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Background: Radiomics provides promising opportunities in cancer diagnosis, endowing medical imaging 
with an increasingly important role in analyzing tumor phenotypes. Positron emission computed tomography 
(PET) imaging can detect functional changes before they become morphologically evident on computed 
tomography (CT) imaging. The aim of this study was to explore the feasibility of using quantitative PET 
radiomic and clinical features to identify subtypes of non-small-cell lung cancer (NSCLC).
Methods: In this study, one hundred patients who had been diagnosed with histologically confirmed 
NSCLC were collected retrospectively, including 61 patients with adenocarcinoma (ADC) and 39 patients 
with squamous cell carcinoma (SqCC). Then, the gross tumor volume (GTV) was delineated on PET 
images. A total of 107 features were extracted, which included 60 texture features and 47 metabolic features. 
The least absolute shrinkage and selection operator (LASSO) was used to select the optimal feature set, 
which was considered to be the best predictable features. Meanwhile, we analyzed the differences of selected 
features between two tumor types. Classification models were built by multivariable logistic regression 
analysis with three settings, namely: (I) radiomic features; (II) clinical features (smoking, age, sex, tumor 
size, T stage and N stage); and (III) radiomic features combined with clinical features. Finally, the area 
under the receiver operating characteristic (ROC) curve (AUC) was used to evaluate the performance of the 
classification models.
Results: Five out of 107 features were selected as the optimal feature set, which included four texture 
features and one metabolic feature. Significant differences were observed from these five features between 
ADC and SqCC subtypes (P<0.05). The radiomics features combined with clinical features model showed 
higher classification performance (AUC =0.781, sensitivity =1.000, specificity =0.700, accuracy =0.885) than 
the radiomic model (AUC =0.700, sensitivity =0.938, specificity =0.600, accuracy =0.808) and clinical features 
model (AUC =0.728, sensitivity =0.625, specificity =1.000, accuracy =0.769) in the validation datasets.
Conclusions: The 18F-FDG PET radiomic classification model is a promising and applicable approach 
for identifying subtypes of NSCLC, which may serve as a complementary tool to help doctors with clinical 
decisions.
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Introduction

Lung cancer (LC) is one of the most common malignancies 
and exhibits the highest morbidity and mortality rates 
worldwide (1). Non-small-cell lung cancer (NSCLC) 
comprises 85–90% of all LC and is characterized by 
three types, which was squamous cell carcinoma (SqCC), 
adenocarcinoma (ADC), and large-cell carcinoma. 
Furthermore, the first two types accounts for approximately 
80% of all LCs (2,3). Histologic subtype represents tumor cells 
from different cellular origins that are known to have different 
genomic compositions and biological behaviors, and preclinical 
and subsequent clinical data have suggested histology-
specific efficacy of chemotherapy in NSCLC. Therefore, it is 
significant to identify the histological subtype of NSCLC to 
determine the treatment and therapeutic strategies.

In conventional clinical practice, analyzing the tumor 
tissues obtained via puncture biopsies was commonly used 
to classify tumor histology (3,4). However, pathological 
specimens cannot be obtained from patients who cannot 
undergo surgery, and random samples of tumor tissues 
acquired through invasive puncture biopsy for molecular 
characterization may not accurately reflect the overall 
characteristics of tumor. Considered one of the fundamental 
building blocks of clinical oncology, medical imaging 
play vital roles in cancer staging, treatment planning, 
and response monitoring, especially in identifying 
tumor subtypes (5). One of the disadvantages of imaging 
examination is closely related to the experience of the 
physician. Thus, automatic, noninvasive, cost-effective, and 
reproducible alternatives that are unaffected by individual 
variability are desired.

Radiomics provides promising opportunities in cancer 
diagnosis, endowing medical imaging with an increasingly 
important role in analyzing tumor phenotypes. It uses 
high-throughput extraction of advanced quantitative 
features to objectively and quantitatively describe tumor  
phenotypes (6). Moreover, this technique has great potential 
for capturing important phenotypic information, such 
as intratumor heterogeneity, which will provide valuable 
information for personalized therapy.

