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Introduction

Colorectal cancer, including colon cancer (CC) and rectal 
cancer (RC), remains the third highest cancer-related 
incidence and mortality rate (1). At present, surgical 
resection and chemotherapy, which are the primary 
strategies for treating CC, have made substantial progress 
in recent years (2). However, limited advance has been 
made in cure rates and long-term survival of CC patients in 

the past several decades. Therefore, more research should 
be done to understand the progress of CC and discover 
effective therapeutic strategies for the treatment of CC.

Long non-coding RNAs (lncRNAs) are important 
regulatory factors in tumor development and progression 
(3-5). LncRNAs have complicated functions with multiple 
mechanisms (6).  Mounting evidence indicates the 
existence of a network of lncRNA-microRNA (miRNA) 
pathways, and the lncRNA-miRNA-gene interaction 
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patterns have been systematically characterized in cancers. 
A comprehensive sponge regulatory network mediated 
by lncRNA has also shown in prostate cancer (7,8) and 
hepatocellular carcinoma (9). In CRC, lncRNA-PNUTS 
serves as a competitive sponge for miR-205, suppressing 
cell growth through destabilizing HuR protein (10). 
LINC00336 inhibits ferroptosis in lung cancer cells by 
acting as a competing miR6852 (11). LncRNA Cancer 
Susceptibility Candidate 9 (CASC9) is known to be an 
oncogene and is significantly up-regulated in various 
cancers (12-15). In hepatocellular carcinoma cells, CASC9 
interacts with RNA binding protein heterogeneous nuclear 
ribonucleoprotein L (HNRNPL) and regulates AKT 
signaling and DNA damage sensing (16,17). In addition, 
CASC9 is a potential prognosis marker and therapeutic 
target in esophageal cancer (18). Studies show that the up-
regulation of CASC9 promotes tumorigenesis (19) and 
metastasis (20) of esophageal squamous, doxorubicin-
resistant in breast cancer (21). However, the role of CASC9 
in CC has been less reported. 

One of main the mechanisms through which lncRNAs 
function in tumor is acting as microRNA sponges. 
MicroRNAs are short non-coding RNAs that affect gene 
expression through targeting and regulating mRNAs. 
MiR-145-5p is a tumor suppressor and closely related to 
the prognosis of cancer patients (22-25). MiR-145-5p was 
also identified significantly associated with overall survival 
and disease-free survival of patients with glioblastoma 
or gastric cancer (26-28). In CC, miR-145-5p is down-
regulated (29), however, population-based data show 
that miR-145-5p is high-expressed at advanced stage of  
CC (30). Therefore, we are interested in investigating the 
role of miR-145-5p in CC.

In this study, we aim to explore the role of CASC9 as 
a miRNA sponge for miR-145-5p in CC and to provide a 
new understanding on CASC9 and miR-145-5p in cancers.

Methods

Patients and tissue sample

Thirty samples and normal adjacent tissues were collected 
from patients [stage I/II (n=17) and III/IV (n=13)] after 
surgery in the First Affiliated Hospital of Hebei North 
University, and stored at −80 ℃. This study was authorized 
by the Ethics Committee of the First Affiliated Hospital of 
Hebei North University (NO. HNU20150703324), and all 
patients signed an informed consent.

Cell culture

Human intestinal epithelial cells (HIEC, CRL-3266) and 
human CC cell lines [(LoVo (CCL-229), HCT116 (CCL-
247), SW480 (CCL-228), HT29 (HTB-38)] were obtained 
from the American Type Culture Collection. The HIEC, 
LoVo, HCT116 and SW480 cells were grown in RPMI-
1640 (61870044, Gibco, ThermoFisher, USA) containing 
10% FBS (16140071, Invitrogen, ThermoFisher, USA), 1% 
penicillin/streptomycin (15070063, Gibco, ThermoFisher, 
USA) at 37 ℃ with 5% CO2. HT29 cells were grown in 
McCoy’s 5A (Modified) Medium (16600108, Invitrogen, 
ThermoFisher, USA) supplemented with 20% FBS 
(16140071, Invitrogen, ThermoFisher, USA), 1% penicillin/
streptomycin (15070063, Gibco, ThermoFisher, USA).

