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Introduction

In the long history of medical science, the cancer has always 
been troubling us as the most insurmountable disease. Lung 
cancer is one of the most lethal and prevalent cancers in 
the world, which is reported to cause 26% of all cancer-
related deaths (1). However, there are still some limitations 
in current therapy approaches (surgery, chemotherapy and 
radiotherapy), such as high recurrence rates and serious 
side effects. Furthermore, effective clinical approaches 
are still lacked for early-stage diagnosis. In order to 
improve therapeutic effect and decrease high lethality of 
lung malignancy, it is urgently needed to discover new 
biomarkers and therapeutic targets. 

According to the classical theory of the central dogma, 
the RNA molecule is considered as a template for protein 
synthesis. Although all of the genome is expected to be 
transcribed into RNA, only 5–10% of the genome can be 

transcribed. During the transcription, the protein coding 
RNAs only account for lower than 10% due to evolutionary 
conservation (2). Distinct from protein-coding RNAs, the 
large group of RNAs is lack of protein-coding function, and 
therefore, they are designated as non-coding RNAs (ncRNA). 
Accumulated evidences have demonstrated that ncRNAs 
have effects on the regulation of transcription or pre-mRNA 
processing, even some ncRNAs can interact with proteins (3). 
During the last decade, the emerging of ncRNAs has opened 
a new field for both basic and clinical oncologists.

NcRNAs are classified into small non-coding RNAs 
and long non-coding RNAs (lncRNAs). In general, the 
former is featured with a length of shorter than 200 nt, 
which consists of microRNA (miRNA), small nuclear RNA 
(snRNA), small interfering RNA (siRNA), Piwi interacting 
RNA (piRNA), transfer RNA (tRNA) and ribosomal RNA 
(rRNA). Whereas, lncRNAs comprise a group of transcripts 
and they are longer than 200 nucleotides. According to 

Review Article

Long non-coding RNAs in non-small cell lung cancer: functions 
and distinctions from other malignancies 

Maolong Wang, Xiao Sun, Hao Wang, Yanlu Xin, Wenjie Jiao

Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China

Contributions: (I) Conception and design: M Wang; (II) Administrative support: W Jiao; (III) Provision of study materials or patients: X Sun, H Wang; 

(IV) Collection and assembly of data: M Wang, X Sun; (V) Data analysis and interpretation: All authors; (VI) Manuscript writing: All authors; (VII) 

Final approval of manuscript: All authors.

Correspondence to: Wenjie Jiao. Department of Thoracic Surgery, Affiliated Hospital of Qingdao University, Qingdao 266003, China. 

Email: jiaowj@qduhospital.cn.

Abstract: Lung cancer leads to the most cancer-related death in the world. It was shown from the 
increasing evidences that long non-coding RNAs (lncRNAs) are emerging as molecules for diagnosis, 
prognosis and even therapy of lung cancer and other malignancies. The biological functions or involved 
signaling pathways of lncRNAs are always found to be inconsistent among different types of malignancies. 
However, no available literature has systemically summarized differences in the functions and underlying 
molecular mechanisms of lncRNAs between lung cancer and other cancers. In this review, the biological 
functions and molecular mechanisms of lncRNAs in lung cancer were introduced. Furthermore, their 
functional differences between lung cancer and other malignancies were discussed. Finally, their potential 
clinical applications in future lung cancer therapy were focused on.

Keywords: Lung cancer; long non-coding RNAs (lncRNAs); biomarkers; targeted therapy

Submitted Jul 23, 2019. Accepted for publication Oct 08, 2019.

doi: 10.21037/tcr.2019.10.22

View this article at: http://dx.doi.org/10.21037/tcr.2019.10.22

2653

https://crossmark.crossref.org/dialog/?doi=10.21037/tcr.2019.10.22


2637Translational Cancer Research, Vol 8, No 7 November 2019

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(7):2636-2653 | http://dx.doi.org/10.21037/tcr.2019.10.22

their genomic locations, lncRNAs can be subdivided into 
intergenic and intragenic lncRNAs (lincRNA). LincRNAs 
are further classified as exonic, intronic and overlapping 
lncRNAs (4). Interestingly, several lncRNAs have been 
reported to be actually the precursor of other small  
RNAs (5). Unlike extensively studied miRNAs in Cancer 
Res, the association between lncRNAs and malignancies is 
relatively less characterized.