In the past decade, positron emission computed 
tomography (PET) has become a routine method for 
evaluating solid tumors. A series of publications have 
reported PET radiomic features used in tumor therapy (7-9).  
PET imaging can detect functional changes before they 
become morphologically evident on computed tomography 
(CT) imaging. Differences between histological subtypes 
have also been discovered in the expression of glycolysis- 

and hypoxia-related markers, thus indicating histology-
specific glucose metabolism in NSCLC (10-12). Recent 
advancements in NSCLC therapy have been characterized 
by the found of targeted mutations and histology-
based treatments (13,14). PET, which does not rely on 
dimensional criteria, is more accurate than conventional 
imaging for the assessment  pathological subtypes. 
Consequently, we developed and validated an optimal 
18F-FDG PET radiomic model to distinguish between ADC 
and SqCC in the present study.

Methods

Patient cohorts

One hundred NSCLC patients (mean age 62 years, range 
26–85 years) with pathologically confirmed ADC (n=61) or 
SqCC (n=39), who underwent 18F-FDG PET examination 
before treatment at Shandong Cancer Hospital from 
October 2014 to May 2017, were enrolled. According to 
the World Health Organization (WHO) classification of 
malignant lung tumors, the tumors were categorize as ADC 
or SqCC based on hematoxylin and eosin (HE) staining. 
Patients with two or more lesions in one or both lungs and 
those with the presence of other tumors and metastatic 
lesions were excluded from this study. The primary tumors 
were all solid tumor, and necrosis in the lesion was excluded 
from this study. This work was a retrospective study and 
was approved by the ethics committee at Shandong Cancer 
Hospital and Institute.

18F-FDG PET/CT scanning and gross tumor volume 
(GTV) delineation
18F-FDG PET images were obtained using a Philips Gemini 
TF PET/CT system (Phillips Medical Systems, Holland). 
The patients fasted for more than 6 hours, and their blood 
glucose was measured to ensure a level of <140 mg/dL. 
Patients were intravenously injected with 18F-FDG at  
4.4 MBq/kg, and chest CT and PET scans were performed 
1 hour later. All images were acquired with the respiratory 
gating technique. PET images were attenuated, corrected, 
reconstructed in multiple layers and imported into MIM 
Maestro version 6.8.2 (MIM software, Cleveland, OH). 
The GTV was delineated according to the metabolic 
information of the PET images and the anatomic 
information of the CT images. The target images were then 
reviewed by two senior radiologists, and differences in the 
findings were resolved by consensus.
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Feature extraction

In this study, radiomic features were extracted using Chang-
Gung Image Texture Analysis (CGITA) software, which is 
based on MATLAB (Mathworks, Natick, MA, USA) version 
8.3 (15,16). In total, we extracted 107 quantitative features 
(comprising 59 texture features, 45 SUV statistic features 
and 5 shape features), and we provided the definitions 
and interpretation of these features in the supplement 
file. Then, we added six clinical features (smoking, age, 
sex, tumor size, T stage and N stage) for further feature 
selection. The longest dimension of the primary tumor was 
defined as the tumor size.

Statistical analysis

Statistical data was performed using SPSS 19.0 and R 
software (version 3.3.0, http://www.R-project.org). Based 
on the least absolute shrinkage and selection operator 
(LASSO) method, the “glmnet” software package 
reduces feature dimensionality and selects features with 
discriminative significance. P values <0.05 were considered 
statistically significant. The flow chart of this study is 
depicted in Figure 1.

Results

Patient characteristics

One hundred patients who met the inclusion criteria 
were divided into two independent groups; 74 patients 
treated between October 2014 and June 2016 constituted 
the training cohort, and 26 patients treated between July 
2016 and May 2017 constituted the validation cohort. 
The characteristics of the patients in both the training 
and validation cohorts are displayed in Table 1. In the 
training cohort, ADC patients comprised 61% (45/74) of 
the cases and SqCC patients comprised 39% (29/74) of 
the cases. Male patients and female patients accounted 
for 61% (45/74) and 39% (29/74) in the training cohort, 
respectively. Smokers comprised 53% (39/74) of the 
patients, and non-smokers comprised 47% (35/74) of 
the patients. In the validation cohort, ADC patients 
comprised 62% (16/26) of the cases; SqCC patients 
comprised 38% (10/26) of the cases. Male patients and 
female patients accounted for 81% (21/26) and 19% 
(5/26) in the validation cohort, respectively. Smokers 
accounted for 65% (17/26) of the patients, whereas non-
smokers accounted for 35% (9/26) of the patients.