Cell transfection

The s iRNA targeted toward human CASC9 (30) 
(siCASC9: 5'-GCCUGUGAUAGCAGAACAATT-3') 
and a non-specific negative control siRNA (siNC: 
5'-UUCUUCGAACGUGUCACGUTT-3'), miRNAs 
inhibitor control and miR-145-5p inhibitor were 
purchased from Gene Pharma Co., Ltd. (Shanghai, China).  
100 pmol of siRNA or miRNA inhibitor were respectively 
transfected into the cells (4×105 cells/well) by using 500 µL 
Opti-MEM (11058021, Invitrogen, USA) containing 5µL 
lipofectamine® 2000 (11668019, Invitrogen, USA) at room 
temperature for 5min. After incubation at 37 ℃ for 24 h, 
subsequent functional detections were performed.

RNA isolation and qualitative real time PCR analysis

Tumor specimens and corresponding adjacent normal 
t issues were disrupted using l iquid nitrogen and 
homogenized using Trizol reagent (15596018, Invitrogen, 
Thermofisher, USA) at 4 ℃. Qiagen RNeasy Plus Mini 
Kit (74134, Qiagen, Germany) was used to isolate the 
total RNA from the tissue samples at 4 ℃. For isolation 
of RNA in the cells, the cells were homogenized using 
TRIzol reagent and isolated by chloroform and islpropanol 
at 4 ℃. The concentration of RNA was measured by using 
NanoDrop 8000 (ND-8000-GL, Thermo Scientific, USA). 

For the quantification of mRNA, cDNA was prepared 
by using PrimeScript™ II 1st Strand cDNA Synthesis 
Kit (6210B, Takara, Japan). SYBR® Green PCR Master 
Mix (4312704, ABI, USA) and Bio-Rad CFX 96 Touch 
Real-Time PCR Detection System (1855196, Bio-Rad, 
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China) were used for qRT-PCR, with GAPDH served as 
endogenous control. QRT-PCR parameters were as follows: 
pre-denaturation at 95 ℃ for 5 min, then 40 cycles of 
denaturation (at 95 ℃ for 30 s), annealing (at 60 ℃ for 30 s), 
and extension (at 72 ℃ for 30 s). For the quantification of 
microRNA, the cDNA was prepared by One step miRNA 
RT kit (D1801, HaiGene, China). SYBR Green qPCR 
kit for miR-145-5p (AP01411, HaiGene, China) and for 
U6 snRNA (AP02055, HaiGene, China) were then used 
for qRT-PCR, with U6 snRNA served as an endogenous 
control. QRT-PCR parameters were as follows: at 95 ℃ 
for 5 min, 40 cycles of denaturation (at 95 ℃ for 15 s), 
annealing (at 60 ℃ for 30 s), and extension (at 70 ℃ for 10 s). 
2-∆∆CT was used to calculate the relative expression levels. 
All primers used in qRT-PCR were shown in Table 1. The 
primers used in qRT-PCR for miR-145-5p were designed 
according to one previous study (31).

CCK-8 assay 

The cells (5×103 cells/well) were cultured in 96-well 
culture dishes. After culturing at 37 ℃ for 24, 48 and 72 h, 
CCK-8 solution (70-CCK801, MultiSciences, China) was 
separately added into the dishes (10 µL/well) to continue 
the incubation of the cells at 37 ℃ for 4 h in the dark. 
Absorbance values were measured using a microplate reader 
(1681135, Bio-rad, China) at 450 nm.

Cell colony formation assay

The cells (1,000 cells/well) were seeded into 60 mm plates 
and cultured for 7 d. Afterwards, colonies were fixed by 4% 
paraformaldehyde (30525-89-4, Aladdin, China) for 20 min  
and stained by 0.5% crystal violet (548-62-9, Aladdin, 
China) at room temperature for 1 h. The picture of colonies 
was directly took by a camera. The colonies (diameter  
>0.5 mm) were counted by Image J software v.1.48 (National 
Institutes of Health, USA). The experiments were 
conducted in triplicate