Thousands of lncRNAs are screened in human’s 
transcriptome, and however, only dozens of them have been 
well studied, such as X-inactive specific transcript (XIST), 
HOX transcript antisense RNA (HOTAIR), nuclear 
enriched abundant transcript 1 (NEAT1), and metastasis 
associated lung adenocarcinoma transcript 1 (MALAT1). 
LncRNAs have shared characteristics with mRNA. For 
examples, they are both transcribed by RNA polymerase II 
and usually followed by splicing. Their mature molecules 
have both capped 5' termini and polyadenylated 3' termini. 
The only difference between lncRNAs and mRNAs is that 
lncRNAs are lack of a protein-coding potential (6).

It was shown from many studies that lncRNAs can 
modulate specific gene expression, and they are thus 
involved in various biological processes of cancer cells. 
Moreover, the increasing evidences show that the lncRNA 
play a key role in cancer initiation, progression, and 
metastasis (7). On the basis of previous studies, we found 
that one lncRNA always relates to different signaling 
pathways or biological functions in different types of 
malignancies. Therefore, researching the functional 
differences of lncRNAs in multiple malignancies including 
lung cancer is an important work for further understanding 
the etiology and pathology of cancer.

In this review, dozens of known lung-cancer-associated 
lncRNAs were summarized, and their roles in lung cancer 
biology were described. Firstly, the biological functions 
and molecular mechanism of these lncRNAs in lung cancer 
were presented. Furthermore, their functional differences 
between lung cancer and other malignancies were discussed. 
Finally, their potential clinical applications in future lung 
cancer therapy were focused on.

Action mechanisms of lncRNAs in cancers

So far, the known molecular mechanisms by which lncRNAs 
affect cell functions involve interfering of transcription, 
initiation of chromatin remodeling, and silencing of gene 
clusters (8,9). In this part, the molecular mechanisms of 
lncRNA functions (Figure 1) were described.

Roughly, lncRNAs exert their functions on affecting 
transcription via pre-transcriptional, transcriptional 
and post-transcriptional levels. At pre-transcription 
level, the regulation of lncRNAs on genome involves 
histone modification, DNA methylation, X-chromosome 
inactivation, gene imprinting, and chromosome dosage 
compensation. For instance, XIST, a well-studied lncRNA, 
regulates dosage compensation in female mammals. After 
localized to the X chromosome, XIST can recruit multiple 
factors indirectly to execute X chromosome inactivation 
(XCI) (10-13). At transcription level, lncRNAs can affect 
transcription of neighboring genes and genes on different 
chromosomes (11,14). According to the study, NEAT1 binds 
to the promoter region of oncogenic genes to increases 
their transcription (15). LncRNA may also cooperate with 
transcription factors to regulate the transcription of target 
genes. For example, p53-inducible lincRNA-p21 directly 
binds to hnRNP-K, and in turn, mediates gene repression 
during cellular response to DNA damage (13). At post-
transcriptional level, lncRNAs always act as a competing 
endogenous RNAs (ceRNA) by competitively binding 
miRNAs (small non-coding RNAs located in cytoplasm, 
which always target 3' UTR of mRNAs to degrade them 
or prevent their translation), and consequently, they 
indirectly protect their predestinated mRNAs from being 
silencing or degraded (16,17). In addition, lncRNAs also 
affect translation by influencing the alternative splicing of 
pre-mRNAs (5). Notably, some lncRNAs can improve the 
stability of mRNA via their complementary sequences with 
target molecules, without involving miRNAs (18).

Fur thermore ,  depending  on  the i r  subce l lu lar 
localizations, lncRNAs can be classified into nuclear and 
cytoplasmic lncRNAs. Nuclear lncRNAs are enriched 
for functionality involving transcriptional regulation, 
chromatin interactions and RNA processing. Unlike RNA 
located in nucleus, cytoplasmic lncRNAs are primarily 
engaged to improve mRNA stability and influence cellular 
signaling cascades (19-21). The recent study showed that 
some nuclear lncRNAs could also function as a ceRNA, 
such as NEAT1 (nuclear enriched abundant transcript 1) 
and MALAT1 etc. (22-24), thereby suggesting that ceRNA-
associated molecular mechanisms may be much more 
complicated than that we thought. 