100 NSCLC patients
(61 ADCs, 39 SqCCs)

Validation cohort
n=26 (~26%)

(16 ADCs, 10 SqCCs)

PET scans

LASSO logistic regression

Training cohort
n=74 (~74%)

(45 ADCs, 29 SqCCs)

Evaluated prediction 
performance

ROI segmentation

Selected features

 Extracted radiomic 
features

Constructed prediction 
models

Clinical risk factors

Figure 1 Flow chart of this study.
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Table 1 Analysis of the patients in the training and validation cohorts

Characteristics
Training cohort Validation cohort

ADC SqCC P ADC SqCC P

Number (n) 45 29 16 10 0.002

Age, mean ± SD (years) 53.9±10.2 64.1±6.7 0.363 65.6±10.2 60.3±7.8 0.341

Gender (n) 0.025 0.317

Male 25 (56%) 20 (69%) 12 (75%) 9 (90%)

Female 20 (44%) 9 (31%) 4 (25%) 1 (10%)

Smoking (n) 0.003 0.317

Yes 15 (33%) 24 (83%) 9 (56%) 8 (80%)

No 30 (67%) 5 (17%) 7 (44%) 2 (20%)

T stage (n) <0.001 0.011

T1 7 4 4 1

T2 24 12 9 5

T3 8 8 3 3

T4 6 5 0 1

N stage (n) <0.001 0.008

N1 10 6 3 2

N2 8 4 5 2

N3 13 13 6 4

N4 14 6 2 2

Tumor size (n) 0.010 0.046

≤3 cm 30 18 13 6

>3 cm 15 11 3 4

The P value represents the univariate association between each of the clinical variables and NSCLC subtypes using the Wilcoxon rank-
sum test. A P<0.05 indicates significance. ADC, adenocarcinoma; SqCC, squamous cell carcinoma; SD, standard deviation; NSCLC, non-
small-cell lung cancer.
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Figure 2 Least absolute shrinkage and selection operator (LASSO) binary logistic regression model for feature selection. (A) Each curve in 
the graph represents the coefficient trajectory of each independent variable. As the number of features of the nonzero coefficient decreases, 
the value of ln(λ) increases. (B) The graph uses 10-fold cross-validation of the LASSO model to minimize the classification error by 
continuously adjusting the parameter λ size, thereby screening out the optimal feature set.

Radiomic feature selection

Based on the elastic-net method in the training cohort, 
we chose the features with non-zero coefficients. The 
result showed that 5 radiomic features were selected from  
107 features, which included short-zone emphasis, high-

intensity short-run, code entropy, surface SUV NSR 3, and 
entropy. Figure 2 illustrates the parameter tuning procedure for 
the regression model and feature space reduction, and Table 2  
lists the name and description of the selected features. The 
paired t-test results showed that the five radiomic features 
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selected by the LASSO model differed significantly between 
lung ADC and lung SqCC patients (P<0.05). In the univariate 
analysis, the short-zone emphasis of gray-level features showed 
the best discriminative performance, and the area under the 
curve (AUC) reached 0.754. The texture parameter, code 
entropy, was used as the predictor, and its sensitivity reached 
0.897, which was higher than those of the other predictors. 
The metabolic parameter surface SUV NSR 3 had the highest 
specificity of 0.821. In Figure 3, we depict the features selected 
to develop the radiomic model in ADC and SqCC.