Western blotting

The cells were gently washed by 1× PBS twice and treated 
by 1% NP-40 (FNN0021, Invitrogen, ThermoFisher, 
USA) supplemented with halt protease inhibitor cocktail 
(78429, Thermo Scientific, ThermoFisher, USA) on ice and 
proteins were collected by centrifugation at 1,000 g, 4 ℃ for 
30 min. The concentration of the proteins was measured by 
Pierce™ BCA Protein Assay Kit (23225, Thermo Scientific, 
ThermoFisher, USA). Next, 25 µg protein extraction were 
separated on 10% SDS-PAGE gel and then transferred to 
PVDF membranes (LC2002, Invitrogen, Thermofisher, 
USA). The membranes were washed by 1xTBST (50 
mM Tris, 150 mM NaCl and 2% Tween-20; pH 7.5) for 
three times at room temperature and then incubated with 
primary antibodies (Anti-Ki-67 (ab15580, 1:2,000, Abcam, 
UK), Anti-PCNA (ab92552, 1:2,000, Abcam, UK) and 
Anti-GAPDH (ab181602, 1:5,000, Abcam, UK)) at 4 ℃ 
overnight. Next, the membranes were further incubated 
with anti-rabbit IgG antibody (1:2,000, 7074, Cell Signaling 
Technology, USA) at 4 ℃ overnight and with SignalFire™ 
ECL reagent (6883, Cell Signaling Technology, USA) for 
1min at room temperature in the dark, and then exposed 
to X-ray. Images were captured by ImageQuant ECL 
Imager (28-9605-63, GE Healthcare, USA) and analyzed 
by using Image J software v.1.48. GAPDH was used for 
normalization.

Flow cytometry 

For evaluation of cell-cycle arrest, the cells (1×106– 
5×106 cells) were digested by trypsin (25300054, Gibco, 
Thermofisher, USA) for 2min at 37 ℃ and collected by 
centrifugation at 450 g, 4 ℃ for 5 min. After removing 
the supernatant, the cells were fixed by 70% ethanol (64-
17-5, Aladdin, China) at 4 ℃ for 2 h and then treated by  
1 µg/mL propidium iodide (PI, 25535-16-4, Aladdin, 
China )  in  1  mL PBS a t  4  ℃  for  30  min .  Then, 
FACSCalibur flow cytometer (342973, BD Biosciences, 

Table 1 Primers used for qRT-PCR

Primer name Forward Reverse

CASC9 TTGGTCAGCCACATTCATGGT AGTGCCAATGACTCTCCAGC

MiR-145-5p TCTTGTCATAAAGGTCCTTAGG GTGCAGGGTCCGAGGT

GAPDH GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT
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USA) was used for determining cell cycle, and data were 
analyzed by BD FACSCanto™ system software v2.4 
(646602, BD Biosciences, USA).

Annexin-V kit (70-AP101-100-AVF, MultiSciences, 
China)  was  used  to  detec t  ce l l  apoptos i s .  Af ter 
trypsinization, the cells were washed twice by cold 1× 
PBS. After centrifugation at 450 g, 4 ℃ for 5 min, the cells 
(1×106–5×106 cells) were resuspended in 300 µL binding 
buffer supplemented with 5 µL Annexin-V-FITC solution 
and incubated for 15 min at room temperature in the 
dark. The nuclei were stained by 5 µL PI (25535-16-4, 
Aladdin, China) for 5 min, followed by adding of 200 µL 
binding buffer. After that, FACSCalibur flow cytometer 
(342973, BD Biosciences, USA) were used to determine cell 
apoptosis. BD FACSCanto™ system software v2.4 (646602, 
BD Biosciences, USA) was used for data analysis.

Dual-luciferase reporter assay

The binding sites for miR-145-5p in lncRNA CASC9 was 
predicted by the StarBase Software (http://starbase.sysu.
edu.cn/). CASC9 wild type sequence and mutation sequence 
containing miR-145-5p target site were purchased from 
Tsingke Co., Ltd. and respectively cloned into luciferase 
reporter gene vector (pmirGLO, E1330, Promega, USA) as 
CASC9-WT reporter plasmid and CASC9-MUT luciferase 
reporter plasmid. Briefly, reporter plasmids CASC9-WT and 
CASC9-MUT were separately transfected into HCT116 
cells or SW480 cells. MiRNA-145-5p inhibitor was also 
transfected into cells by luciferase reporter system. After 
incubation for 48 h, the luciferase activity was determined 
by dual-luciferase assay system (E1910, Promega, USA) and 
Microplate Luminometer (11300010, Berthold, Germany). 
The firefly luciferase activity was normalized against renilla 
luciferase activity and presented as mean ± SD.

