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Introduction

Lung cancer is the most common cancer and the leading 
cause of cancer-related death worldwide. The most 
prevalent cause of lung cancer mortality, accounting for 
about 85% of related deaths, is non-small cell lung cancer 

(NSCLC) (1-3). Although lung adenocarcinoma (LUAD) 
and lung squamous cell carcinoma (LUSC), as two major 
histological subtypes, have distinct biological behaviors and 
require different therapeutic approaches, pneumonectomy 
is a potential curative therapy in some patients with LUAD 
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or LUSC (4-6). Approximately 60% of patients with early- 
to mid-stage NSCLC will never experience recurrence 
after surgical treatment, whereas 40% eventually die of the 
disease (7). Therefore, screening for patients with resectable 
NSCLC at higher risk of death or relapse may help to 
improve treatment outcomes.

Recently, large-scale genomic analysis techniques, 
including microarrays and RNA-Seq, have been used to 
obtain genome-wide mRNA expression data in different 
types of cancers (8-13). The mRNA expression signatures 
have been used to predict the prognosis of patients 
with NSCLC in several studies (14-18). However, the 
robustness, reproducibility, and clinical applications of these 
prognostic gene signatures are still unclear. Therefore, 
determination of which prognostic biomarkers are suitable 
for extensive and long-term prospective clinical trials is 
urgently required. Moreover, reliable and novel prognostic 
biomarkers need to be explored to establish improved 
clinical therapies. 

Functional proteomics is mainly focused on the study of 
protein activity levels (e.g., expression and modifications) 
(19,20). In addition to genetic alterations, abnormalities 
in protein expression levels and structures also play key 
roles in tumor development and progression. Similar to 
western blotting, reverse phase protein arrays (RPPAs) are 
a high-throughput, antibody-based, robust quantification 
technique that can be used to accurately determine protein 
levels in various types of tumors (21,22). Indeed, proteomics 
results are significantly associated with prognosis in many 
cancers (23,24). However, novel models based on multiple 
proteomics to predict and validate overall and disease-
free survival (OS and DFS, respectively) have not yet been 
reported in NSCLC cohorts.

Therefore, in this study, we attempted to build a model 
based on functional proteomics for predicting prognosis 
in patients with NSCLC after surgery. Gene ontology 
(GO) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) analyses were performed to obtain an in-
depth understanding of selection proteomics. Gene set 
enrichment analysis (GSEA) and protein/protein interaction 
network (PPI) analysis were used to confirm the potential 
mechanisms.

Methods

Public data acquisition

The National Genome Research Institute and the 

National Cancer Institute collected tissue samples from 
The Cancer Genome Atlas (TCGA). Informed consent 
and ethical approval were obtained. This retrospective 
study was approved by our institutional review board and 
Ethical Committee (NFEC-201208-K3). Level 3 data 
from RPPA and clinical data for LUAD and LUSC were 
downloaded from cBioPortal (http://www.cbioportal.org). 
Detailed information regarding protein markers, including 
the corresponding genes, validation status, and source of 
antibody, is shown in The Cancer Proteome Atlas (http://
tcpaportal.org/tcpa). Tissue microarray (TMA) was selected 
from the Human Protein Atlas Network (HPAS; https://
www.proteinatlas.org). Immunohistochemistry (IHC) scores 
were evaluated by rescoring of intensity and quantity. 

Feature selection and proteomics score development

All patients with LUAD and LUSC were randomly 
divided into the discovery and validation sets at a 1:1 ratio. 
Using the LASSO-COX algorithm, we built a model 
and selected the λ in the smallest cross-validation error 
in the discovery set. Finally, a proteomics score formula 
was defined based on the selected features. A proteomics 
signature was then constructed using the proteomics score. 
Using Kaplan-Meier survival analysis, we evaluated the 
potential relationships between the proteomics score and 
prognosis (OS and DFS) in the discovery and validation 
sets. The optimal cut-off value for the proteomics score 
was determined using X-tile software (version 3·6·1) in OS 
analysis. 