Development of the radiomic model and receiver operating 
characteristic (ROC) curve analysis

The ROC curves showed good performance and generalization 
for the model built using radiomic features. The AUCs for 
the radiomic model were 0.803 in the training cohort and 

Table 2 Performance of the features selected in the model

Feature name
Mean ± SD

Weighted AUC SEN SPE P value
ADC SqCC

Short-zone emphasis 0.832±0.070 0.764±0.067 4.65 0.754 0.821 0.639 0.020

High-intensity short-run 1,048.320±463.592 709.554±379.995 0.01 0.717 0.639 0.769 0.009

Code entropy 3.000±0.331 3.313±0.314 −0.05 0.753 0.897 0.557 0.001

Surface SUV NSR 3 15.224±7.828 21.180±9.257 −0.09 0.690 0.508 0.821 0.023

Entropy −0.919±0.599 −1.500±0.719 −0.38 0.744 0.718 0.738 0.020

SD, standard deviation; ADC, adenocarcinoma; SqCC, squamous cell carcinoma; AUC, area under the curve; SEN, sensitivity; SPE, 
specificity.
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Figure 3 Feature map of five selected radiomic features derived from ADC (A) and SqCC (G) respectively, including short-zone emphasis 
(B and H), high-intensity short-run (C and I), code entropy (D and J), entropy (E and K) and surface SUV NSR 3 (F and L). ADC, 
adenocarcinoma; SqCC, squamous cell carcinoma.
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Figure 4 ROC curves showing the ability of the radiomic model to 
identify ADC and SqCC. ROC, receiver operating characteristic; 
AUC, area under the curve; SqCC, squamous cell carcinoma.
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0.700 in the validation cohort (Figure 4). The result revealed 
that the sensitivity, specificity, positive predictive value, 
negative predictive value and accuracy of the radiomic 
model in the validation cohort were 0.938, 0.600, 0.789, 
0.857, and 0.808, respectively (Table 3).

Development of the clinical model and ROC curve analysis

A clinical features classification model was built by 
multivariable logistic regression analysis with smoking 
status, sex, age, tumor size, T stage and N stage. The 
performance of the clinical model for the classification 
NSCLC subtypes presented by ROC curves is depicted 
in Figure 5, which yielded AUCs of 0.702 in the training 
dataset and 0.728 in the validation dataset. Compared with 
the radiomic model, the specificity reached from 0.600 to 
1.000 in the validation group. However, the sensitivity, 
positive predictive value, negative predictive value and 
accuracy were reduced in the clinical validation dataset. 
Similarly, we describe these indicators in Table 4.

Development of the radiomic features combined with the 
clinical features model and ROC curve analysis

Multivariable logistic regression analysis identified smoking 
status and five radiomic features as independent predictors. 
For the model built with radiomic features and clinical 
variables, the AUCs were 0.822 in the training cohort 
and 0.781 in the validation cohort, which showed better 
performance for differentiating ADC and SqCC than the 
models incorporating radiomic features or clinical variables 
only (Figure 6). The performance of the combined model 
(sensitivity 1.000, specificity 0.700, accuracy 0.885) in the 
validation cohort is described in Table 5.

Discussion

Identifying tumor subtypes has an important impact on 
patients with initially diagnosed NSCLC to select the most 
appropriate therapeutic option. Studies have confirmed the 
effectiveness of immunotherapy due to the benefit of overall 
survival for cancer patients (17). Lung ADC and lung 
SqCC have distinctly different oncogenic mutations and 
divergent therapeutic responses, especially for mutations 
in EGFR and PD1-targeted antibody status which drive 
the heightened emphasis on accurate pathological NSCLC 
subtyping (18).

Currently, histological and cytological examinations are 
the two main methods for determining NSCLC subtypes. 
However, 70% to 80% of NSCLC patients are diagnosed 
at an advanced stage, and pathological specimens cannot 
be obtained surgically. Consequently, puncture biopsy 
is the most commonly used pathological test for LC. 
However, puncture biopsies are susceptible to lesion size, 
wall thickness, and location, which may affect diagnostic 
accuracy. Priola et al. (19) analyzed clinical data from  
612 patients who underwent CT-guided biopsies to confirm 
the diagnosis of NSCLC, and compared to the surgical 
pathology results, the pathological type determined by 

