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Background: Despite improved outcomes with the introduction of epidermal growth factor receptor 
(EGFR) tyrosine kinase inhibitors (TKIs) in the treatment of patients with advanced non-small cell lung 
cancer (NSCLC) whose tumors harbor EGFR-activating mutations, unfortunately most patients eventually 
develop drug resistance. We and others recently reported that AXL activation confers acquired and intrinsic 
EGFR TKI resistance and represents a bypass resistance mechanism analogous to MET amplification 
in a subset of patients. This study aims to better assess the mechanisms whereby specific AXL inhibitors 
overcome such EGFR TKI resistance in NSCLC. 
Methods: AXL inhibitors including MGCD265 (glesatinib), MGCD516 (sitravatinib) and R428  
(BGB-324) alone or in combination with erlotinib were used to test the inhibitory effect on EGFR TKI 
resistant NSCLC cells. Subsequently, the effects of single or combinational treatment on cell cycle and 
apoptosis were assessed. Then, RNA sequencing study was conducted to evaluate the dynamic gene 
expression profile changes and consequently based on key cellular pathway alterations studies of migration 
and EMT were pursued.
Results: Administration of AXL inhibitors in combination with erlotinib significantly inhibited the 
growth of erlotinib-resistant NSCLC cells through potently inducing G2-M cell cycle arrest and enhancing 
apoptosis, relative to single agent treatment. RNA-sequencing analysis identified that several groups of 
genes enriched in cell survival inhibition or apoptosis promotion were upregulated, whereas genes enriched 
in DNA replication and repair, cell cycle and cell division were downregulated in cells treated with the 
combination of erlotinib and AXL inhibitor. Lastly, in line with pathway alterations indicating impaired 
migration, experiments showed reduced migration and EMT upon combination therapy.
Conclusions: Our results indicate that effective blockade of the AXL pathway may represent a novel 
strategy to overcome EGFR TKI resistance for the treatment of biomarker-selected subsets of NSCLC 
patients.
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Introduction

Non-small cell lung cancer (NSCLC) is the most common 
type of lung cancer and accounts for ~85% of the cases 
(1,2). Activating epidermal growth factor receptor (EGFR) 
mutations, most commonly exon 19 deletions and the 
L858R mutation of exon 21 can be identified in 10–35% 
NSCLC patients and have been shown to play a driver 
oncogenic role in malignant transformation and progression 
(1-5). EGFR mutations are usually heterozygous, with the 
mutant allele also commonly showing gene amplification 
(4,5). These mutations increase constitutive activation of the 
receptor without ligand binding, leading to hyperactivation 
of downstream pro-survival signaling pathways (4,5). The 
over-activation of growth-promoting signaling is associated 
with tumor progression and metastasis.

EGFR targeted therapy using tyrosine kinase inhibitors 
(TKIs) has shown improved outcomes in patients with 
advanced NSCLC harboring EGFR mutations and is the 
established standard of care for front-line management  
(2-5). Erlotinib is an FDA-approved first-line EGFR TKI 
that has demonstrated superiority over standard platinum-
based chemotherapy (6-9). While outcomes are clearly 
improved with the use of EGFR TKIs, a major challenge 
is that tumors inevitably acquire resistance to these drugs 
and disease progression ensues (2-4,10,11). Secondary 
mutations in EGFR (most commonly T790M) have been 
revealed conferring resistance to first and second generation 
EGFR TKIs in >50% of the NSCLC patients. MET 
amplification presents the second most common validated 
resistance mechanism occurring in another 5–10% (3,10). 
With the recent introduction of the highly potent EGFR 
T790M inhibitor, osimertinib in front-line management, 
bypass resistance mechanisms, such as MET amplification 
are noted with increasing frequency (12). We and others 
recently demonstrated that overexpression and activation 
of AXL can also confer resistance to EGFR TKI treatment 
such as erlotinib and the 3rd generation agent, osimertinib, 
including acquired bypass resistance and intrinsic resistance 
leading to the emergence of EGFR TKI tolerant cells 
(13,14). AXL is a receptor tyrosine kinase (RTK) that has 
been demonstrated to be overexpressed and activated in 
many human cancers (such as lung, breast, and pancreatic 
cancer) and correlated with poor prognosis, epithelial-
to-mesenchymal transition (EMT), metastasis and drug 
resistance (15). Interestingly, emerging evidence has 
demonstrated that blockade of AXL in various model 

systems with specific small molecule kinase inhibitors can 
lead to restored drug sensitivity and improved therapeutic 
efficacy, defining AXL as a promising novel treatment target 
in a multitude of settings (14,16-18).

Based on the aforementioned information of AXL in 
therapeutic resistance, we here present a series of studies 
aimed at understanding the pathways governed by AXL 
activation and to determine whether AXL inhibition could 
help restore sensitivity to EGFR TKI therapy. We tested 
the effect of 3 AXL inhibitors including MGCD265, 
MGCD516 and R428 on a well-characterized erlotinib-
resistant NSCLC cell model. MGCD265 and MGCD516 
are multi-targeted TKIs which bind to and inhibit the 
phosphorylation of several RTKs, including the MET 
receptor (hepatocyte growth factor receptor), the Tie-2  
receptor, vascular endothelial growth factor receptor 
(VEGFR), and AXL (19-21). In several preclinical studies, 
MGCD265 and MGCD516 demonstrated tumor regression 
in multiple human xenograft tumor models in mice (20,21). 
R428 is a highly selective inhibitor that specifically targets 
AXL. R428 administration has been reported to reduce 
metastatic burden and to extend survival in mouse models 
of breast cancer metastasis (22). The results we obtained 
indeed indicate that AXL inhibition at least partially 
restored the sensitivity of erlotinib via downregulation 
of MAPK and PI3K/Akt pathways resulting in induction 
of cell cycle arrest and apoptosis. We also pursued RNA-
sequencing analyses and identified that several key groups 
of genes involved in cell survival inhibition or apoptosis 
promotion were upregulated, whereas a number of 
downregulated genes were involved in cell cycle, DNA 
replication and repair in cells treated with different 
agents. Our results further identify AXL as a promising 
therapeutic target to overcome drug resistance and cancer 
progression.

