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Introduction

Lung cancer is the most prevalent cancer and the leading 
cause of cancer-related mortality in nowadays, comprising 
17% of total new cancer cases and 23% of total cancer 
deaths worldwide (1). Due to the large smoking population, 
lung cancer has become the leading cancer diagnosed that is 
rapidly increasing for many years in China (2). Based on the 
microscopic difference in the tumor cell appearance, lung 

cancers are broadly classified into two types: small cell lung 
cancers (SCLC) and non-small cell lung cancers (NSCLC), 
with NSCLC accounting for approximately 80–85% of 
all cases. Since clinical manifestations of lung cancer, 
particularly SCLC often appear latent, nearly 70% patients 
are diagnosed at advanced stages with metastasis to other 
organs. Although considerable progress has been made in 
the treatment of advanced lung cancer in recent years, the 
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prognosis still remains poor with a 10–15% of total 5-year 
survival rate. Contrary to the high fatality rate of advanced 
lung cancer, the cure rate for lung cancer at the early 
stage almost 100% effective. Therefore, early diagnosis of 
lung cancer remains to be of a paramount challenge and 
importance (3).

Tissue biopsies remain the gold standard of malignancy 
diagnosis, with the help of pathological morphology 
and biomarkers staining to determine different lung 
cancer subtypes. It is a standard practice currently to test 
for driver gene mutations either by fluorescent in-situ 
hybridization (FISH) or more recently next-generation 
sequencing (NGS). Nonetheless, due to the invasiveness 
and cumbersomeness nature of tissue biopsy, it only allows 
for a snapshot in time of the ever-evolving tumor biology (4).  
It may also miss important tumor characteristics owing 
to tumor heterogeneity. Furthermore, histopathological 
methods are insensitive to some early malignancies, leading 
to delays in the optimal timing for lung cancer treatment. 
The ideal test needs to include an accurate representation 
of the tumor biology and heterogeneity, in addition to being 
cost efficient, easily collectable, and operator independent.

Compared to the traditional biopsies, liquid biopsies as 
a source for tumor marker identification offer a minimally 
invasive, cost-effective and repeatable procedure for 
longitudinal disease profiling at the genomic, proteomic 
or metabolomic levels, and are gaining popularity (5). 
Emerging high throughput metabolomic technologies in 
a liquid biopsy can detect potential metabolic biomarkers 
associated with diseases and have been increasingly 
applied in the field of early diagnosis, estimation of 
treatment efficacy, and development of novel anti-cancer 
therapies (6,7). As the endpoint of the “-omics” cascades, 
metabolomics is the outcome of the concerted actions of 
overall cellular processes inside an organism, accurately 
reflecting the physiological state and pathological 
characteristics of the living system (8,9). Consequently, 
metabolic profiling provides a global analysis of endogenous 
metabolites of integrated living systems and their dynamic 
responses to changes of endogenous and exogenous factors, 
which builds the foundation for biomarker discovery and 
potential applications in early cancer diagnosis. 

Altered energy metabolism is a hallmark of cancer cells, 
which was first discovered almost a century ago (10). It is 
well recognized nowadays that cancer cells primarily use 
aerobic glycolysis through reprogramming their energy 
production pathways even in the presence of oxygen (11), and 
glucose metabolism pathway has been targeted for cancer 
therapy (12). The oncogenesis of lung cancer, regulated 
by the ever-changing oncogenes and tumor suppressors 

such as K-ras and p53, results in a constantly changing 
of metabolites in tumor tissue and body fluids. Previous 
studies have found that up to 70 metabolites in lung cancer 
are differentially expressed in early diseases but have no 
correlation with disease progression, instilling new hopes 
in the early lung cancer diagnosis field (13-16). Compared 
with traditional diagnostic methods, even subtle changes 
of metabolites can help detect early pathologic changes 
more sensitively and specifically. Therefore, a state-of-the-
art ultra-high-performance liquid chromatography-mass 
spectrometry/mass spectrometry (UPLC-MS/MS) platform 
was employed in this study, aiming to examine metabolite 
profiles for a comprehensive list of potential biomarkers 
and establish a diagnostic model from these metabolic 
biomarkers for NSCLC, using principal components 
analysis (PCA). A total of 296 metabolites were identified 
in 77 serum samples, including 45 NSCLC patients and  
32 healthy controls. Among them, 48 were down-regulated 
and 33 were up-regulated in NSCLC patients. These data 
suggest that UPLC-MS/MS is a more sensitive technique 
for metabolic profiling in serum and significantly more 
metabolites can be detected than what have been previously 
reported in the literature. Overall, the ability to analyze 
metabolites using more sensitive methods represents a 
key factor in the accurate detection of biomarkers that are 
critical for future lung cancer diagnosis and therapy.