Table 3 Performance of the radiomic model in the training and validation cohort

Type Group Sensitivity Specificity PPV NPV Accuracy AUC

Radiomic 
features

Training group 0.889 (40/45) 0.586 (17/29) 0.769 (40/52) 0.773 (17/22) 0.770 (57/74) 0.804

Validation group 0.938 (15/16) 0.600 (6/10) 0.789 (15/19) 0.857 (6/7) 0.808 (21/26) 0.700

Total 0.902 (55/61) 0.590 (23/39) 0.775 (55/71) 0.793 (23/29) 0.780 (78/100) –

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
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Figure 5 ROC curves showing the ability of clinical features to 
identify ADC and SqCC. ROC, receiver operating characteristic; 
AUC, area under the curve; SqCC, squamous cell carcinoma.
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puncture was only 83.3% accurate. Moreover, qualitative 
detection methods are subjectively influenced by the 
observer. Steinfort et al. (20) collected specimens from 
60 patients who underwent endobronchial ultrasound 
(EBUS)-guided transbronchial needle aspiration (TBNA) 
for the diagnosis/staging of suspected/known NSCLC, and 
three pathologists with more than 10 years of diagnostic 
experience independently reviewed the specimens. The 
agreement in determining NSCLC subtype by smear, 
H&E staining and immunohistochemistry (IHC) of the 
specimens was slight (κ=50.095, 95% CI: 0.164–0.355), 
fair (κ=50.278, 95% CI: 0.075–0.481) and moderate 
(κ=50.564, 95% CI: 0.338–0.740), respectively, which may 
have occurred because some clinical features are defined by 
pathologists whose evaluation standards may differ based on 
subjective experiential judgment. The observer variability 
of many diagnostic decisions related to the characteristics 
of pulmonary lesions also affects the sensitivity of diagnosis. 

Therefore, clinicians are constantly seeking better methods 
for making an accurate diagnosis.

Radiomics has recently become an important auxiliary 
tool for precision medicine, and several studies have 
reported an association between radiomic features and 
tumor pathophysiological properties based on CT and 
magnetic resonance imaging (MRI) (21,22). As a functional 
imaging method, 18F-FDG PET indicates the specific 
distribution of 18F-FDG uptake by tissues, and 18F-FDG 
PET images have important clinical value in differentiating 
benign and malignant tumors, confirming pathological 
subtypes, clinical staging, evaluating efficacy, monitoring 
recurrence and metastasis, and searching for primary tumors 
(23-25). The pathological subtypes of LC are complex, and 
the pathogenesis of NSCLC subtypes differ significantly, 
as reflected by PET images (26). Medical imaging enables 
the noninvasive assessment of tissue characteristics and 
is therefore routinely used to diagnose and treat tumors. 
Furthermore, determining the relationship between 
pretreatment NSCLC images and histological subtypes has 
great implications in choosing clinical treatment options.

This study explored the potential of pretreatment 
18F-FDG PET radiomic features to identify NSCLC 
subtypes. The results showed that the sensitivity and 
accuracy in the validation model were 0.938 and 0.808, 
respectively. These results might be attributed to the fact 
that texture analysis can indirectly capture the microscopic 
features of these lesions, which was completely different 
from macroscopic morphological characteristics. These 
pathological features cannot be determined by visual 
examination of the tissue images, however, they might be 
ascertained by inspecting the changes in the arrangement 
of pixels via a texture analysis of medical images (27,28). 
When clinical features were integrated, the sensitivity 
and accuracy of the validation model reached 1 and 0.885, 
respectively. One reason is that SqCC is mainly associated 
with a smoking history and tends to form large tumors in 
the center of the lung. In the present study, the accuracy of 
the radiomic model is superior to the puncture results, and 

Table 4 Performance of the clinical model in the training and validation cohort

Type Group Sensitivity Specificity PPV NPV Accuracy AUC

Clinical 
features

Training group 0.667 (30/45) 0.724 (21/29) 0.789 (30/38) 0.583 (21/36) 0.689 (51/74) 0.702