Methods

Antibodies and reagents

Antibodies against total and phosphorylated AXL, EGFR, 
MET, AKT, ERK1/2, and anti-GAPDH antibody were 
purchased from Cell Signaling Technologies (Danvers, MA). 
Erlotinib, MGCD265, MGCD516 and R428 were purchased 
from Selleck Chemicals (Houston, TX). Bromodeoxyuridine 
(BrdU) and 7-amino-actinomycin D (7-AAD) were purchased 
from BD Biosciences (San Jose, CA).
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Cell culture

HCC827 human lung cancer cell lines were purchased 
from the American Type Culture Collection (Manassas, 
VA). HCC827-ER3 cells were established as previously  
described (13). HCC827 and HCC827-ER3 cells were 
maintained in RPMI 1640 medium supplemented with 10% 
FBS and 1× Antibiotic/Antimycotic (Life Technologies, 
Carlsbad, CA). All cell lines were recently tested and 
authenticated using DNA fingerprinting Short Tandem Repeat 
(STR) analysis at the Genomics Core in the Department of 
Genetics, Albert Einstein College of Medicine.

Cell viability assay

Cell viability assays were performed as described previously (13).

Western blot

The cell lysate preparation, SDS-PAGE electrophoresis and 
nitrocellulose membrane transfer, and primary antibody 
incubation were performed as described previously (23). 
For detection, the membranes were incubated with a 
horseradish peroxidase-conjugated secondary antibody for 
1 h and the image was visualized with an ECL detecting kit 
(Amersham Biosciences, Piscataway, NJ). 

Cell cycle analysis

The cells were harvested, fixed, and stained with BrdU and 
7-aminoactinomycin-D (7-AAD) following the protocol 
provided by the manufacturer. The cell cycle data was 
collected via FACS Calibur (BD Biosciences) and analysis 
was accomplished with FlowJo (Tree Star, Inc.).

Apoptosis assay 

Cellular apoptosis was analyzed using an Annexin 
V-fluorescein isothiocyanate (FITC)/propidium iodide 
(PI) apoptosis detection kit (Life Technologies, Carlsbad, 
CA). Briefly, the cells were treated with relevant agents at 
described concentrations for 72 h. The cells were mixed 
with 5 μL Annexin V-FITC and 10 μL of 20 μg/mL PI 
reagents, and then incubated at room temperature in the 
dark for 20 min. After adding 400 μL PBS, the cells were 
immediately subjected to flow cytometry analysis using 
FACS Canto II flow cytometer (BD Biosciences).

Wound healing assay

Wound healing assay was performed to measure two-
dimensional cancer cell movement. Briefly, cells were grown 
to full confluence in six-well plates. A scratch was made 
on the cell monolayer using a sterile 200 μL pipette tip. 
The monolayer was washed twice and incubated in drug-
containing medium for 24 and 48 h, respectively. Cells were 
observed and images were taken using a light microscope 
(Olympus IX-71).

RNA sequencing

Total RNA was extracted from H827-ER3 cells treated with 
indicated agents according to the manufacturer’s protocol 
(RNeasy mini kit, Qiagen). The purified mRNA was used 
for RNA-seq library construction and whole transcriptome 
analysis. Libraries were sequenced on the Illumina HiSeq 
2500 platform. The raw sequence reads were aligned to 
the human transcriptome (version GRCh37.75) using the 
Salmon software (version 2.1.0) and subsequently processed 
with R (version 3.5.1)/Bioconductor (version 3.8) for import 
into R and aggregation of transcript-level abundance 
estimates to the gene level. Gene-level differential 
expression analysis between sample groups was performed 
using DESeq2 (version 1.7.3) according to recommended 
practices. The adjusted p-value cutoff [false detection rate 
(FDR)] was set to 0.05.

Gene Ontology (GO) function and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analysis

The function of the differentially-expressed genes (DEGs) 
was subjected to GO analysis according to the principles 
of GO, which organizes genes into hierarchical categories 
and reveals the gene regulatory networks on the basis of 
biological process and molecular function (24). To further 
understand the function of these DEGs, pathway analysis 
was performed to examine the significant pathways of 
the DEGs according to the KEGG databases. An online 
Bioinformatics enrichment tool (DAVID; david.ncifcrf.
gov) was used to perform the GO and pathway analysis in 
the present study. Biological processes of GO terms were 
illustrated in the GO analysis. The p-value indicated the 
significance of GO term and pathway term enrichment 
in the differentially-expressed mRNA list (P<0.05 was 
considered to be statistically significant).

http://david.ncifcrf.gov/
http://david.ncifcrf.gov/
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Quantitative RT-PCR 

Quantitative RT-PCR was performed to validate gene 
expression changes identified by RNA sequencing. Briefly, 
total RNA was extracted from drug-treated HCC827-
ER3 cells using the RNeasy mini kit (Qiagen, Valencia, 
CA). cDNA was synthesized with SuperScript III reverse 
transcriptase using oligo(dT) primers (Life Technologies, 
Carlsbad, CA ) ,  and RT-PCR was performed on a 
LightCycler with SYBR Green probes (Thermo Scientific) 
according to the manufacturer’s protocol. Ratios of the 
expression level of each gene to that of the reference gene 
were then calculated. Sequences for the primers used for 
quantitative RT-PCR for the selected genes are listed in 
Table S1.

Statistical analysis

Data were presented as the mean ± standard deviation. 
Data was analyzed using a two-tailed t-test. P<0.05 was 
considered to be statistically significant.

Results

AXL inhibition partially but significantly restored erlotinib 
sensitivity in HCC827-ER3 cells, an erlotinib-resistant cell 
line

We previously reported that increased expression and 

activation of AXL conferred resistance to erlotinib 
treatment and AXL inhibition may overcome acquired 
resistance to erlotinib in biomarker-selected patient (13). 
Thus in the current study, we tested a variety of distinct 
AXL inhibitors to determine whether they could exert 
such a role and inhibit erlotinib-resistant tumor cell 
growth. The erlotinib-resistant HCC827-ER3 cells used 
in this study were established previously (13). As shown in  
Figure 1A,B, HCC827-ER3 cells exhibit robust resistance 
to erlotinib treatment, with significant upregulation of AXL 
and EGFR (Figure 1B). Erlotinib treatment significantly 
repressed EGFR activation in HCC827-ER3 cells, whereas 
the phosphorylation of AXL was not affected (Figure 1B). 
Subsequently, we tested the effect of AXL inhibitors: 
MGCD265, MGCD516 and R428 on HCC827-ER3 
cells. We found that MGCD265, MGCD516 and R428 
exhibited modest inhibitory effects when used as a single 
agent, although more potent compared to erlotinib alone 
in HCC827-ER3 cells (Figure 2A,B,C). More importantly, 
the combination of AXL inhibitor using any of the three 
agents and erlotinib more significantly repressed cell 
growth than single agent treatment (Figure 2A,B,C). These 
results indicate that blockade of AXL signaling partially but 
significantly restore erlotinib sensitivity in NSCLC cells. 
The subsequent signaling pathway analysis demonstrated 
that the combination of erlotinib and MGCD265 
significantly decreased EGFR, AXL and downstream AKT 
and ERK1/2 phosphorylation whereas erlotinib alone 