LncRNAs on different malignant characters of 
lung cancer

Dozens of lncRNAs are implicated in different types of lung 



2638 Wang et al. LncRNAs in lung cancer

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(7):2636-2653 | http://dx.doi.org/10.21037/tcr.2019.10.22

Figure 1 Biological mechanisms of lncRNAs are shown in this figure. Pink, blue, green lines stand for lncRNA, mRNA and DNA, 
respectively. lncRNA mechanisms can be divided into three parts. (A) At pre-transcription level, the regulation of lncRNAs associated with 
epigenetic regulation, involves histone modification, DNA methylation, gene imprinting, and chromosome dosage compensation. (B) At 
transcription level, lncRNAs can affect transcription of neighboring genes and genes on different chromosomes. Sometimes, lncRNAs may 
also cooperate with transcription factors to regulate the transcription of target genes. (C) At post-transcriptional level, lncRNAs always 
act as a ceRNA, or is engaged to modulate mRNA stability and translation, and influence cellular signaling cascades. LncRNAs’ functions 
lie on their subcellular localization. Nuclear lncRNAs mainly functions in pre-transcription level and transcription level regulation, while 
cytoplasmic lncRNAs are involved in post-transcription regulation. 
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Table 1 Lung cancer-associated lncRNAs

LncRNAs Alterations Lung cancer phenotypes Function in lung cancer References

AFAP1-AS1 Upregulated Invasion and metastasis Promoting (25)

AC006050.3-003 Upregulated Drug-resistance Promoting (26)

AK126698 Downregulated Drug-resistance Inhibiting (27)

BANCR Downregulated Invasion and metastasis Inhibiting (28,29)

ANRIL Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (30,31)

BCYRN1 Upregulated Invasion and metastasis Promoting (32)

CAR10 Upregulated Proliferation and apoptosis Promoting (33)

CCAT1 Upregulated Cancer initiation, proliferation and apoptosis, drug-resistance Promoting (34,35)

CCAT2 Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (36-38)

DLX6-AS1 Upregulated Unexplored Promoting (39)

Table 1 (continued)
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Table 1 (continued)

LncRNAs Alterations Lung cancer phenotypes Function in lung cancer References

DQ786227 Upregulated Cancer initiation Promoting (40)

GAS5 Downregulated Proliferation and apoptosis, drug-resistance Inhibiting (41-45)

GAS6-as1 Downregulated Unexplored Inhibiting (46)

GHSROS Upregulated Invasion and metastasis Promoting (47)

H19 Upregulated Cancer initiation, proliferation and apoptosis Promoting (48-54)

HMlincRNA717 Downregulated Unexplored Inhibiting (55)

HNF1A-AS1 Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (56)

HOTAIR Upregulated Cancer initiation, drug-resistance, proliferation and apoptosis, 
invasion and metastasis

Promoting (57-64)

LINC01133 Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (65-67)

LINCRNA-p21 Downregulated Proliferation and apoptosis Inhibiting (13,68)

lnc-bc060912 Upregulated Proliferation and apoptosis Promoting (69)

loc728228 Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (70)

LUADT1 Upregulated Proliferation and apoptosis Promoting (71)

MALAT1 Upregulated Invasion and metastasis Promoting (72-80)

MEG3 Downregulated Cancer initiation, proliferation and apoptosis, drug-resistance Inhibiting (81-83)

LINC00115 Upregulated Unexplored Unexplored (84)

MIAT1 Upregulated Unexplored Unexplored (84)

MVIH Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (85)

NEAT1 Upregulated Proliferation and apoptosis, drug-resistance Promoting (86,87)

NKX2-1-AS1 Upregulated Proliferation and apoptosis Promoting (88)

PANDAR Downregulated Proliferation and apoptosis Inhibiting (89)

DRAIC Downregulated Invasion and metastasis Inhibiting (90)

PVT1 Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (91,92)

RGMB-AS1 Upregulated Proliferation and apoptosis, invasion and metastasis Promoting (93)

SCAL1 Upregulated Proliferation and apoptosis, anti-cytotoxic effect Promoting (94,95)

SOX2-OT Upregulated Proliferation and apoptosis Promoting (96)

SPRY4-IT1 Upregulated Invasion and metastasis Promoting (97)

TUG1 Downregulated Proliferation and apoptosis Inhibiting (98)