Validation group 0.625 (10/16) 1.000 (10/10) 1.000 (10/10) 0.625 (10/16) 0.769 (20/26) 0.728

Total 0.656 (40/61) 0.795 (31/39) 0.816 (40/49) 0.608 (31/51) 0.710 (71/100) –

PPV, positive predictive value; NPV, negative predictive value; AUC, area under the curve.
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Figure 6 ROC curves showing the ability of radiomic features 
and clinical features combined to identify ADC and SqCC. ROC, 
receiver operating characteristic; AUC, area under the curve; 
SqCC, squamous cell carcinoma.
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the method proposed herein has the advantages of being 
noninvasive and reproducible and reflects the overall tumor 
information. Thus, the radiomic method is an improvement 
over the puncture biopsy results.

The texture features can quantify the arrangement of 
tumor cells in different pathological types, which were 
related to heterogeneity in tumor gene expression and 
biological behavior. Our study provides a new method for 
differentiating NSCLC pathological types using 18F-FDG 
PET images. Radiomic feature analysis is a new image 
postprocessing technique that may play an important role 
in describing tumor characteristics (29,30). One limitation 
of the present study was that we did not evaluate radiomic 
features of lymph nodes in this study due to feature stability 
and reproducibility. Another limitation is that to acquire 
a reliable result, the noninvasive identification of NSCLC 
pathological subtypes using imaging biomarker should 
involve sufficient patient data. As an emerging research field 
of medical image processing, radiomic research requires a 
large amount of data for confirmation. With multicenter 
cohort expansion and prospective studies, we expect higher 
accuracy and stability of subtype classification in future 
works.

Conclusions

Our study reveals that a model including radiomic features 
combined with clinical features is superior to models that 
contain either radiomic features or clinical features alone. 
Therefore, it is a promising and applicable alternative approach 
for identifying subtypes of NSCLC, which may serve as a 
complementary tool to help doctors make clinical decisions.
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In current research, we extracted 107 quantitative features 
using Chang-Gung Image Texture Analysis (CGITA) 
software (http://code.google.com/p/cgita) to describe 
tumor heterogeneity, which included co-occurrence 
features (n=6), normalized co-occurrence features (n=6), 
voxel-alignment features (n=11), intensity-size zone 
features (n=11), neighborhood intensity-difference features 
(n=5), neighboring gray level dependence features (n=5), 
SUV statistics features (n=49), texture spectrum features 
(n=2), texture coding features (n=4), and texture coding 
co-occurance features (n=8). We presented the detailed 
description and available formulas of radiomic features as 
below (http://pyradiomics.readthedocs.io/en/latest/index.
html).

Gray level co-occurrence matrix (GLCM) features

For GLCM features, they describe the joint distribution of 
two pixels with a certain spatial position relationship, which 
can be regarded as a joint histogram of two pixel gray pairs, 
and belong to the second order statistics.

1. Angular Second Moment (ASM):

( ) 2

1 1

ASM ,
g gN N

i j

p i j
= =

 =  ∑∑

2. Contrast:

( ) ( )2

1 1

contrast ,
g gN N

i j

i j p i j
= =

= −∑∑

3. Entropy:

( ) ( )2
1 1

entropy , ,
g gN N

i j

p i j log p i j
= =

− =  ∑∑

4. Dissimilarity:

( )
1 1

dissimilari = ,ty
g gN N

i j

p i j i j
= =

−∑∑

5. Inverse difference moment (IDM):

( )
2

1 1

,
IDM

1

g gN N

i j

p i j
i j= =

=
+ −

∑∑
6. Correlation:

( )
( ) ( )

1 1
,

correlation
g gN N

x yi j

x y

p i j ij

i j

µ µ

σ σ
= =

−
=
∑ ∑

Normalized gray level co-occurrence matrix 
(NGLCM) features

For NGLCM features, they were the normalized version of 
the GLCM features.

(I)	 Angular second moment;
(II)	 Contrast;
(III)	 Entropy;
(IV)	 Dissimilarity;
(V)	 Inverse difference moment;
(VI)	 Correlation.