Methods

Study population

The project was approved by the ethics committee at Tongji 
Medical College, Huazhong University of Science and 
Technology [Decision: (2013)-No. S114]. Every participant 
was given a written informed consent for inclusion to the 
study. Forty-five lung cancer patients were recruited at Cancer 
Center of Union Hospital, Tongji Medical College, Huazhong 
University of Science and Technology. NSCLC diagnosis was 
conducted by the histopathological examination of tissues. 
Patients with a secondary tumor were excluded from the study. 
The cancer staging was confirmed based on the eighth edition 
of the TNM staging system. Thirty-two individuals in the 
control group without cancer or chronic metabolic diseases 
were recruited from subjects who underwent a routine periodic 
medical examination. Data regarding demographic and clinical 
characteristics of study participants are presented in Table 1.

Sample collection and preparation

The sera were collected in the same manner from both 
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groups of subjects (cancer patients and controls) in the 
morning. For sample preparation, the following procedure 
was used. Samples were removed from the −80 ℃ freezer 
and thawed at 4 ℃. 100 μL of each of the thawed samples 
was placed in an EP tube, mixed with 300 μL of methanol, 
and vortexed for 3 min. After centrifugation at 12,000 rpm 
for 10 min at 4 ℃, the supernatant was transferred to a 
new EP tube and centrifuged at 12,000 rpm for 3 min at  
4 ℃ to further precipitate proteins. Finally, the supernatant 
was aspirated and stored in a vial for LC-MS/MS analysis. 
Aliquots of sample extracts representing different groups 
were pooled and taken as Quality Control (QC) samples.

Chromatography mass spectrometry (MS) analysis

UPLC (Shim-pack UFLC SHIMADZU CBM30A) and 
tandem mass spectrometry [MS/MS (Applied Biosystems 
4500 QTRAP)] were used to study metabolite profiling in 
this study. The UPLC setup is as follows: (I) column: waters 
ACQUITY UPLC HSS T3 C18 1.8 μm, 2.1 mm × 100 mm; 
(II) phase A: ultrapure water (0.04% acetic acid) and phase 
B: acetonitrile (0.04% acetic acid); (III) the elution gradient 
is 0 min water/acetonitrile at 95: 5 V/95: 5 V/V at 12.0 min, 
95: 5 V/V at 12.1 min, and 95: 5 V/V at 15.0 min; Sample 
volume is 5 μL. MS conditions mainly include: electrospray 
ionization (ESI) at 550 ℃, MS voltage at 5,500 V, curtain 
gas (CUR) at 25 psi, and collision-activated dissociation 

(CAD) parameter set to high. In Qtrap, each ion pair is 
scanned according to optimized declustering potential (DP) 
and collision energy (CE) (17).

Metabolite profiling

The metabolite identification was based on spectral 
deconvolution of both primary and secondary fragment ion 
patterns using our custom-built database of MWDB (metware 
database). Isotopic signals, repetitive signals containing K+ 
ions, Na+ ions, NH4+ ions, as well as other larger molecule 
ion fragments, were removed to ensure quality and reliability 
of acquired data for selected metabolites. Public databases 
of MassBank (http://www.massbank.jp/), KNAPSAcK 
(http://kanaya.naist.jp/KNApSAcK/), Human Metabolome 
Database (HMDB, http://www.hmdb.ca/), MoTo DB (http://
www.ab.wur.nl/moto/) and METLIN (http://metlin.scripps.
edu/index.php) were also used as reference for metabolite 
structural analysis (18,19). 