Figure 1 Upregulation of AXL confers acquired resistance to erlotinib in HCC827-ER3 cells. (A) HCC827 and HCC827-ER3 cells were 
treated with indicated concentrations of erlotinib for 72 hours and viability was measured by MTS cell viability assay. Results are from three 
independent experiments and are expressed as percent viability of vehicle-treated cells. Data are shown as the mean ± SD. (B) Cells were 
treated with or without indicated dose of erlotinib for 6 hours, after which cell lysates were prepared and subjected to immunoblot analysis 
with antibodies to phosphorylated (p) or total forms of AXL, EGFR and GAPDH (loading control). EGFR, epidermal growth factor 
receptor.
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only showed a modest inhibitory effect (Figure 2D). Taken 
together, these results indicate that AXL inhibitor and 
erlotinib combination treatment can at least partially reverse 
the acquired resistance of erlotinib in AXL-overexpressing 
NSCLC cells. 

Combination of AXL inhibition and erlotinib treatment 
significantly delayed S phase, led to a G2-M phase cell cycle 
arrest and enhanced cellular apoptosis

We next attempted to dissect the intrinsic mechanisms by 
which AXL inhibition restores erlotinib sensitivity. First, a 
cell cycle analysis was performed to test if the induction of 
cell cycle arrest could contribute to the anti-proliferative 
potency of AXL inhibition in HCC827-ER3 cells. We used 
the model inhibitor, MGCD265 to perform our subsequent 
experiments. As shown in Figure 3A,B, relative to erlotinib 
or MGCD265 single agent treatment which showed some 
inhibitory effect on S phase cell cycle, the combination of 

erlotinib and MGCD265 treatment led to more significant 
repression of S phase. Meanwhile, we also found that 
MGCD265 alone treatment slightly increased G2-M arrest 
compared to untreated control or erlotinib treatment in 
HCC827-ER3 cells (Figure 3B). Importantly, MGCD265 
and erlotinib combination treatment not only significantly 
repressed S phase, but further induced stronger and more 
extended G2-M arrest relative to either MGCD265 or 
erlotinib alone treatment. These results clearly indicate 
that inhibition of cell proliferation by the combination of 
erlotinib and MGCD265 may be mediated at least partially 
through inhibiting S phase entry and inducing G2-M phase 
cell cycle arrest. 

Subsequently, the effect of MGCD265 and/or erlotinib 
on cellular apoptosis was evaluated by staining with FITC 
Annexin V and PI followed by flow cytometry analysis. 
As shown in Figure 3C,D, erlotinib treatment induced a 
modest increase in cell death whereas MGCD265 alone 
treatment caused a remarkable increase of cellular apoptosis 
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Figure 2 Inhibition of AXL activation in combination with erlotinib treatment synergistically inhibited the cell growth of HCC827-ER3 
cells. (A,B,C) HCC827-ER3 cells were treated with indicated concentrations of erlotinib or the AXL inhibitors MGCD265 (A), MGCD516 
(B) or R428 (C) or the combination of erlotinib with the indicated AXL inhibitor for 72 hours. Cell viability was measured using the MTS 
cell viability assay kit. Data are expressed as percent viability of vehicle-treated cells. Results are expressed as the mean ± SD. (D) HCC827-
ER3 cells were treated with the indicated dose of erlotinib or a combination of erlotinib and one of the AXL inhibitors: MGCD265, 
MGCD516 or R428 for 6 hours. The cell lysates were prepared and subjected to immunoblot analysis with antibodies to phosphorylated (p) 
or total forms of EGFR, AXL, MET, AKT, ERK and GAPDH.
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relative to untreated control cells in HCC827-ER3 cells. 
Of note, the combination of the two compounds showed 
significant enhancement of apoptosis compared to single 
agent treatment. Cleaved PARP has been used widely 
as a validated marker for apoptosis (25). Thus, we next 
tested the effect of MGCD265 and/or erlotinib treatment 
on cleaved PARP expression. We found that MGCD265 
alone treatment significantly increased cleaved-PARP 
levels to a higher degree than noted in erlotinib-treated 
cells. Relative to MGCD265, combination treatment with 
the two compounds yielded much more cleaved-PARP 
than either agent alone (Figure 3E). Taken together, these 
results provide clear evidence that erlotinib and MGCD265 

combination therapy induced cellular apoptosis more 
significantly than either MGCD265 or erlotinib alone 
treatment. 

GO and KEGG pathway analysis of differentially 
expressed genes (DEGs) in HCC827-ER3 cells treated with 
combination of erlotinib and AXL inhibitor

To gain further insights into the biological mechanisms 
through which EGFR/AXL inhibitor treatment represses 
cell functions, RNA-sequencing was conducted to 
assess the global gene expression profile under different 
treatment conditions. RNA-sequencing revealed that in 

Figure 3 Combination of AXL inhibition and erlotinib treatment significantly delayed S phase, led to G2-M phase cell cycle arrest, and 
enhanced cellular apoptosis. HCC827-ER3 cells were treated with indicated concentrations of erlotinib, MGCD265 or combination 
of erlotinib and MGCD265 for 72 hours. Cells were stained with BrdU and 7-AAD and cell cycle distribution was analyzed using flow 
cytometry. Representative flow cytometric plots of BrdU versus 7-AAD are shown in panel (A) and percentages of cell cycle distributions 
in each treated group of cells were shown in panel (B). The results are presented as the mean ± SD. *, P<0.05. (C) Cell apoptosis was 
determined by flow cytometry with Annexin V/PI dual-staining; and (D) the percentage of apoptotic cells in each treated group is shown. All 
data were expressed as the mean ± SD of three experiments. *, P<0.05. (E) HCC827-ER3 cells were treated as described above. Cell lysates 
were prepared and subjected to immunoblot analysis with anti-cleaved PARP and GAPDH antibodies.
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total 875 DEGs were upregulated and 872 DEGs were 
downregulated in the combinational treatment with 
erlotinib and MGCD265 as compared with untreated 
control  samples.  In order to arrive at  functional 
interpretations for the identified DEGs, the online DAVID 
database was applied to assess the GO categories and 
KEGG pathways of these DEGs. The top enriched GO 
terms with respect to biological processes for up-regulated 
and down-regulated DEGs are shown in Figure 4A,B,  
respectively. In this regard, it is relevant to note that 
most up-regulated DEGs were enriched in the biological 
processes of cell growth inhibition, such as apoptosis 
promotion, negative regulation of cell proliferation, and 
cell cycle arrest; whereas the down-regulated DEGs were 
mostly enriched in DNA replication and repair, cell cycle 
and cell division. 