Statistical analysis

SPSS 16.0 was used for statistical analyses. The data were 
shown as mean ± standard deviation (SD). Student’s t-test 
(two-tailed) and one-way ANOVA, followed by Dunnett’ s 
post hoc test, were performed for statistical analyses. The 
difference was considered to be significant if P<0.05.

Results

LncRNA CASC9 is up-regulated in CC tissues and cells

The expression of lncRNA CASC9 in tumor-adjacent 

CC tissues and normal colonic tissues from CC patients 
was determined. The results showed that CASC9 was 
obviously up-regulated in CC tissues (P<0.001), and that 
the level of CASC9 was higher in CC tissues derived from 
patients at III/IV stages than those at I/II stages (P<0.001,  
Figure 1A,B). In addition, the level of lncRNA CASC9 was 
also evaluated in HIEC cells and LoVo, HCT116, SW480 
and HT29 cells. The results demonstrated that CASC9 was 
up-regulated in CC cell lines than in HIEC cells (P<0.001, 
Figure 1C), with CASC9 level higher in HCT116 and 
SW480 cells than that in other CC cell lines, thus, HCT116 
and SW480 cells were used for further research. 

Knockdown of CASC9 inhibits cell growth, promotes cell 
apoptosis and arrests cell cycle in CC cells

The expression level of CASC9 in HCT116 and SW480 
was significantly down-regulated by siCASC9 (both 
P<0.001, Figure 1D,E). CCK-8 assays showed that the cell 
viabilities of HCT116 and SW480 cells were decreased by 
knocking down CASC9 (both P<0.001, Figure 1F and G). 
Cell colony formation assays in HCT116 and SW480 cells 
also confirmed that silencing CASC9 suppressed cell growth 
(both P<0.001, Figure 2A,B). The protein expressions of 
Ki67 and PCNA protein were determined by western 
blotting, the result of which showed that the levels of Ki-67 
and PCNA in HCT116 and SW480 cells were significantly 
down-regulated by siCASC9 (both P<0.001, Figure 2C,D). 

The effects of siCASC9 on cell apoptosis and cycle 
in HCT116 and SW480 cells were evaluated by flow 
cytometry, and we found that knockdown of CASC9 
caused significant increase of cell apoptosis (both P<0.001, 
Figure 3A,B). The relative number of cells at G0/G1 phase 
was increased, while those at S phase was decreased after 
interference with siCASC9 (both P<0.001, Figure 3C,D).

CASC9 is identified as a molecular sponge for miR-145-5p

Bioinformatics analysis revealed the binding site for 
miR-145-5p in CASC9 and indicated a potential link 
between lncRNA CASC9 and miR-145-5p (Figure 4A). 
The luciferase activity in HCT116 cells transfected with 
CASC9-WT was observably increased by miR-145-5p 
inhibitor (P<0.001), while there was no significant alteration 
in HCT116 cells transfected with CASC9--MUT reporter 
(Figure 4B) was observed, moreover, similar results were 
shown in SW480 cells (Figure 4C). Next, the expression 
level of miR-145-5p was measured by qRT-PCR, and we 
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Figure 1 The expression of lncRNA CASC9 in patients’ tissues and the effect of CASC9 knockdown on cell viability in CC cells. (A) The 
levels of CASC9 in tumor-adjacent normal colonic tissues (n=30) and colon cancer tissues (n=30) determined by qRT-PCR. **P<0.001 vs. 
Normal. (B) The level of CASC9 in colonic tissues with I/II TNM stage (n=17) and III/IV stage (n=13) measured by qRT-PCR. **P<0.001 
vs. I/II. (C) The level sof CASC9 in different cell lines, including in HIEC, LoVo, HCT116, SW480 and HT29 measured by qRT-PCR. 
**P<0.001 vs. HIEC. (D,E) The knockdown efficiency of CASC9 in CC cells HCT116 (D) and SW480 (E) determined by qRT-PCR. (F,G) 
The proliferation capacity of HCT116 (F) and SW480 (G) cells measured by CCK-8 assays after interference with nothing (blank), siNC 
(negative control) or siCASC9 at 0, 24, 48 and 72 h. **P<0.001 vs. Blank; ##P<0.001 . siNC.