Multiple reaction monitoring (MRM) analysis of 
metabolite triple quadrupole MS was used for accurate 
quantitative analysis. In the MRM mode, the quadrupole 
rod first screened out precursor ion (parention) of the target 
substance and fragmented it. The corrupted ions were then 
filtered through the triple quadrupole to obtain the MS 
data that were subsequently processed by Analyst 1.6.1. The 
MRM metabolite detection multimodal graph shows the 

Table 1 Patient characteristics

Samples Serum Stage (T/M/N) Smoking status (yes/no) Histological subtype

Total sample size, N 77 − 46/21 −

Healthy controls, N 32 0/0/0 10/12 Wild type

Cancer cases, N 45 19/17/9 36/9 EGFR/ALK/ROS-1/CMET/TTF1

By stage (%) − − − −

I 22.9% 3/5/3 9/2 EGFR/ALK/ROS-1

II 14.3% 3/1/2 6/0 EGFR/ALK

III 31.4% 4/4/6 11/3 ALK/ROS-1/CMET

IV 31.4% 5/6/3 9/5 EGFR/ALK/TTF1

Gender, N (male/female) − − − −

Controls 20/12 − − −

Cancer cases 30/15 − − −

Age (years) − − − −

Controls 32–65 0/0/0 10/12 −

Cancer cases 50–60 19/17/9 36/9 −

http://metlin.scripps.edu/index.php
http://metlin.scripps.edu/index.php
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detectable substances in samples. The mass spectrum files 
of the samples were opened by MultiaQuant to integrate 
and correct the chromatographic peaks. Peak area (area) 
of each chromatogram represents the relative content of 
the corresponding substances. The scanning state was 
used, using known standards to the explicitly stated and the 
assessment of the mass accuracy of the instrument. And by 
this analytical standard, the metabolites that were found to 
be significantly different (20).

KEGG (Kyoto Encyclopedia of Genes and Genomes) data 
analysis

The metabolite contents were normalized using the range 
method. Hierarchical cluster analysis (HCA) was used to 
compare the accumulation patterns of metabolites between 
different samples by software R (www.r-project.org/). 
Pearson’s correlation coefficient analysis was applied to assess 
the correlation between samples to determine the biological 
repeatability. The X array information was decomposed 
and grouped into the Y-related and unrelated categories by 
the method of orthogonal partial least squares discriminant 
analysis (OPLS-DA), combined with orthogonal signal 
correction (OSC) and partial least squares discriminant analysis 
(PLS-DA). Metabolites that were identified with irrelevant 
difference between different sample groups were removed 
and these with significant difference were annotated in Kyoto 
Encyclopedia of Genes and Genomes (KEGG) database. 
KEGG is an important public pathway-related database 
used for performing pathway enrichment analysis. The total 
number of genes with KEGG annotation, “n” represents the 
total number of DESs target genes in N, “M” represents the 
total number of genes annotated by specific pathways, and 
‘m’ depicts the number of DESs target genes in MFunctional 
enrichments were tested using a two tailed Fisher’s exact test, 
and a corrected P value <0.05 was considered significant.

Statistical analysis

Statistical analysis was performed with SPSS 12.0. Data are 
expressed as the mean ± SD from at least three independent 
experiments. The difference between groups was analyzed using 
Student’s t-test when comparing only two groups or one-way 
analysis of variance when comparing more than two groups. P 
values of <0.05 was considered statistically significant.

Results

Principal component analysis (PCA) of total samples

Based on the multimodal images of MRM metabolites and 

the local metabolic database, a total of 296 metabolites were 
identified and quantitatively analyzed from 45 NSCLC 
patient and 32 normal control serum samples. Quality control 
samples (QC) are prepared by random mixing of normal 
control and patient sample extracts. Instrument stability and 
data repeatability and reliability were confirmed by total ion 
chromatogram (TIC) analysis with different QC samples.

The PCA of all samples was used to initially analyze 
the overall metabolic differences between normal and lung 
cancer patients as well as the variability within the normal 
and lung cancer patient groups. Figure 1 shows that in terms 
of the principal components, group 1 (patient), group 2 
(normal), and group 3 (mixed group 1 and 2 samples) are 
clearly distinguishable. The intragroup two PCA showed 
that although individuals within the lung cancer group 
had larger differences compared to individuals within the 
normal control group, no obvious clustering pattern can be 
observed in the lung cancer group (Figure 2).

Cluster analysis

Cluster analysis was performed and the results indicated 
that the metabolites between the two groups of normal 
and lung cancer patients can be clearly distinguished from 
each other, while the metabolites in each sample within 
the group have high homogeneity (Figure 3A). Pearson 
correlation coefficient analysis showed a high correlation 
between different groups (Figure 3B).