The KEGG pathway analyses for up-regulated 
and down-regulated DEGs are shown in Figure 4C,D, 
respectively. Notably, among the pathways that upregulated 
DEGs were enriched in, multiple pro-apoptotic pathways 
including p53 signaling, FoxO signaling, apoptosis 
and Hippo signaling pathway were highly ranked  
(Figure 4C); on the contrary, the top ranked pathways 
for those downregulated DEGs are signaling pathways 
regulating cell cycle and DNA replication and repair 
(Figure 4D). These results provide an accurate functional 
description as to how the global transcriptome is modulated 
by combinatorial treatment with erlotinib and AXL 
inhibitor leading to significant inhibition of erlotinib-
resistant cell growth through promoting apoptosis and 
impairing cell cycle.

Comparison and validation of DEGs identified in 
HCC827-ER3 cells treated with EGFR/AXL inhibitors

Our RNA-seq data revealed that 1,143 genes were 
significantly differentially expressed with erlotinib, 
125 genes with MGCD265 and 1,735 genes with the 
combinational treatment of erlotinib and MGCD265, in 
comparison to untreated control samples (Figure 5A). Our 
previous results demonstrated that combination treatment 
has a more robust effect on G2-M phase cell cycle arrest 
and apoptosis induction relative to erlotinib or MGCD265 
alone treatment. In order to achieve a rational interpretation 
of the global transcriptomic changes with different 
treatments, we next extracted the DEGs that were found in 
erlotinib and MGCD265 combinational treatment and that 
were shown to be enriched in multiple biological process 

and KEGG pathways, and then compared the expression 
level of these DEGs in the combinational treatment 
samples with that in single erlotinib or MGCD265 
treatment. Through comparing the level of those DEGs in 
different treatment conditions (erlotinib plus MGCD265 
vs. erlotinib vs. MGCD265), we found that the expression 
levels of most upregulated DEGs with combination 
treatment were indeed higher than that in the erlotinib 
or MGCD265 alone treatment group (Figure 5B and  
Table S2); whereas for the downregulated DEGs enriched in 
regulating cell cycle arrest, DNA repair, and cell division, 
we observed that the levels of most DEGs were lower with 
combination treatment than in the erlotinib or MGCD265 
alone treatment groups (Figure 5C and Table S3). Similarly, 
the expression level of most upregulated DEGs enriched in 
KEGG pathways were found to be higher with combination 
as opposed to single agent treatment, whereas the levels 
of downregulated DEGs were lower in combinational 
treatment than in single agent treatment (Figure 5D and 
Tables S4,S5). Next, we further focused on the DEGs (fold 
change >2; Table S6) in the group treated with combination 
of erlotinib and MDCG265 versus erlotinib alone as this 
is the group potentially defining the contribution of AXL 
inhibition to treatment response. To further verify the 
differential gene expression of these DEGs, we performed 
qPCR on 5 of the most upregulated genes including: 
DDIT4, JDP2, TRIB3, SIAH1, and SESN2; and total 
5 of the most downregulated genes: HSPA8, MASTL, 
MTFP1, NBEAL2, and NDOR1. We confirmed that the 
combination of erlotinib and MDCG265 significantly 
increased the expression levels of the 5 upregulated genes 
whereas repressed the level of the selected 5 downregulated 
genes relative to that in the erlotinib or MDCG265 alone 
treated cohorts (Figure 5E,F). These results indicated that 
the combination of erlotinib and MGCD265 induced 
more significant changes in the transcriptome profile 
compared to single erlotinib or MGCD265 treatment, 
and these significant differences in transcriptomic changes 
promoted enhanced apoptosis and cell growth arrest in the 
combination-treated HCC827-ER3 cells. 

Combination of AXL inhibition and erlotinib treatment 
significantly repressed HCC827-ER3 cell migration

We previously demonstrated that upregulation of 
AXL plays an important role in cell migration (13). A 
group of the above noted downregulated DEGs are 
indeed enriched in the biological process of cell-cell 
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Figure 4 GO function and KEGG pathway enrichment analysis of DEGs identified in HCC827-ER3 cells treated with combination of 
erlotinib and MGCD265. (A,C) The top biological process terms of GO analysis and the top KEGG signaling pathways enriched amongst 
the upregulated genes. (B,D) The top biological process terms and the top KEGG signaling pathways enriched amongst the downregulated 
genes. The y-axis indicates functional groups by GO category. The x-axis indicates –log (P value) of GO category. Significance is expressed 
as the P value calculated using Fisher’s exact test (P<0.05). GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; 
DEGs, differentially-expressed genes.
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adhesion and actin cytoskeleton reorganization as well as 
membrane ruffling formation, actin organization and focal 
adhesion formation—key aspects of cellular migration. 
Accordingly, we further evaluated the effect of erlotinib 
and/or MGCD265 on HCC827-ER3 cell migration and the 
cellular EMT phenotype. As compared to erlotinib alone 
treatment which modestly reduced cell migration (vs. control), 
MGCD265 alone treatment showed a clear inhibitory effect 
on cell migration (Figure 6A,B). Importantly, treatment of 
erlotinib in combination with MGCD265 more significantly 
impaired scratch closure than either erlotinib or MGCD265 
alone treatment (Figure 6A,B). The process of epithelial-
mesenchymal transition (EMT) is defined as a key initiating 
step for tumor cell migration, and we have reported that AXL 
overexpression and activation induced EMT in HCC827-
ER3 cells (13). So we next assessed whether and how erlotinib 
and/or MGCD265 treatment affect EMT in these cells. The 
experiments demonstrated that the combination of erlotinib 
and MGCD265 significantly increased the expression of 
E-cadherin while repressing the expression of Vimentin and 
Snail in HCC827-ER3 cells (Figure 6C). Taken together, 
these results suggest that the combination of erlotinib and 
MGCD265 treatment synergistically represses EMT and 
inhibits the motility competence of HCC827-ER3 cells. 

Discussion

EGFR targeted therapy has become the standard of care 
for patients with advanced EGFR-mutated NSCLC and 

leads to significantly improved outcomes as compared 
to traditional chemotherapy (26). However, acquired 
resistance remains a significant issue and with the more 
recent introduction of the third-generation EGFR inhibitor, 
osimertinib in first-line management, alternative non-
EGFR mediated resistance mechanisms, such as bypass 
resistance, EMT transition and small cell transformation 
are increasingly becoming key issues in further improving 
outcomes (12,26,27). We and others recently reported AXL 
overexpression and activation as a novel mechanism that can 
lead to bypass resistance to EGFR TKI treatment as well as 
intrinsic resistance inducing treatment tolerance to the novel 
third generation EGFR inhibitor, osimertinib (13,14). The 
findings have been confirmed by others and it also appears 
that AXL overactivation might confer resistance to EGFR-
targeted therapy in a wide range of cancer types (16-18,28). 
Therefore, further development of effective AXL-targeted 
therapeutic strategies is anticipated to bring significant 
therapeutic benefits to appropriately selected patient subsets.