ZXF1 Upregulated Invasion and metastasis Promoting (99)

lncRNA-LET Downregulated Invasion and metastasis Inhibiting (100)

UCA1 Upregulated Drug-resistance Promoting (101)

XIST Upregulated Invasion and metastasis Promoting (102)
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cancer (Table 1). From the table we can see that most of 
these lncRNAs function as cancer promoters. Furthermore, 
all the oncogenic lncRNAs are upregulated in lung cancer, 
while tumor-inhibiting ones are downregulated. Several 
lncRNAs have been well characterized to be involved in 
cancer initiation and metastasis, insensitivity of patients 
to chemotherapeutic compounds, radiations and targeted 
therapy, and the proliferation, apoptosis and invasion in 
lung cancer cells, while the biological functions of several 
lncRNAs remain to be further explored in lung cancer, 
including LINC00115, MIAT, HMlincRNA717, GAS6-
as1 and DLX6-AS1 (39,46,55,84). Additionally, one 
lncRNA can exert multiple functions in different cancers. 
These lung-cancer-associated lncRNAs were subsequently 
summarized according to their biological functions. 

LncRNAs associated with lung cancer initiation

The mechanism of cancer initiation is always of great 
importance for the study on lung cancer, but is still far 
from complete understanding. Identification of the relevant 
players in the process of malignant transformation is a key 
step to Cancer Res. Previous studies show that 5 lncRNAs 
can induce malignant transforming of lung and human 
bronchial epithelial (HBE) cells under specific condition. 

H19 is the first lncRNA discovered in human cells and 
highly expressed during the development of the embryo 
and fetus, while it is shut down in most tissues shortly after  
birth (103). Interestingly, this molecule was initially 
described as an anti-tumor molecule, but the most recent 
studies have demonstrated that H19 exerts an oncogenic 
function in various malignancies including lung, breast, 
cervix, esophageal, ovarian, bone and bladder cancers 
(54,104-110). Some studies have suggested a distinctive 
function of H19 in the initiation of lung cancer. Kaplan 
et al. reported that loss of imprinting (LOI)-caused 
H19 overexpression acted as one of early markers in the 
progression of airway epithelium malignant transformation. 
They found that H19 presented a high expression level 
in airway epithelium of smokers without alterations of 
other imprinted genes. Then, they treated HBE cells 
with cigarette smoke exposure (CSE) and found that a 
significant increase in H19 level was followed by malignant 
transformation (48). Another study by Hu et al. reported 
that HBE cells induced by cigarette smoke condensate 
showed a significant alteration in transcription profile 
of cancer-associated genes, including H19, IGF2, and 
MEG3. This study further demonstrated that long-

term treatment with cigarette smoke condensate led to 
malignant transformation of HEB cells (111). Expression 
of H19 has been revealed to be improved by mineral dust-
induced gene (MDIG), and then, it leads to shortened 
survival of lung cancer patients and increased incidence 
of smokers to suffer of lung cancer. MDIG is involved in 
the demethylation of H3K9me3 in the promoter region of 
H19, and therefore, it can promote its expression (112,113). 
Besides the cancer-initiated function mentioned above in 
lung cancer, H19 has also been reported to be associated 
with cancer cell proliferation. As a direct transcriptional 
target of c-Myc, H19 knockdown significantly inhibits 
NSCLC cell proliferation both in vitro and in vivo (50-52).  
LncRNA maternally expressed gene 3 (MEG3), a 
tumor-inhibiting molecule, has also been reported to be 
associated with various types of tumor tissues and cell 
lines. Different from H19, MEG3 exerts a distinctively 
anti-malignant-transformed function in lung carcinoma. 
MEG3 downregulation is attributed to environmental 
carcinogennickel-induced DNA methyltransferase 3b 
(DNMT3b) upregulation in HBE cells. Downregulation 
of MEG3 contributes to malignant transformation via 
reducing its binding to transcription factor c-Jun, an 
inhibitor of PHLPP1. The further study showed that 
decreased PHLPP1 can lead to Akt/p70S6K/S6 pathway 
activation, thereby increased the expression of HIF-1α and 
malignant transformation in HBE cells (81). This study 
indicates a unique anti-malignant-transformed function of 
MEG3 in lung cancer. CCAT1 (Colon cancer associated 
transcript 1, CARLo-5) was first found to be upregulated 
in colon carcinoma, and it has been reported to be 
downregulated in various cancers, including lung carcinoma 
(114-118). CCAT1 is mainly associated with malignant 
transformation of lung cancer. Lu et al. reported that 
CCAT1 functioned as a ceRNA to inhibit miRNA let-7,  
and then, it induced a malignant transformation through 
indirectly promoting activity of c-Myc in CSE-induced 
HBE cells (34). In a lncRNA expression microarray analysis, 
Gao et al. reported a lncRNADQ786227, which was found 
to be overexpressed in benzo(a)pyrene-induced HBE cells 
and it induced malignant transforming. According to the 
study, DQ786227 is upregulated in transformed HBE cells. 
Further studies on lncRNA DQ786227 is required (40).