observed that knockdown of CASC9 up-regulated the level 
of miR-145-5p in HCT116 and SW480 cells (both P<0.001, 
Figure 4D,E). Comparison on the expression level of miR-
145-5p in tumor-adjacent normal colonic tissues with that 
in CC tissues confirmed that miR-145-5p was significantly 
down-regulated in CC tissues (P<0.001, Figure 4F). Further 
experiments in HCT116 and SW480 cells showed that 
the down-regulated level of miR-145-5p by miR-145-5p 
inhibitor could be rescued by knocking down CASC9 (both 
P<0.001, Figure 4G,H).

CASC9 regulates cell growth, cell apoptosis and cell cycle 
arrest via modulating miR-145-5p in CC cells

To further verify the effects of CASC9 on CC cells through 

miR-145-5p, we evaluated the cell proliferation ability, 
cell apoptosis and cell cycle arrest in HCT116 and SW480 
cells after transfection with miR-145-5p inhibitor or co-
transfection with miR-145-5p inhibitor and siCASC9. The 
results showed that miR-145-5p inhibitor increased the 
cell viability, while siCASC9 abrogated the effect of miR-
145-5p inhibitor on the cells (both P<0.001, Figure 4I,J). 
Additionally, knockdown of CASC9 also abrogated the 
increase of cell colony formation rates caused by miR-145-
5p inhibitor in HCT116 and SW480 cells (both P<0.001, 
Figure 5A,B). Flow cytometry results confirmed that the 
increase of cell apoptosis rates caused by the inhibition of 
miR-145-5p was also rescued by siCASC9 (both P<0.001, 
Figure 5C,D). Moreover, miR-145-5p inhibitor increased 
the cells at S phase but was compromised by siCASC9 in 
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Figure 2 The effects of lncRNA CASC9 knockdown on cell proliferation in CC cells. (A,B) Images of cells colonies in HCT116 cells (A) 
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HCT116 and SW480 cells (both P<0.001, Figure 5E,F).

Discussion

LncRNAs are dysregulated in various cancers, and they 
promote tumor initiation and progression (32). In this 

study, we found that lncRNA CASC9 acts as an oncogene 
to regulate cell proliferation, apoptosis and cycle through 
modulating miR-145-5p in CC cells. 

In this study, the level of CASC9 was found higher in CC 
tissues and cell lines. Moreover, CASC9 was high-expressed 
in CC tissues at advanced stage, indicating that CASC9 
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Figure 3 The effect of lncRNA CASC9 knockdown on cell apoptosis and cycle in CC cells. (A,B) Flow cytometry analysis shows the cell 
apoptosis of HCT116 cells (A) and SW480 cells (B). PI+/Annexin V+ are considered as apoptotic cells. The apoptosis rates are shown in the 
right. (C,D) The cell cycle of HCT116 cells (C) and SW480 cells (D) measured by flow cytometry. The proportions of cells with G0/G1, S 
and G2/M were counted in the right. **P<0.001 vs. Blank, ##P<0.001 vs. siNC. Blank, transfection with nothing; siNC, non-specific negative 
control siRNA; siCASC9, siRNA for CASC9.

may be related to the prognosis of CC, which is consistent 
with a previous study, in which higher CASC9 expression is 
shown to be related to shorter survival in OC patients (33).  
We also found that knockdown of CASC9 inhibits cell 
growth, promotes cell apoptosis and cell cycle arrest in 
CC cells, which is consistent with the previous study that 