Voxel-alignment features

The voxel-alignment features were computed with the 
length of voxels that have the same gray intensity. They 
were only the measurement and statistics of image pixel 
information. In the process of practical use, it is necessary 
to calculate the generated grayscale run-length matrix and 
get the image feature information based on grayscale co-
occurrence matrix.
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3. Intensity variability (IV):
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4. Run-length variability (RLV):
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5. Run percentage (RP):
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7. High-intensity run emphasis (HIRE):
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8. Low-intensity short-run emphasis (LISRE):
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9. High-intensity short-run emphasis (HISRE):
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10. Low-intensity long-run emphasis (LILRE):
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11. High-intensity long-run emphasis (HILRE):
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Intensity size zone matrix (ISZM) features

ISZM features were defined as the numbers of neighbor 
voxels with same gray value, and it shows remarkable effect 
on texture consistency and non-periodicity.

1. Short-zone emphasis (SZE):
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4. Size-zone variability (SZV):
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5. Zone percentage (ZP):
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7. High-intensity zone emphasis (HIZE):
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8. Low-intensity short-zone emphasis (LISZE):
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9. High-intensity short-zone emphasis (HISZE):
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10. Low-intensity large-zone emphasis (LILZE):
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11. High-intensity large-zone emphasis (HILZE):
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Neighborhood intensity-difference matrix (NIDM) 
features

The indices measured the sum of average difference 
between a pixel value and the pixel value of its neighbors 
with a specific distance.
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3. Busyness:
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Neighboring gray level dependence (NGLD) 
features

GLDM features quantify the intensity dependency which 
was defined as the number of connected voxels within 
specific distance that are dependent on the center voxel.

1. Small dependence emphasis (SDE):
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2. Large dependence emphasis (LDE):
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3. Dependence non-uniformity (DN):

( )
2

1 1
,

DN
d gN N

j i

z

P i j

N
= =
 
 =

∑ ∑

4. Dependence entropy (DE):
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5. Gray level non-uniformity (GLN):
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SUV statistics

The standardized uptake value (SUV) refer to the ratio of 
the image derived radioactivity concentration and the whole 
body concentration of the injected radioactivity, particularly 
common in the analysis of [18F]fluorodeoxyglucose {[18F]

FDG} images of cancer patients.
1. SUVmin: The minimal standardized uptake value of ROI.
2. SUVmax: The maximal standardized uptake value of ROI.
3. SUVmax_prod_asphericity
4. SUVmax_prod_surface_area
5. SUVmean: The mean standardized uptake value of ROI.
6. SUVmean_prod_asphericity
7. SUVmean_prod_surface_area
8. SUV variance:
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9. Surface SUV variance 1
10. Surface SUV variance 2
11. Surface SUV variance 3
12. Surface SUV variance 4
13. SUV standard deviation (SD)
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14. Surface SUV SD 1
15. Surface SUV SD 2
16. Surface SUV SD 3
17. Surface SUV SD 4
18. SUV skewness
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19. SUV bias-corrected skewness
20. SUV kurtosis:
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21. SUV bias-corrected kurtosis
22. Total lesion glycolysis (TLG):
TLG=MTV* SUVmean

23. Tumor volume
24. Entropy

( ) ( )2
1

entropy
gN

i

p i log p i
=

  = − +∑ 

25. Entropy_prod_asphericity
26. Entropy_prod_surface_area
27. Surface SUV entropy 1



28. Surface SUV entropy 2
29. Surface SUV entropy 3
30. Surface SUV entropy 4
31. SULpeak: It was defined as the highest SUVmean of a  

1 cm3 spherical lesion/target.
32. SULpeak_prod_asphericity
33. SULpeak_prod_surface_area
34. Surface area
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47. Perimeter
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Texture spectrum features

1. Max spectrum
2. Black-white symmetry

Texture coding features

1. Coarseness
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2. Homogeneity
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3. Mean convergence
4. Variance
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Texture coding co-occurance features

1. Second angular moment (SAM)
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2. Contrast
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4. Homogeneity
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5. Intensity
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6. Inverse difference moment (IDM)
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7. Code entropy
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8. Code similarity
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