LncRNAs on tumor cell proliferation and apoptosis

The uncontrollable cell proliferation and apoptosis is one of 
the most common malignant characters of cancer. There are 
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23 known lncRNAs which are associated with lung cancer 
cells proliferation and apoptosis, such as ANRIL, HOTAIR 
and lincRNA-p21 etc. In this part, several important 
proliferation-and-apoptosis-associated lncRNAs and their 
underlying mechanisms in lung cancer are summarized, and 
the others can be seen in Table 1. 

ANRIL (antisense non-coding RNA in the INK4 locus) 
was first uncovered in a genetic analysis of patients (119). 
It is reported that ANRIL functions as a promoter of cell 
proliferation in lung cancer. With the loss-of-function 
study, Nie et al. showed that ANRIL (mostly located in 
the nucleus) affected lung cancer cell proliferation and 
apoptosis partly via enhancer of zeste 2 polycomb repressive 
complex 2 subunit (EZH2)-dependent silencing of Kruppel 
like factor 2 (KLF2) and p21 transcription (30). Another 
study revealed that ANRIL is transactivated by c-Myc (31).  
Apoptosis-regulated lncRNA, lincRNA-p21, acts as a 
repressor in p53-dependenttranscriptional responses. 
The inhibition of this lncRNA affects expressions of 
hundreds of gene targets enriched for genes normally 
repressed by p53 in lung cancer cells. It was reported that 
this effect was mediated via a physical association with 
hnRNP-K (13). Up to now, the function of lincRNA-p21 
as a promoter of cancer cell apoptosis has been reported 
in several malignancies, including prostate, hepatocellular 
and colorectal cancer (68,120-123). Recently, Thai et al.  
identified a novel cancer-inhibiting lncRNA, SCAL1 
(the smoke and cancer–associated lncRNA-1), which is 
upregulated in the airways of smokers and various lung 
cancer cell lines, and transcriptionally regulated by NRF2 
(nuclear factor erythroid 2-related factor). In vitro assays 
demonstrated that upregulated SCAL1 exerted an anti-
cytotoxic function either in CSE-treated HBE cells or 
in lung cancer cells (95). Another study reported that 
LUCAT1 (SCAL1) was correlated to poor prognosis and 
promotes cell proliferation via repressing the expression 
of p21 and p57 in lung cancer (94). A novel lncRNA, 
LUADT1 (LUAD transcript 1), was reported to be highly 
expressed in lung cancer tissues and correlated with T 
staging. It functionally promotes cell proliferation in lung 
cancer. This lncRNA exerts cancer-promoting function via 
binding to proteasome component 2 (PRC2), and therefore, 
suppresses oncogene p21 expression (71). 

LncRNAs associated with cancer invasion and metastasis

Metastasis is regarded as one of the most important lethal 
factors for cancer, and therefore, it is significant to explore 

the mechanisms of lung cancer cell invasion and metastasis 
for improving patients’ survival. Seventeen cancer-
associated lncRNAs have been revealed to be implicated in 
invasion and metastases in lung carcinoma (Table 1). In this 
part, several lncRNAs which exert important functions in 
lung cancer invasion and metastasis are introduced 