In the current study, we define the efficacy of a range of 
AXL inhibitors to overcome resistance mediated by AXL 
activation. Our results demonstrate that administration of 
AXL inhibitors in combination with EGFR TKI therapy 
partially but significantly restores erlotinib sensitivity 
and inhibits the viability of erlotinib-resistant HCC827-
ER3 cells. Along with the results reported in a recently 
published study which demonstrated that activated AXL 
confers intrinsic resistance and induces the emergence of 
osimertinib-tolerant cells, while the combination of AXL 
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Figure 5 RNA-seq-based transcriptome comparison between different treatment conditions and validation of DEGs identified in these 
treatments. (A) Venn diagram showing the total number of DEGs (P<0.05) identified in HCC827-ER3 cells treated with erlotinib, 
MGCD265, or combination of erlotinib and MGCD265 (E, erlotinib; M, MGCD265; and E + M: erlotinib plus MGCD265). (B,C) The 
expression levels of representative upregulated DEGs (B) and downregulated DEGs (C) that enriched in multiple biological processes in 
HCC827-ER3 cells with indicated treatments. (D) The expression levels of representative DEGs that enriched in multiple KEGG pathways 
in HCC827-ER3 cells with indicated treatment. (E,F) The gene expression for 5 of the most highly upregulated (fold change >2) and 5 
downregulated (fold change >2) genes were validated by qPCR. DEGs, differentially-expressed genes.
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inhibition and osimertinib remarkably repressed tumor 
growth in EGFR-mutated lung cancer (14), our results 
strongly indicate that such AXL inhibitors might be potent 
candidates for targeting AXL-mediated resistance to 
erlotinib in NSCLC patients. 

The Gas/AXL signaling axis plays important roles in 
tumorigenesis, EMT, invasion and metastasis, and acquired 
resistance to chemotherapy-resistant cancers (15,29). 
PI3K/AKT and MAPK signaling cascades are the major 
pathways mediating Gas6/AXL signaling that regulate the 
aforementioned phenotypes (15,29). Overexpression of 
AXL leading to constitutive activity of these 2 cascades in 
the HCC827-ER3 cells promoted cell proliferation and 
migration, and eventually led to development of acquired 
resistance to erlotinib (13). Notably, our data clearly 
demonstrates that AXL inhibition in combination with 
erlotinib treatment dramatically reduces PI3K/AKT and 
MAPK activity, which leads to cell growth arrest and death, 
and therefore contributes to overcoming erlotinib resistance. 
The activation of MAPK and PI3K/AKT pathways tightly 

regulate numerous cell functions, such as proliferation, 
apoptosis, and cell migration (30). Our results demonstrate 
that the combination of the AXL inhibitor, MGCD265 and 
erlotinib induces cell cycle arrest and apoptosis, which is at 
least partially mediated via downregulation of MAPK and 
PI3K/Akt activation. In our study, MGCD265 plus erlotinib 
significantly reduced S phase entry and induced G2-M cell 
cycle arrest. S phase involves DNA replication and DNA 
repair, and G2-M phase regulates cell mitosis and division 
(31,32). The impairment of S phase entry and concomitant 
G2-M phase logically interferes with cell cycle progression 
and eventually inhibits cell survival. Simultaneously, 
we observe that the combination of erlotinib and AXL 
inhibitor shows a synergistical induction of apoptosis further 
demonstrating that AXL inhibition can restore EGFR TKI 
sensitivity. 

The regulation of cell cycle and apoptosis are highly 
complicated processes and tightly regulated by multiple 
pathways. In our model systems, the downregulation of 
MAPK and PI3K/Akt pathways may only partially account 
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Figure 6 Combination of AXL inhibition and erlotinib treatment significantly repressed the migration of HCC827-ER3 cells. (A) 
Representative images from in vitro scratch wound healing assays in HCC827-ER3 cells treated with erlotinib and/or MDCG625. (B) The 
bar graph illustrates the percentage of wound closure at indicated time points during the scratch wound assay. *, P<0.05. (C) HCC827-
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for the overall regulation of these cell functions. In order 
to gain further insights, we performed an analysis of global 
transcriptional changes using RNA-sequencing indeed 
highlighting additional pathways that might participate in 
the inhibition of cell growth. In this study, in line with the 
above we specifically found that a group of upregulated 
DEGs, such as ATF4, SIAH1 and BBC3 (Figure 5B), 
were mainly enriched in biological process in positive 
regulation of apoptotic process and negative regulation 
of cell proliferation. On the contrary, the downregulated 
DEGs were enriched in the regulation of DNA replication 
and repair, cell cycle regulation and cell division. As the 
representative DEGs found in our study, ATF4 or BBC3 
have been identified to promote the induction of apoptosis 
under persistent stress (33,34), and SIAH1 plays a crucial 
role in cell cycle arrest and the induction of apoptosis 
(35,36). The downregulated DEG, Mastl (Figure 5C) is a 
serine/threonine kinase that plays a key role in M phase by 
acting as a regulator of mitosis entry and maintenance (37) 
and it may therefore play a negative role in regulation of 
cell cycle and cell division. These DEGs enriched in the 
biological process of cell cycle, cell division and apoptosis 
provide a more complete picture of the broad array of 
functional changes as a consequence of AXL inhibition. 
In addition, the KEGG pathway analysis also indicated 
that a number of upregulated DEGs were enriched in 
apoptosis pathway, p53 signaling pathway, FoXO and 
Hippo pathway, whereas the top ranked pathways that the 
downregulated DEGs were enriched in included the cell 
cycle and the DNA replication pathway. Besides the well-
known pro-apoptotic role of the p53 pathway (38), FoXO 
signaling may also promote cell growth inhibition and/or 
apoptosis by either inducing expression of pro-apoptotic 
members of the Bcl2-family and death receptor ligands 
such as Fas, or enhancing levels of various cyclin-dependent 
kinase inhibitors (CDKIs) (39). In addition, the Hippo 
signaling pathway also has been shown to be responsible for 
cell proliferation inhibition and promoting apoptosis (40). 
These results show that the majority of enriched DEGs are 
involved in the signaling pathways of cell cycle and cell death, 
which therefore provides a reasonable interpretation that 
the combination of AXL inhibitor and erlotinib treatment 
regulates the cell cycle and apoptosis, and therefore restores 
drug sensitivity to erlotinib and inhibits erlotinib-resistant 
cell proliferation. 