Differential metabolites screening

Metabolite variables driven the discrimination between 
normal and lung cancer patient groups were extracted with 
the OPLS-DA method combined with orthonormal signal 
correction (OSC) and PLS-DA. Variables of less relevance 
or irrelevance were effectively removed. PCA with 
identified metabolite variables by the OPLS-DA model 
analysis showed effective separation of the normal and lung 
cancer patient groups (Figure 4A). 

Significantly different metabolites (VIP ≥1) were 
identified from normal and lung cancer patients. Twenty-
three were up-regulated (fold change >2), 48 were 
downregulated (fold change <0.5) and 215 showed no 
significant difference. The ten most upregulated and 
downregulated metabolites were plotted in Figure 4B.

KEGG enrichment analysis

Metabolites were first classified into carbohydrates, lipids, 
nucleotides, and amino groups and KEGG was used for the 
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Figure 1 Principal component analysis showed high discrimination accuracy between NSCLC patients, healthy controls and the group mix. 
Group mix is used as the quality control sample (A) 2D plot, NSCLC patients: Red, healthy controls: green, mix group: blue; (B) 3D plot, 
NSCLC patients: red, healthy controls: blue, mix group: black. NSCLC, non-small cell lung cancer.

Figure 2 The intragroup two principal components analysis showed that although individuals within the lung cancer NSCLC group 
(red) had larger differences compared to individuals within the normal healthy control group (blue), no obvious clustering pattern can be 
observed. (A) 2D plot and (B) 3D plot. NSCLC, non-small cell lung cancer.
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Figure 3 Cluster analysis of the metabolites between normal and lung cancer patients. (A) Heat map of significant metabolites reveals 
metabolic signatures of NSCLC and healthy controls groups; (B) the biological duplication between samples within the group was observed 
by correlation analysis. NSCLC, non-small cell lung cancer.

visualization and functional analysis of metabolite data at 
the system level. Differential metabolites were annotated 
according to the signal pathways and displayed according 
to the ratio of the number of metabolites in a pathway 
to the total number of annotated metabolites (Figure 5). 
Among these, 72.09% belongs to metabolic pathways. Bile 
secretion and protein digestion and absorption account 
for 16.28% and 13.95% respectively in organism systems. 
ABC transporters (20.93%) takes the highest proportion in 
the environmental information processing group. The gap 
junction accounted for 6.98% in cellular processes, etc.

Discussion

With the application of genomics, transcriptomics and 
proteomics in oncology and clinical medicine, more 
therapeutic and diagnostic molecular targets have been 
discovered. Metabonomics can effectively detect changes in 
metabolites as a result of altered protein expression or gene 
mutations, and were shown to effectively detect metabolites 
in patients with NSCLC (21,22). In this study, based on 
an optimized UPLC-MS/MS platform and custom-built 
databases, a total of 296 metabolites were identified using 
targeted metabonomics techniques, among which a total of 
48 is down-regulated and 33 is up-regulated. By PCA with 

either total or differential metabolites, NSCLC patients and 
normal control can be effectively separated into two distinct 
clusters, indicating that metabonomics can be a highly 
efficient and reliable tool for lung cancer diagnosis, while in 
contrast, clustering within the patient groups is not obvious, 
suggesting that metabonomics cannot be used for cancer 
staging. In addition, the number of samples we selected for 
this project is not very large, which is our limitation.

To maintain high proliferation rate and metastatic nature, 
tumor cells need to absorb and synthesize a large number of 
nucleosides, amino acids, lipids and other molecules constantly. 
Changes in levels of these metabolites reflect changes in many 
related signaling pathways (23). In this study, KEGG annotation 
analysis of the differentially selected metabolites identified 
significant changes in pathways involved in energy production 
and protein and nucleic acid synthesis. ATP-binding cassette 
(ABC) transporter, purine metabolism, and phenylalanine 
metabolism are just a few of these pathways that are differentially 
regulated in NSCLC patients and normal controls. 

ABC transporters are a family of membrane-bound 
transport proteins that couple the energy of ATP hydrolysis 
to the movement of various substrates across biological 
membranes. They play important roles in a large variety 
of processes including membrane lipid composition, efflux 
and redistribution of structural phospholipids, and cellular 
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Figure 4 Differential metabolites screening. (A) OPLS-DA, 
orthogonal projections to latent structures discriminant analysis (B) 
histogram of top differential metabolites.