Since its discovery in non-small cell lung cancer 
(NSCLC) (75), MALAT1 has been linked to various human 
malignancies, including lung, bladder, breast, colorectal, 
endometrial, esophageal, gastric, hepatocellular, ovarian, 
prostate, and renal cell carcinoma (124). MALAT1 is 
significantly overexpressed and can improve cancer invasion 
and metastasis in lung cancer (125). In lung carcinoma, it 
was reported that MALAT1 was regulated by transactive 
response DNA-binding protein-43 (TDP43) (72), Specificity 
protein 1 (SP1) (72), and DNA methylation (73), which 
played as a ceRNA through binding multiple miRNAs, 
such as miR-204 (74). Thus, MALAT1 regulates several 
EMT-associated proteins, including SLUG, TWIST and 
E-cadherin (126). It has also been reported that MALAT1 
is associated with some other clinical parameters and 
malignant phenotypes in multiple malignancies. In cervical 
cancer cells, MALAT1 impacts cell viability, proliferation, 
metastasis, cell cycle progression, and tumor growth (127).  
In colorectal cancer, MALAT1 is correlated with the 
sensitivity to chemotherapy (128). These two studies 
indicate that there may be some uncovered associations 
between this lncRNA and lung cancer except for metastasis. 
LncRNA HOX transcript antisense RNA (HOTAIR) is 
a dual-located lncRNA which is located both in nucleus 
and cytoplasm (72). It has been reported that the elevated 
expression of HOTAIR is associated with cell proliferation, 
migration and invasion in pancreatic, prostate, gastric, 
colorectal, cancer and melanoma (73,74,126-128). While 
the main function of HOTAIR in lung carcinoma refers 
to invasion and metastasis. In lung carcinoma, HOTAIR 
level is always accompanied by advanced stages, metastases, 
and shortened patient survivals in lung malignant disease 
(29,129). By means of supporting a role for HOTAIR in 
lung cancer metastasis, siRNA-mediated downregulation 
of this lncRNA decreased the migration and invasion of 
lung cancer cells in vitro and their metastatic potential  
in vivo (28). The further study showed that HOTAIR 
regulated the ratio of FoxA1 to FoxA2 via interacting with 
chromatin remodeling factor LSH, thereby affecting invasive 
and metastatic phenotypes of lung cancer cells (130). It has 
also been indicated that HOTAIR is associated with lung 
malignant transformation. HOTAIR promotes malignant 
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transformation process via activating autocrine IL-6/STAT3 
signaling in cigarette smoke extract (CSE)-treated HBE 
cells (131). Another metastasis-associated lncRNA BANCR 
(BRAF-regulated lncRNA1), which is induced by oncogene 
BRAFV600E (129), functions via suppressing MAPK signaling 
and then inhibiting the transcription of EMT-related 
proteins in lung carcinoma (28,29). It has also been revealed 
that BANCR exerted an anti-tumor function to suppress 
cell invasion and metastasis in colorectal, thyroid, bladder 
cancer and melanoma (130-133). LncRNA-LET has been 
shown to be a tumor suppressor in various malignancies. 
In nasopharyngeal carcinoma, it has been revealed that a 
significant downregulated level of lncRNA-LET is regulated 
by EZH2-mediated H3K27 histone methylation (134). 
The tumor-suppressive function of LET has been reported 
in gallbladder and gastric cancer (135,136). The hypoxia-
induced histone deacetylase 3 suppresses the expression of 
lncRNA-LET by affecting its promoter, and it eventually 
facilitates NF90 accumulation and hypoxia-induced cell 
invasion in lung cancer (100). This finding suggests a 
lncRNA-mediated connection between metastasis and 
hypoxia. Recently, Sakurai et al. reported a novel lncRNA 
downregulated RNA in androgen independent cells 
(DRAIC), which is downregulated in lung cancer, acts as an 
anti-tumor player. Overexpression of DRAIC significantly 
represses cell migration and invasion in lung cancer (90).

LncRNAs involved in therapy-resistant effects

Chemotherapy and radiotherapy are both important 
modalities against malignancies. However, resistance of 
cancer cells remains an impediment to the therapeutics. In 
this part, 8 lncRNAs which increase or decrease therapy-
resistant of lung cancer patients are summarized.