Development and validation of the proteomics nomogram

Multivariate Cox regression analysis was performed to 
build a proteomics nomogram as a quantitative model to 
predict OS. Candidate predictors of OS were proteomics 
score and clinical data. The performance of the nomogram 
was estimated in the two cohorts. OS was then evaluated 
considering the total points as a factor in the Cox regression 
analysis. Finally, the C-index and calibration curves were 
derived using Cox regression analysis. Harrell’s C-index was 
evaluated to quantify the discrimination capability of the 
proteomics nomogram in the discovery set. The proteomics 
nomogram was then validated using 1,000 bootstrap 
samples to achieve an optimism-corrected performance. 
Time-dependent receiver operator characteristic (ROC) 
curves were used to evaluate the predictive accuracy as the 
area under the ROC curve (AUC) at 1, 3, and 5 years.
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Statistical analysis

All statistical analyses were performed using R statistical 
software version 3.5.0 (http://www.r-project.org) and 
GraphPad Prism 7.0 (https://www.graphpad.com). The 
clinical characteristics in the discovery and validation 
cohorts were analyzed by Chi-square tests. The “glmnet” 
package was used to perform the LASSO algorithm. 
The nomogram and calibration curve plot were created 
using the “rms” package. The results of the Kaplan-
Meier survival analysis were plotted using the “survminer” 
package, whereas those of the time-dependent ROC were 
plotted using the “survivalROC” package. IHC scores were 
compared by Mann-Whitney tests. The correlation analysis 
was performed by Pearson’s correlation analysis. A two-
sided P value of less than 0.05 was considered statistically 
significant. 

In bioinformation research, all selection genomics and 
components of proteomics scores were further analyzed 
using GO analysis and annotated to pathways using the 
KEGG database (data generated from DAVID and String; 
DAVID, https://david.ncifcrf.gov/; String, https://string-db.
org/cgi/input.pl). GSEA was used to determine the potential 
mechanisms of specific genes. The association between PPI 
and GO/KEGG analyses were visualized using Cytoscape  
ClueGO version 3.6.1 (http://www. cytoscape.org/).

Results

Clinical characteristics 

Six hundred ninety-three patients were included in this 
study, of whom 346 patients were allocated to the discovery 
set and 347 were allocated to the validation set. LUAD and 
LUSC cohorts included 365 and 328 patients, respectively. 
The baseline clinical characteristics of the discovery and 
validation sets are summarized in Table 1. Most patients 
with NSCLC had early- or mid-stage disease (stages I–II) 
in both cohorts (78.03% and 80.12%, respectively). There 
were no significant differences between the discovery and 
validation sets (P=0.087–0.988; Table 1). 

Proteomics feature selection and proteomics score 
construction

In total, 223 functional proteomics and clinical data were 
depicted in a heatmap (Figure 1). These proteomics data 

Table 1 Characteristics of patients in the discovery and validation sets

Variable
Discovery set, 

n=346 (%)
Validation set, 

n=347 (%)
P value

Sex 0.336

Female 144 (41.62) 132 (38.04)

Male 202 (58.38) 215 (61.96)

Age (years) 0.408

≤60 90 (26.01) 100 (28.82)

>60 256 (73.99) 247 (71.18)

Smoking indicator 0.341

≤3 187 (54.50) 200 (57.64)

>3 159 (45.50) 147 (42.36)

ECOG score 0.695

≤2 147 (42.49) 138 (39.77)

>2 4 (1.15) 3 (0.86) 

NA 195 (56.36) 206 (59.37)

History of other malignancy 0.988

Yes 50 (14.45) 50 (14.41)

No 296 (85.55) 297 (85.59)

Histological subtype 0.087

Lung 
adenocarcinoma

171 (49.42) 194 (55.91)

Lung squamous cell 
carcinoma

175 (50.58) 153 (44.09)

Outcome of first treatment 0.826

CR 84 (24.28) 78 (22.48)

SD + PD 15 (4.33) 14 (4.03)