Additionally, a group of downregulated DEGs, such as 
BAIAP2, PIP5K1A and CTTN, have been found that were 
enriched in the biological process of cell-cell adhesion and 

actin cytoskeleton reorganization. BAIAP2, PIP5K1A and 
CTTN are necessary for membrane ruffling formation, 
actin organization and focal adhesion formation during 
directional cell migration (41-43), therefore downregulation 
of these genes is anticipated to negatively regulate cell 
migration and induce EMT. Therefore, these transcriptomic 
alterations provide a distinct genetic and biochemical 
background by which the combination of erlotinib with 
AXL inhibitors inhibits erlotinib-resistant cell migration.

In conclusion, our study provides clear evidence that 
treatment with AXL inhibitors might be an effective 
therapeutic strategy to overcome the acquired resistance 
to erlotinib in appropriately biomarker-selected patient 
subsets. Future studies will need to further investigate the 
in vivo effects of the combination of erlotinib and AXL 
inhibitor on erlotinib-resistant animal model, in models 
that might demonstrate the efficacy of the combination 
to prevent the emergence of resistance and ultimately in 
clinical trials to show clinical validity of these observations.
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Supplementary

Table S1 Primer sequences used for qPCR 

Gene name Sense primer sequence Antisense primer sequence

GAPDH CTT TGG TAT CGT GGA AGG ACT C GTA GAG GCA GGG ATG ATG TTC

SIAH1 TCC ACC TTC TCT GTA CTC CTG TGG ACA CTT CGA GGT ACC G

RPS6KA5 TGA GTA AGG AGT TTG TGG CTG ACT GCC TTG TCA TGT CCT G

JDP2 GCT GAA ATA CGC TGA CAT CCG TTT TCC TTC GCT CCT CTT CC

MKNK2 AGA AAC CAG CCG AAC TTC AG CCA AAG TCA GAG TCT CCG TG

TRIB3 TGA TCT CAA GCT GTG TCG C AGT ATC TCA GGT CCC ACG TAG

PLEC1 CAG TAC ATC AAC GCC ATC AAG GAC TGG ACC TTG GGC TTC

DDIT4 GTT TGA CCG CTC CAC GAG GTG TTC ATC CTC AGG GTC AC

SESN2 GCC TCA CCT ACA ATA CCA TCG CAC CTC CCC ATA ATC ATA GTC ATC

HSPA8 GGA CAA GAG TAC GGG AAA AGA G GTC CCT CTG CTT CTC ATC TTC

MASTL TCA ATC CCA CAC CTT CAT ATC C TTT CAA CTG CAT TCC AAC TCA TC

MTFP1 GCG GAT GCC ATT GAC AAA G CTA GAG CCT GCC ATA CAA AGG

NBEAL2 GCC ACT TCA TCG ACA AAC AG TGT CAT AGC AGG CAT TCC AG

NDOR1 GCT CTT TGA ATA CTG CAA CCG GAT GAG GTC CAA CAG GTA GTC



Table S2 Expression level of upregulated DEGs (vs. control) enriched in multiple biological processes

Gene symbol
Fold change (treatment vs. control)

MGCD265 + erlotinib Erlotinib MGCD265

Positive regulation of apoptotic process

BCL6 1.570810516 1.500691193 1

BNIP3L 1.396316619 1 1.280790364

BCL2L1 1.693605198 1 1

ARHGEF2 1.858789066 1.631498432 1

SOS2 1.433273931 1.245688175 1

SOX4 1.529794862 1.246951616 1

TIAM 1.219890263 1 1

ATF4 1.99619867 1 1

APBB2 1.290583732 1 1

ANKRD1 1.599681138 1 1.5471155

APH1A 1.333287179 1 1

CDK19 1.33659376 1 1

DUSP6 1.567727508 1.465150443 1

ECT2 1.300534572 1 1

GADD45B 1.678462013 1 1

HMOX1 1.606346423 1 1

HMGB1 1.398352809 1.429730499 1

HIP1R 1.271504711 1 1

IP6K2 1.423977161 1 1

JMY 1.312008281 1.349909538 1

NET1 1.256360135 1.211107554 1

NUPR1 3.565986854 3.455794632 1

PNMA2 1.317620231 1 1

PMAIP1 1.273440546 1 1

PSEN1 1.321673666 1.231496166 1

PTGS2 1.509385178 1.501834979 1

PRMT2 1.453487499 1 1

RPS6KA2 1.597029169 1.604806177 1

SAV1 1.200108843 1 1

SQSTM1 1.470799563 1 1

SIAH1 2.066825829 1 1

TXNIP 1.999955437 1.855142834 1

TP53 1.230938025 1 1

Cell cycle arrest

DDIT3 2.649910503 2.099035989 1

HBP1 1.801522281 1.713758259 1

SMAD3 1.310052368 1 1

APBB2 1.290583732 1 1

CDKN1A 1.463461144 1 1

CDKN2B 1.346878936 1 1

ERN1 1.514346277 1.424297261 1

FOXO4 1.429176125 1 1

JMY 1.312008281 1.349909538 1

MFN2 1.514552582 1 1

PPP1R15A 1.291899504 1.206875857 1

TSC2 1.304248887 1 1

TP53 1.230938025 1 1

MYC 1.410985277 1.266748014 1

Negative regulation of ERK1 and ERK2 cascade

ERRFI1 1.261886742 1.289822014 1

KLF4 1.599439716 1.347331821 1

RAPGEF1 1.521917605 1 1

XBP1 1.869085583 1.5056869 1

ATF3 1.708230933 1 1

DUSP4 1.296108342 1 1

DUSP6 1.567727508 1.465150443 1

EZR 1.476568899 1.544670372 1.510260914

LIF 1.295467052 1 1

SPRY4 1.334091553 1 1

Intrinsic apoptotic signaling pathway in response to ER stress

DDIT3 2.649910503 2.099035989 1

HBP1 1.801522281 1.713758259 1

SMAD3 1.310052368 1 1

APBB2 1.290583732 1 1

CDKN1A 1.463461144 1 1

CDKN2B 1.346878936 1 1

ERN1 1.514346277 1.424297261 1

FOXO4 1.429176125 1 1

JMY 1.312008281 1.349909538 1

MFN2 1.514552582 1 1

PPP1R15A 1.291899504 1.206875857 1

TSC2 1.304248887 1 1

TP53 1.230938025 1 1

MYC 1.410985277 1.266748014 1



Table S3 Expression level of downregulated DEGs (vs. control) enriched in multiple biological processes

