity analysis;

(III) Cohort 2 (targeted therapy): calculation of predictive 
probability, development of stopping boundary, and 
sensitivity analysis.
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