NA 247 (71.39) 255 (73.49)

Width of invasion 0.822

T1 + T2 290 (83.82) 293 (84.44)

T3 + T4 56 (16.18) 54 (15.56)

Lymph node metastasis 0.459

N0 216 (62.43) 226 (65.13)

N1 + N2 + N3 130 (37.57) 121 (34.87)

Distant metastasis 0.655

M0 337 (97.40) 336 (96.83)

M1a + M1b 9 (2.60) 11 (3.17)

Table 1 (Continued)
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were reduced to 15 features with the LASSO selection 
method (Figure 2A). Ten-fold cross validation was used 
to calculate average decision accuracy with minimum 
criteria (Figure 2B). Surprisingly, three immune-checkpoint 
proteins were identified. Based on the selected proteins, 
including adenosine deaminases acting on RNA 1 (ADAR1), 
CD274, cytotoxic T-lymphocyte associated protein 4 
(CTLA4), programmed death 1 (PD1), and Ret_pY905, 
a proteomics score was built using the Cox regression 
model, and all coefficients were presented (Table 2). We 
further revealed the correlations of 15 proteomics features. 
There were significant associations with several proteins 
in the discovery (Figure 3A) and validation sets (Figure 3B). 
ADAR1 and α-catenin were significantly related in the two 
cohorts (r=0.294 and 0.160; P<0.001 and 0.002, respectively; 
Figure S1). We found there were significant correlations in 
protein levels between PD1 and CTLA4 in the two cohorts 
(r=0.481 and 0.442; P<0.001 and 0.001, respectively;  
Figure S1). CD274 (PDL1) and Ret_pY905 were also 
negatively correlated in the two cohorts (r=0.220 and 0.229; 
P<0.001 and 0.001, respectively; Figure S1). 

The optimal cut-off value for the proteomics score 
was 0 using X-tile software in the OS analysis (Figure S2). 
In the discovery cohort, patients with a high proteomics 
score showed poorer OS and DFS than those with a low 
proteomics score [hazard ratio (HR): 5.246; 95% confidence 
interval (CI): 3.519–7.822; P<0.0001 and HR: 3.470; 95% 
CI: 2.252–5.346; P<0.0001, respectively; Figure 4A,B).  
Furthermore, patients with a high proteomics score 
also showed poorer OS and DFS than those with a low 
proteomics score (HR: 4.803; 95% CI: 3.166–7.286; 
P<0.0001 and HR: 2.600; 95% CI: 1.644–4.111; P<0.0001, 
respectively; Figure 4C,D) in the validation cohort. The 

results of the sub-analysis of OS and DFS in LUAD and 
LUSC cohorts are shown in Figure S3. 

Development and validation of the proteomics nomogram 
model 

Univariate analysis indicated that the Eastern Cooperative 
Oncology Group (ECOG) score and outcomes of the first 
treatment were significantly associated with OS in the 
discovery set (P=0.027 and 0.026; Table 3). Additionally, 
depth of invasion, lymph node metastasis, and clinical stage 
were also significantly related to OS in the discovery set 
(P=0.001, 0.001, and 0.001; Table 3). The multivariate Cox 
regression analysis showed that the proteomics score, depth 
of invasion, and lymph node metastasis were independent 
predictors of prognosis (P<0.001, 0.044, and 0.001; Table 4).  
Therefore, this nomogram model was developed and 
visualized (Figure 5A). Notably, this novel model showed 
favorable C-indexes of 0.797 (95% CI: 0.765–0.829) 
and 0.782 (95% CI: 0.747–0.817) for the discovery and 
validation cohorts, respectively (Table 4). There was a good 
agreement between the nomogram-estimated probability 
and actual OS status, as shown in the calibration curves 
(Figure 5B,C). We used time-dependent ROC curves to 
estimate the high predictive accuracy of 1, 3, and 5 years in 
the discovery (AUC =0.844, 0.843, and 0.740; Figure 6A) and 
validation (AUC =0.808, 0.858 and 0.780; Figure 6B) sets.