Gene symbol
Fold change (treatment vs. control)

MGCD265 + erlotinib Erlotinib MGCD265

Cell division

ATAD3B 0.699796587 0.717925923 1

CABLES2 0.750020498 1 1

DIS3L2 0.53274437 1 1

LIG4 0.650349446 1 1

DSN1 0.659154236 1 1

ERCC6L 0.696356995 1 1

FBXO5 0.609049566 0.695204352 1

HAUS6 0.824159456 0.780089206 1

NSUN2 0.757933959 0.774571282 1

PDS5B 0.793715408 0.767906154 1

PHF13 0.770399369 0.781579307 1

ZWINT 0.714788883 1 1

CDC20 0.787424854 1 1

CDC25A 0.598816259 0.65588207 1

CDC6 0.638133071 0.724462682 1

CDC7 0.819192058 0.824801908 1

CDCA2 0.724016995 0.683917853 1

CDCA5 0.598816259 0.789532223 1

CENPT 0.747000771 1 1

CCNA2 0.796728486 0.828706336 1

CCND3 0.597693581 0.689911532 1

CCNE2 0.601208611 0.627989732 1

CCNF 0.811518208 1 1

CDK2 0.747170127 0.785909293 1

CDK4 0.809001405 1 1

CDK6 0.779894059 0.796641826 1

FAM64A 0.778219456 1 1

FIGN 0.726964207 1 1

HELLS 0.763870624 0.770328066 1

KLHL42 0.799134241 0.821392492 1

KIF18B 0.833116897 1 1

KIF20B 0.711042036 1 1

KIFC1 0.770301058 1 1

MASTL 0.496263385 0.704866858 1

MCM5 0.809011572 1 1

NCAPG 0.774262647 0.754577509 1

NCAPH 0.770217973 1 1

NCAPD3 0.748339557 0.798079695 1

NUDC 0.77975868 1 1

PRPF40A 0.784792564 1 1

PRKCE 0.808702222 1 1

RCC1 0.653393194 1 1

SEPT 0.79834066 0.796708043 1

SKA3 0.750522021 1 1

SPDL1 0.716440826 1 1

SMC4 0.687627705 1 1

TACC3 0.820450543 1 1

TUBA1B 0.707870107 1 1

USP37 0.801775898 0.829695094 1

VRK1 0.813398638 0.7946735 1

VPS4A 0.830147228 1 1

ZWILCH 0.701666802 1 1

DNA replication

BARD1 0.637203915 0.759313554 1

BRIP1 0.630692829 0.652681375 1

LIG4 0.650349446 1 1

POLA2 0.673108697 0.802900219 1

POLD3 0.793045387 0.822547354 1

POLE 0.808760222 1 1

DSCC1 0.672814491 0.705769428 1

GINS2 0.635446077 0.730979491 1

GINS3 0.767525935 0.784890792 1

RAD1 0.784182393 0.781117533 1

RBM14 0.726254055 0.751910676 1

TICRR 0.739873815 0.775313361 1

CDC25A 0.598816259 0.65588207 1

CDC45 0.78138931 0.786718155 1

CDC6 0.638133071 0.724462682 1

CDC7 0.819192058 0.824801908 1

CHAF1A 0.725619903 0.749045337 1

CHAF1B 0.695921621 0.73503896 1

CHTF18 0.720097815 1 1

CLSPN 0.515666821 0.545984201 1

CDK2 0.747170127 0.785909293 1

DTL 0.671447943 0.728623805 1

DUT 0.808708758 1 1

EXO1 0.600585149 0.668348878 1

FEN1 0.646919176 0.673411842 1

MCM10 0.579587004 0.673882478 1

MCM4 0.796587629 0.786586647 1

MCM5 0.809011572 1 1

NOL8 0.628457322 1 1

NUP98 0.692971474 1 1

ORC1 0.651124396 0.75489963 1

ORC6 0.74897745 0.713235537 1

PCNA 0.730196232 0.752830213 1

RTEL1 0.818759095 0.816647045 0.795584455

RFC4 0.825145898 1 1

RFC5 0.657860132 0.739748932 1

RRM1 0.785388749 0.832808076 1

RRM2 0.637552411 0.685144139 1

DNA repair

BCCIP 0.748416646 1 1

POLE 0.808760222 1 1

POLQ 0.77025084 0.794883047 1

DOT1L 0.6937146 0.793343611 1

FANCA 0.644724544 1 1

FANCG 0.588956357 1 1

FANCI 0.799174667 0.829467802 1

PDS5B 0.793715408 0.767906154 1

RAD1 0.784182393 0.781117533 1

RAD18 0.75267768 0.716666737 1

RAD51AP1 0.695368416 1 0.697240398

RAD54L 0.721212552 0.728997562 1

RBM14 0.726254055 0.751910676 1

TICRR 0.739873815 0.775313361 1

CHAF1A 0.725619903 0.749045337 1

CLSPN 0.515666821 0.751910437 1

CDK2 0.747170127 0.785909293 1

EME2 0.799044431 1 1

EXO1 0.600585149 0.668348878 1

FEN1 0.646919176 0.673411842 1

MCRS1 0.830340008 1 1

MSH6 0.666630119 0.663940906 1

NABP1 0.617556529 0.567306751 1

RTEL1 0.818759095 0.816647045 0.795584455

RFC5 0.657860132 0.739748932 1

RFWD3 0.803087075 0.816565228 1

TEX15 0.775624104 0.779854234 1

UBE2T 0.748803457 0.720974576 1

Actin cytoskeleton reorganization

BCCIP 0.748416646 1 1

POLE 0.808760222 1 1

FARP2 0.811762735 1 1

MICALL2 0.661973595 1 1

TNIK 0.780659561 1 1

CTTN 0.641550617 1 1

EZR 0.803732687 0.757486198 1

FLNA 0.826785759 1 1

PIP5K1A 0.626792059 1 1



Table S4 Expression level of upregulated DEGs (vs. control) enriched in multiple KEGG pathways

Gene symbol
Fold change (treatment vs. control)