CASC9 is high-expressed in esophageal squamous (34). 
Generally, increased cell proliferation and inhibition of cell 
apoptosis cause tumor formation, while inhibition of cell 
proliferation and induction of cell apoptosis could suppress 
the development of tumor. Thus, we consider lncRNA 
CASC9 to be an oncogene in CC.
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Figure 5 LncRNA CASC9 regulates the cell colony formation ability, cell apoptosis and cell cycle through targeting miR-145-5p in CC 
cells. (A,B) Images of cells colonies in HCT116 cells (A) and SW480 cells (B). The relative colony formation rates counted by Image J 
software is shown in the right. The pictures were took by a camera. Colonies (diameter >0.5 mm) were counted by Image J software v.1.48. 
(C,D) The cell apoptosis of HCT116 cells (C) and SW480 cells (D) measured by flow cytometry. The apoptosis rates are shown in the right. 
(E,F) Flow cytometry analysis for cell cycle of HCT116 cells (E) and SW480 cells (F). **P<0.001 vs. IC, ##P<0.001 vs. I. Blank, transfection 
with nothing; siNC, non-specific negative control siRNA; siCASC9, siRNA for CASC9. CASC9-WT, cells transfected with CASC9-WT 
luciferase reporter; CASC9-MUT, cells transfected with CASC9-MUT luciferase reporter; IC, inhibitor control; I, miR-145-5p inhibitor; 
siCASC9+I, co-transfection with siCASC9 and miR-145-5p inhibitor.
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LncRNA-miRNA-gene interactions contribute to the 
development of cancers. As a miRNAs sponge, CASC9 
affects the development of various cancers through 
targeting multiple miRNAs, for example, in hemangioma 
endothelial cells, lncRNA CASC9 regulates cell migration 
and invasion by targeting miR-125a-3p/Nrg1 (35), while in 
breast cancer cells, lncRNA CASC9 positively affects the 
expression of CHK1 through sponging the miR-195/497 
cluster (36). Research also showed that in glioma, CASC9, 
miR-519b and STAT3 form a positive feedback loop, 
facilitating tumourigenesis (37). In ovarian cancer, CASC9 
regulates LIN7A expression via targeting miR-758-3p, 
contributing to the malignancy of ovarian cancer cells (38).  
Therefore, we suspected that CASC9 targets different 
miRNAs in different cancer types, or has multiple miRNA 
targets, suggesting that the role of CASC9 is complicated 
in cancer cells. By performing bioinformatics analysis and 
dual-luciferase reporter assay, we found that miR-145-5p 
was the functional target for CASC9 in CC cells, which has 
not been found in other studies, RNA pull-down analysis 
still needs to be further performed to verify the interaction 
between CASC9 and miR-145-5p. Previous studies 
demonstrated that miR-145-5p was the target for multiple 
lncRNAs. For example, miR-145-5p is sponged by lncRNA 
TUG1 in laryngocarcinoma (39), in prostate carcinoma, 
lncRNA BRE-AS1 interacts with miR-145-5p to regulate 
cancer cell proliferation (40). LncRNA MALAT1 could 
also up-regulate the level of NEDD9 through targeting 
miR145-5p (41,42). Apart from lncRNAs, miR-145-5p can 
also be sponged by circular RNA in bladder cancer (31).  
Thus, we consider that miR-145-5p can be affected by 
different lncRNAs. In this study, we confirmed that lncRNA 
CASC9 targets miR-145-5p in CC cells, and that the level 
of miR-145-5p in CC tissues was obviously lower than 
that in tumor-adjacent normal colonic tissues, which was 
opposite to the expression pattern of CASC9.

Further experiments also confirmed that CASC9 
regulates cell growth, apoptosis and cell cycle arrest via 
modulating miR-145-5p in CC cells. MiR-145-5p is a tumor 
suppressor in cancer cells, and it inhibits cell proliferation 
and migration in bladder cancer (43), sensitizes prolactinoma 
to bromocriptine (44), affects the differentiation of gastric 
cancer (45), and inhibits gastric cancer invasiveness through 
suppressing epithelial-mesenchymal transition (46). 
Moreover, miR-145-5p is also found to be related to different 
signaling pathways, such as JNK signaling pathway (47), 
sp1/NF-κB signaling pathway (48), MAPK and PI3K/AKT 
pathways (49). In our study, we confirm that miR-145-5p is a 

tumor suppressor in CC.

Conclusions

In conclusion, lncRNA CASC9 is high-expressed in CC 
and regulates the cell growth, apoptosis and cycle through 
sponging miR-145-5p. Our research provides a new 
understanding on the roles of CASC9 and miR-145-5p in CC.
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