Bioinformation analysis of genes based on selection 
proteomics 

We further evaluated selection genomics as a component of 
proteomics score. ADAR1, CD274, CTLA4, BRCA2, and 
PD1 were significantly associated with negative regulation 
of developmental processes, immune system processes, and 
cell surface receptor signaling pathways [false discovery rate 
(FDR): 0.001, 0.006, and 0.015; Table 5]. In GO analysis, 
we also found that CD274, CTLA4, and PD1 were related 
to cell adhesion molecule (CAM) pathways (FDR: 0.014). 
Moreover, BRCA2, α-catenin, E2F transcription factor 1 
(E2F1), and RET were associated with cancer pathways 
(FDR: 0.014). ADAR1 was the protein with the highest 
HR and shown significantly increased expression (LUAD/
LUSC tissue versus normal lung tissue; P=0.001; Figure 7A  
and Figure S4) in TMA analysis of the HPAS. GSEA 
revealed that ADAR1 was correlated with oncogenic 
signature, metastasis, and cell-cycle G2 phase (NES =2.079, 

Table 1 (Continued)

Variable
Discovery set, 

n=346 (%)
Validation set, 

n=347 (%)
P value

Clinical stage 0.501

I + II 270 (78.03) 278 (80.12)

III + IV 76 (21.97) 69 (19.88)

P values are derived from the difference between the discovery 
data set and the validation data set for clinical characteristics. 
*, P value <0.05. ECOG, Eastern Cooperative Oncology Group; 
NA, not available; CR, complete response; SD, stable disease; 
PD, progressive disease. 
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2.159, and 2.174; P=0.013, 0.011, and 0.011; Figure 7B). 
The association between PPIs and GO/KEGG results 
were confirmed and visualized using ClueGO (Figure 8). 
Consequently, in the complex network, the 15 selected 
genomics were mostly associated with immune processes, 
cancer signaling pathways, and several important biological 
processes. 

Discussion

To the best of our knowledge, this is the first study 
predicting the prognosis of patients with lung cancer 
using a proteomics model generated from LUAD and 
LUSC cohorts from TCGA dataset. Based on functional 
proteomics analysis of samples from these patients, we 

Figure 1 Proteomics heatmap. Based on unsupervised clustering, patients with non-small cell lung cancer are shown on the X-axis, and 
proteomics feature expression is shown on the Y-axis, indicating clusters of patients with similar proteomics expression patterns. LUSC, lung 
squamous cell carcinoma; LUAD, lung adenocarcinoma.

Proteomics

Histological subtype

Clinical stage

2

1

0

−1

−2

≤60

>60

Female

Male

LUSC

LUAD

IV

III

II

I

Age (years)

Sex



1909Translational Cancer Research, Vol 8, No 5 September 2019

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(5):1904-1917 | http://dx.doi.org/10.21037/tcr.2019.08.39

Table 2 Characteristics of 15 proteomics features and their coefficients in prediction of overall survival

Proteomics features Coefficients HR CI SE Z value P value

ADAR1 1.036 2.817 1.760–4.508 0.240 4.317 <0.001*

ARID1A 0.434 1.544 1.151–2.069 0.150 2.903 0.003*

BRCA2 0.388 1.474 1.049–2.073 0.174 2.232 0.025*

CD274 0.203 1.225 0.913–1.643 0.150 1.351 0.176

CTLA4 0.256 1.292 0.961–1.738 0.151 1.696 0.089

E2F1 0.110 1.116 0.809–1.540 0.164 0.670 0.502

EZH2 0.131 1.140 0.827–1.570 0.163 0.799 0.424

LCN2a 0.390 1.477 1.086–2.009 0.157 2.485 0.012*

MACC1 0.477 1.612 1.215–2.138 0.144 3.308 <0.001*

Nrf2 0.233 1.262 0.925–1.723 0.159 1.467 0.142

PARP1 0.567 1.763 1.157–2.687 0.215 2.638 0.008*

PD1 0.051 1.053 0.758–1.463 0.168 0.307 0.758

Ret_pY905 0.395 1.485 1.109–1.988 0.149 2.654 0.007*

α-catenin 0.517 1.678 1.154–2.438 0.191 2.711 0.006*

EIF4G1 0.531 1.701 1.054–2.745 0.244 2.174 0.029*

*, P value <0.05. HR, hazard ratio; CI, confidence interval; SE, standard errors of coefficients; z value, Wald z-statistic value. 