MGCD265 + erlotinib Erlotinib MGCD265

P53 signaling pathway

BBC3 1.775598694 1 1

CASP8 1.50509795 1.714538463 1

CASP9 1.513227018 1 1

CCNG1 1.775598694 1.233975191 1

CCNG2 2.263213411 1.974321134 1

CDKN1A 1.463461144 1 1

GADD45B 1.678462013 1 1

PMAIP1 1.273440546 1 1

RRM2B 1.353963073 1 1

SESN2 6.626958929 5.933017006 1

SIAH1 2.066825829 1 1

TSC2 1.304248887 1 1

TP53 1.230938025 1 1

Apoptosis

BCL2L1 1.693605198 1 1

CFLAR 1.322209947 1 1

TNFRSF1A 1.392397204 1 1

CASP8 1.50509795 1.714538463 1

CASP9 1.513227018 1 1

IKBKB 1.529761794 1.37112148 1.457373682

PIK3CA 1.31888819 1 1

TP53 1.230938025 1 1

Cell cycle

BUB1 1.211254334 1 1

RBL2 1.524049945 1 1

SMAD2 1.294697918 1 1

SMAD3 1.310052368 1 1

CDC14A 1.39217711 1 1

CDC14B 1.205490294 1.217160462 1

CDKN1A 1.463461144 1 1

CDKN2B 1.346878936 1 1

GADD45B 1.678462013 1 1

STAG2 1.233069452 1 1

TP53 1.230938025 1 1

MYC 1.410985277 1.266748014 1

FoXO signaling pathway

BCL6 1.570810516 1.500691193 1

FBXO25 1.442974414 1.42794837 1

FBXO32 1.604190926 1.466903076 1

GABARAPL1 1.587151943 1.524525299 1

RBL2 1.524049945 1 1

SMAD2 1.294697918 1 1

SMAD3 1.310052368 1 1

SOS2 1 1.245688175 1

CSNK1E 1.380889371 1 1

CCNG2 2.263213411 1.974321134 1

CDKN1A 1.463461144 1 1

FOXO4 1.429176125 1 1

GADD45B 1.678462013 1 1

IKBKB 1.529761794 1.37112148 1.457373682

IRS2 1.385004242 1.331280376 1

PIK3CA 1.31888819 1 1

PCK2 3.853122264 4.037367457 1

Hippo signaling

BBC3 1.775598694 1 1

SMAD2 1.294697918 1 1

SMAD3 1.310052368 1 1

AJUBA 1.873377925 1.67385878 1

AXIN1 1.250607347 1 1

CSNK1E 1.380889371 1 1

CTGF 1.538758842 1 1.428814977

DLG3 1.512565821 1.296332083 1

FZD7 1.342673277 1 1

ITGB2 1.572901939 1 1

PARD3 1.250711844 1 1

SAV1 1.200108843 1 1

MYC 1.410985277 1.266748014 1



Table S5 Expression level of downregulated DEGs (vs. control) enriched in multiple biological processes

Gene symbol
Fold change (treatment vs. control)

MGCD265 + erlotinib Erlotinib MGCD265

Cell cycle

E2F2 0.698264583 0.765341746 0.829617942

SKP2 0.666279155 0.735078961 1

CDC20 0.787424854 1 1

CDC25A 0.598816259 0.65588207 1

CDC45 0.78138931 0.786718155 1

CDC6 0.638133071 0.724462682 1

CDC7 0.819192058 0.824801908 1

CCNA2 0.796728486 0.828706336 1

CCND3 0.597693581 0.689911532 1

CCNE2 0.601208611 0.627989732 1

CDK2 0.747170127 0.785909293 1

CDK4 0.809001405 1 1

CDK6 0.779894059 0.796641826 1

CDKN2C 0.699493903 0.740163861 1

MCM4 0.796587629 0.786586647 1

MCM5 0.809011572 1 1

ORC1 0.651124396 0.75489963 1

ORC6 0.74897745 0.713235537 1

PCNA 0.730196232 0.752830213 1

PKMYT1 0.594922683 1 1

SFN 0.816845946 0.70916061 1

TGFB2 0.830374389 0.812733345 1

DNA replication

POLA2 0.673108697 0.802900219 1

POLD3 0.793045387 0.822547354 1

POLE 0.808760222 1 1

FEN1 0.646919176 0.673411842 1

MCM4 0.796587629 0.786586647 1

MCM5 0.809011572 1 1

PCNA 0.730196232 0.752830213 1

RFC4 0.825145898 1 1

RFC5 0.657860132 0.739748932 1

RNASEH1 0.826004445 1 1

RNASEH2C 0.793225524 1 1



Table S6 Expression level of upregulated DEGs (combination of erlotinib and MGCD265 vs. control; fold change >2)

Gene symbol
Fold change (treatment vs. control)

MGCD265 + erlotinib Erlotinib MGCD265

Upregulated DEGs

PLEC 13.29248342 10.8312812 11.75436746

SESN2 6.626958928 5.933017343 1

CHAC1 5.707103105 5.753205488 1

DDIT4 4.702788471 4.219327288 1

SLC7A11 4.054158255 3.498450309 1

CTH 4.004821716 2.771962999 1.417387273

SLC6A9 3.895412031 4.138867318 1

PCK2 3.853122264 4.037367742 1

ASNS 3.708656207 1.661348801 1

NUPR1 3.565986853 3.455793471 1

TRIB3 3.436248991 2.664563103 1

JDP2 3.34918592 2.657128502 1

SLC1A5 3.25953761 1.699564365 1

ULK1 2.715179648 2.062475526 1

CBS 2.680069964 2.302972206 1

DDIT3 2.649910504 2.099036131 1

SARS 2.641990297 1.655447203 1

NCOA7 2.583821563 2.339772077 1

MARS 2.545254693 1.618080069 1

PSAT1 2.500856424 1.712593791 1

CEBPB 2.462880354 2.163868758 1

HERPUD1 2.412907008 1.848697272 1

MBNL1 2.406773612 1.57328823 1

YIPF4 2.387163111 1 2.056901916

GPT2 2.335734456 1.858376737 1

KLHL24 2.320515458 1.885448834 1

MOCOS 2.279153704 1.576747887 1

CCNG2 2.263213411 1.656921209 1

PIM1 2.247915381 1.81422954 1

SCEL 2.236888876 1 1

PLAT 2.213839953 1.824981703 1

CREBRF 2.208256826 1.723335985 1

SLC3A2 2.206340833 1.250882259 1

SHMT2 2.197397554 1.43195683 1

RPS6KA5 2.179750059 1.216449981 1

HKDC1 2.176221503 1.783259921 1

UPP1 2.167799403 1.385538692 1

MKNK2 2.164672463 1.539592982 1

SLC1A4 2.10600201 2.031761415 1

MLPH 2.07707234 1 1

SIAH1 2.066825829 1 1

CARS 2.059623213 1.737241112 1

Downregulated DEGs

HSPA8 0.496264101 0.704867015 1

MASTL 0.495580044 0.656329871 1

MTFP1 0.494410059 0.739380551 1

NBEAL2 0.473310883 0.721503851 1

NDOR1 0.473156713 0.569417604 1