Figure 5 MSEA was implemented to evaluate metabolic 
pathway enrichment among the NSCLC and healthy controls 
groups. Results indicated that several pathways including the 
purine metabolism, prolactin signaling pathway, phenylalanine 
metabolism, bile secretion, ABC transporters pathway are 
significantly associated with the disease. NSCLC, non-small cell 

lung cancer; ABC, ATP-binding cassette.

steroid synthesis (24). Sterols are a key component in 
maintaining the lipid raft structure of cell membranes. The 
lipid rafts are key sites in cell membranes that anchor and 
polymerize signaling protein molecules, affecting signal 
transduction (25). Sterols also affect the utilization of fatty 
acids such as cholesterol and arachidonic acid, etc. in cells, 
exerting effects on downstream signaling pathways. In the 
current study, we found that cholesterol and arachidonic 
acid levels were significantly lower in the NSCLC patients 
than that in the normal group, suggestive of a link between 
fatty acid metabolism and ABC transporter function. ABC 
transporters have been reported to be associated with 
prostaglandin E2 (PGE2). PGE2 is closely related to the 
occurrence and development of tumors (26-28). From the 
perspective of tumor immunity, PGE2 increases the expression 
of COX2 and induces high expression of IDO1. IDO1 can 
inhibit the function of tumor-associated killer T cells and 
regulatory T cells in turn, creating an immunosuppressive 
environment around the tumor (29). Therefore, it might make 
sense to discover new targets for tumor immunotherapy and 
diagnosis from the perspective of metabolomics.

Purine is an important precursor for essential cellular 
processes such as DNA replication and RNA transcription 
and therefore tightly regulated through a variety of signaling 
pathways in the cell (30). Tumor growth requires a large 
amount of purines that can be released by “purinosomes”, 
multiple enzyme complexes formed around mitochondria 
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and microtubules (31). Our metabolomic study indicated 
that several important purine metabolites such as cytidine 
and hypoxanthine are decreased in serum of NSCLC 
patients, suggestive of consumption of these small molecular 
metabolites by tumor cells in order to proliferate. On the 
other hand, β-nicotinamide mononucleotide is found up-
regulated in NSCLC patients. Previous report suggests that 
this small molecule is a metabolic intermediate of NAD+ and 
is closely related to type 2 diabetes, with a major function 
in regulating and repairing oxidative stress. At the same 
time β-nicotinamide mononucleotide can also improve the 
utilization of glucose and lipid. Therefore, β-nicotinamide 
mononucleotide may be used as a diagnostic marker for 
NSCLC, providing reference value for later diagnosis (32).

We also found that the level of tyrosine was significantly 
reduced in sera of NSCLC patients. Changes in tyrosine 
in the sera, urine, and tissues of patients with gastric 
cancer have been reported in 13 studies before (33). Our 
study supports a role of tyrosine as a diagnostic target for 
NSCLC. This study also found changes in D-methionine 
and L-glutamine that may be worth further studying.

More  add i t iona l  metabo l i t e s  a re  de tec ted  a s 
differentially expressed with our optimized UPLC-MS/
MS platform. Most are derivatives of some organic acids 
including N-Acetylneuraminic Acid, Trans-4-Hydroxy-L-
Proline, N'-Formylkynurenine, N-Phenylacetylglycine, 
2-Methylsuccinic acid, Dl-P-Hydroxyphenyllactic acid, 
L-Homoserine, L-Pipecolic acid and 4-Hydroxy-3-
Methoxymandelate. Some are amino acid derivatives 
i n c l u d i n g  N - A c e t y l n e u r a m i n i c  A c i d ,  P h e - P h e , 
Trans-4-Hydroxy-L-Proline,  1-Methyladenosine, 
N-Phenylacetylglycine, Β-Nicotinamide Mononucleotide, 
N-Acetylglycine, and a few are nuceloside derivatives inluding 
1-Methyladenosine, Β-Nicotinamide Mononucleotide and 
Hypoxanthine-9-β-D-Arabinofuranoside. The role of these 
derivatives such as the amino acid derivatives in cancer 
has never been reported and needs further experimental 
validation as potential diagnostic biomarkers.
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