Figure 2 Tuning parameters for proteomics feature selection in the LASSO regression model. (A) Feature selection with LASSO using  
10-fold cross-validation via minimum criteria; (B) LASSO coefficient analysis of the 223 proteomics features. The 15 coefficients were 
chosen using 10-fold cross-validation as the vertical line presented in the plot. LASSO, least absolute shrinkage and selection operator.
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developed a proteomics score and nomogram and validated 
this model as a tool for individualized prediction of OS. 
This novel risk stratification model using machine learning 
not only predicted prognosis but also improved risk-adapted 
treatment in NSCLC. 

Precise evaluation of prognosis using mRNA expression 
data remains challenging in the clinical setting. Currently, 
different staging systems combining image features and 
clinical risk factors may also perform well (25-29). However, 
their levels of accuracy and robustness are unsatisfactory 
(30,31). We used a proteomics analysis model to transform 
RPPA data into low-dimensional proteomics features, which 
were used to estimate patient prognosis. All 223 features 
from NSCLC proteomics were reduced to 15 proteomics 
features using the LASSO algorithm and chosen via 10-fold 
cross-validation to build a proteomics signature. Patients 
with high proteomics scores showed significantly poorer 
OS or DFS than those with low proteomics scores. Previous 
studies also showed that proteomics could be used to predict 
the prognosis of different patients with cancer (20,32,33). 
In contrast to previous studies, our study indicated that 
this novel model of predicting prognosis via combining 
proteomics may help clinicians to accurately predict the 
prognosis of patients with NSCLC who underwent partial 
pneumonectomy.

In our study, we found that there were significant 
correlations among 15 proteins in both the discovery and 

validation sets. Similar to previous reports, CTLA4 was 
positively related to PD1 at the protein level, and combined 
treatment with CTLA4 and PD1 blocking immunotherapy 
has been reported in metastatic melanoma, indicating 
that this therapy may also be suitable for the treatment 
of NSCLC (34-36). Additionally, we showed that CD274 
(PDL1) was negatively associated with Ret_pY905 protein 
in the two cohorts. In addition to epidermal growth 
factor receptor mutations and ALK fusions, driver fusions 
involving RET and ROS1 as well as mutations in KRAS, 
human epidermal growth factor receptor 2, and BRAF have 
also been identified in LUAD. Interestingly, our results 
suggested that immune checkpoint blockade (ICB) therapy 
may be effective for driver-negative cases (37-39).

In addition, previous studies have reported that several 
clinical risk factors, such as depth of invasion (tumor size), 
are related to poor prognosis in NSCLC cases (40-42).  
Similar to previous studies, univariate analysis of OS in 
the discovery set showed that most clinical risk factors 
(e.g., ECOG score, outcome of first treatment, depth of 
invasion, lymph node metastasis, and clinical stage) were 
significantly associated with prognosis. According to 
multivariate analysis of variance, depth of invasion, lymph 
node metastasis, and proteomics score were independent 
risk factors of poor OS in the discovery cohort. Considering 
the above factors, we developed a proteomics nomogram 
that incorporated the proteomics score, depth of invasion, 

Figure 3 Correlation heatmap. The 15 selected proteins were significantly correlated with each other in the discovery (A) and validation (B) 
sets, including ADAR1 and α-catenin. 
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Figure 4 Kaplan-Meier plots showing survival of patients with low and high proteomics scores, as defined by the proteomics signature, in 
both the discovery (A,C) and validation cohorts (B,D). (A) Overall survival (OS) of the discovery cohort; (B) disease-free survival (DFS) of 
the discovery cohort; (C) OS of the validation cohort; (D) DFS of the validation cohort. 
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and lymph node metastasis. The nomogram could be a 
tool for developing individualized treatment strategies. To 
the best of our knowledge, the use of proteomics scores 
and proteomics nomograms for OS prediction has not 
been previously reported. The proteomics model showed 
favorable consistency in the discovery cohort, and the 
outcome was verified in the validation cohort. Time-
dependent curves based on the proteomics nomograms in 
the two cohorts demonstrated that using the proteomics 
nomogram could precisely evaluate the OS for 1, 3, and  
5 years in the discovery and validation sets. 

Bioinformatics analysis identified 15 genes that were 
enriched in negative regulation of developmental processes, 
immune system processes, cell surface receptor signaling 
pathways, and other important processes. CD274, CTLA4, 
and PD1 were associated with CAMs, and BRCA2, 
α-catenin, E2F1, and RET were related to pathways 
in cancer. These results supported the involvement in 
important mechanisms facilitating tumor formation. We 
validated the ADAR1 protein level based on the TMA from 
the HPAS. ADAR1 showed significantly higher expression 
in LUAD and LUSC tissues than in normal lung tissues. 
Moreover, a previous study reported that the RNA-
editing protein, ADAR1, was related to tumor recurrence, 
invasiveness, and migration of LUAD cells (43,44). Using 
GSEA, we also discovered that ADAR1 was significantly 
correlated with the CTNNB1 oncogenic signature, 
metastasis, and cell-cycle G2 phase, suggesting potential 
therapeutic applications in LUAD. This PPI indicated that 
proteomics may play an important role in the regulation of 
tumorigenesis and in treatment decisions in patients with 
lung cancer. 

Our study had two limitations. First, all NSCLC samples 
were collected from TCGA and were not validated by 
multicenter cohorts. Our model may perform differently 
for data collected from other centers. Thus, much larger 
datasets must be collected from multiple centers, and the 
robustness and reproducibility of our proposed proteomics 
model needs to be investigated. Second, we did not examine 
whether these proteins played key roles in NSCLC via 
molecular analyses. Thus, future studies are needed to 
identify the mechanisms through which these proteins are 
involved in the pathogenesis of NSCLC.

In conclusion, we demonstrated that the proteomics 
score and proteomics nomograms may be used to predict 
prognosis in patients with NSCLC after surgery using 
TCGA dataset. According to GSEA, GO analysis, and 

Table 3 Univariate analysis of overall survival based on the 
discovery set

Variable 
Discovery set (n=346)

HR (95% CI) P value

Sex (male versus female) 0.967 (0.695–1.345) 0.838

Age (years) (>60 versus ≤60) 1.234 (0.860–1.768) 0.270

Smoking indicator  
(≤3 versus >3)

0.932 (0.675–1.288) 0.672

ECOG score (≤2 versus >2) 0.294 (0.037–2.323) 0.027*

History of other malignancy 
(yes versus no)

1.043 (0.639–1.701) 0.863

Histological subtype  
(LUAD versus LSCC)

1.024 (0.742–1.414) 0.884

Outcome of first treatment 
(CR versus SD + PD)

0.405 (0.129–1.274) 0.026*

Depth of invasion  
(T1 + T2 versus T3 + T4)

0.538 (0.330–0.876) 0.001*

Lymph node metastasis  
(N0 versus N1 + N2 + N3)

0.549 (0.389–0.775) 0.001*

Distant metastasis (M0 
versus M1a + M1b)

0.454 (0.124–1.665) 0.125

Clinical stage  
(I + II versus III + IV)

0.529 (0.345–0.809) 0.001*

Proteomics score  
(high versus low)

5.246 (3.519–7.822) <0.001*

P value is derived from univariate analysis of overall survival 
based on the discovery set. *, P value <0.05. ECOG, Eastern 
Cooperative Oncology Group; NA, not available; CR, complete 
response; SD, stable disease; PD, progressive disease. 

Table 4 Prediction model for overall survival in NSCLC

Intercept and 
variable

Model

B Hazard ratio (95% CI) P value

Proteomics score 0.914 2.494 (2.098–2.965) <0.001*

Depth of invasion 0.308 1.461 (1.076–2.042) 0.044*

Lymph node 
metastasis

0.521 1.684 (1.211–2.342) 0.001*

C-index

Training cohort 0.797 (0.765–0.829)

Validation cohort 0.782 (0.747–0.817)

P values were obtained from the multivariate regression analysis 
between the overall survival and each clinical factor. *, P value 
<0.05. NSCLC, non-small cell lung cancer. 
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Figure 5 Proteomics nomograms incorporating the proteomics score, depth of invasion, and lymph node metastasis for predicting 1-, 3-, 
and 5-year OS in the discovery set (A). Calibration curves of the proteomics nomogram for 1-, 3-, and 5-year OS in the (B) discovery and (C) 
validation cohorts. OS, overall survival.

Figure 6 Proteomics nomograms for 1-, 3-, and 5-year OS measured by time-dependent ROC curves in the (A) discovery and (B) validation 
cohorts. ROC, receiver operator characteristic; OS, overall survival. 
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Table 5 GO and KEGG pathway analysis results of the NSCLC cohort in TCGA

GO term: biological process FDR Matching proteins in network (labels)

Negative regulation of developmental process 0.001* BRCA2, CTLA4, α-catenin, E2F1, EZH2, NFE2L2, PD1

Response to oxygen-containing compound 0.001* BRCA2, α-catenin, E2F1, EIF4G1, EZH2, NFE2L2, PARP1, RET

Negative regulation of multicellular organismal 
process

0.002* BRCA2, CD274, CTLA4, α-catenin, EZH2, NFE2L2, PD1

Negative regulation of immune system process 0.006* ADAR1, CD274, CTLA4, NFE2L2, PD1

Cell surface receptor signaling pathway 0.015* ADAR1, CD274, CTLA4, α-catenin, E2F1, EIF4G1, PARP1, RET

T cell costimulation 0.015* CD274, CTLA4, PD1

Multicellular organismal development 0.020* ADAR1, ARID1A, BRCA2, α-catenin, E2F1, EIF4G1, EZH2, PARP1, PD1, RET

KEGG: pathway description Matching proteins in network (IDs)

Cell adhesion molecules (CAMs) 0.014* CD274, CTLA4, PD1

Pathways in cancer 0.014* BRCA2, α-catenin, E2F1, RET

*, P value <0.05. GO, gene ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; NSCLC, non-small cell lung cancer; TCGA, The 
Cancer Genome Atlas. 

Figure 7 ADAR1 protein was significantly overexpressed in the TMA compared with that in normal lung tissue (A). GSEA indicated the 
ADAR1 was correlated with oncogenic signature, metastasis, and cell-cycle G2 phase (B). GSEA, gene set enrichment analysis; TMA, tumor 
tissue microarray.
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KEGG pathway analysis, the selected proteins were 
enriched in cancer pathways and immune escape. These 
findings provided novel insights into which patients with 
NSCLC may benefit most from partial pneumonectomy, 
particularly with regard to future clinical trials of targeted 
treatments or ICB treatments combined with surgery.
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Figure S1 Correlations of selecting proteomics are shown for the discovery (A) and validation (B) sets, including ADAR1, α-catenin, CTLA4, and PD1. 
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Figure S2 Cut-off value for the proteomics score, as determined by X-tile software, in the discovery set.



Figure S3 Kaplan-Meier plots showing survival of proteomics scores in both LUAD and LUSC cohorts. OS in the LUAD (A) and LUSC (B) cohorts. DFS in the 
LUAD (C) and LUSC (D) cohorts. DFS, disease-free survival; OS, overall survival; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma.
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Figure S4 ADAR1 protein expression was compared between lung cancer tissue and normal lung tissue using Mann-Whitney tests.
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