Growth arrest-specific transcript 5 (GAS5) is a well-
known anti-tumor lncRNA associated with cancer cell 
apoptosis. It mainly affects sensitivity of chemotherapy 
in lung carcinoma. Zhang et al. reported that GAS5 can 
enhance cisplatin sensitivity in lung cancer via autophagy 
inhibition (137). Another study demonstrated that GAS5 can 
promote gefitinib-induced lung cancer cell death through 
inhibiting IGF-1R expression (45). It is revealed by Xue et al.  
that GAS5 enhanced radiosensitivity through interacting 
with miR-135b in lung cancer cells (42). Moreover,  Xia et al.  
showed that MEG3 functioned as increasing cisplatin 
sensitivity of lung cancer cells through regulation of p53, 
β-catenin and surviving (83). One study on NEAT1 in lung 
cancer revealed that the interaction between NEAT1 and 

CTR1 (Copper transporter 1) promoted the internalization 
of a significant fraction of cDDP (Platinum-based 
chemotherapy, such as cisplatin) in tumor cells, thereby 
enhancing cisplatin sensitivity (87). LncRNA HOTAIR has 
been well demonstrated to be implicated in multiple aspects 
of malignant characters, including drug-resistance. Fang 
et al. found that downregulation of HOTAIR can promote 
cell sensitivity to anti-cancer drugs, thus suppressing cell 
viability, cell cycle arrest, and tumor growth (63). Except 
for its role in drug-resistance, a study on HOTAIR reported 
that over-expression of this lncRNA decreased radio-
sensitivity via inactivating β-catenin (64). Additionally, 
Hou et al. found that a lncRNA, AC006050.3-003, can 
potentially play a key role in chemo-resistance (26). Yang 
et al. reported that AK126698 appeared to induce cisplatin 
resistance by targeting the Wnt pathway in lung cancer  
cells (27). Urothelial cancer-associated 1 (UCA1) was 
previously reported to downregulate and exert its oncogenic 
function in bladder and hepatocellular carcinoma (138,139). 
Cheng et al. revealed that this molecule was upregulated 
to induce cancer cell acquired resistances to EGFR-
TKIs (epidermal growth factor receptor tyrosine kinase 
inhibitors) through activating AKT/mTOR pathway (101).

Lung cancer lncRNAs functionally distinct from 
other malignancies

According to previous researches, the biological functions 
of several specific lncRNAs in lung cancer are always 
distinguished from other human malignant tumors, 
through affecting different signaling pathways. In this 
part, two unique lncRNAs in lung cancer (PANDAR and 
TUG1) were mainly discussed with comparing to multiple 
malignancies (Figure 2).

I t  was  reported that  the  lncRNA promoter  of 
CDKN1Aantisense DNA damage-activated RNA (PANDAR) 
was induced by DNA damage, and then, it functionally 
regulated the proliferation and apoptosis of cancer cells (140). 
According to previous studies, this lncRNA is overexpressed 
in tumor tissue, and then, boost cell proliferation or metastasis 
in most malignancies, except for lung carcinoma. In liver 
cancer, it was reported that PANDAR was overexpressed in 
cancer cells and associated with poor prognosis. Silencing 
of PANDAR represses cell proliferation, colony formation 
and cycle progression (141). In colorectal cancer, PANDAR 
functions as an independent prognostic factor which 
correlated to tumor size and prognosis of patients, and its 
overexpression promotes EMT of cancer cells (142). Besides, 
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Figure 2 The known functions and mechanisms of two special lung cancer lncRNAs, TUG1 and PANDAR, are demonstrated in this figure. 
Green lines stand for the molecular interaction specific for lung carcinoma, while red lines stand for the common pathways that mediate the 
action of TUG1 and PANDAR in other cancers. These two lncRNAs function as cancer inhibitors in lung carcinoma. The unique cancer-
inhibiting functions of TUG1 and PANDAR are both mediated by RNA binding proteins, and regulated by p53 in lung cancer, while their 
p53-dependent anti-tumor mechanism has not been reported to be involved in other malignancies.
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it has been reported that PANDAR expression is positively 
correlated with advanced stages and poor prognosis in bladder 
cancer. Suppression of this lncRNA decreased invasion and 
metastasis, and increased apoptosis in bladder cancer cells (143).  
Additionally, it has been reported that PANDAR is 
upregulated and it facilitates cell proliferation in breast cancer. 
Knockdown of PANDAR inhibits G1/S transition of breast 
cancer cells via suppressing p16INK4A (144). In gastric cancer, it 
has been demonstrated that PANDAR was highly expressed 
in cancerous tissues, which is positively correlated to tumor 
size, lymph node burden and lower survival rates (145).  
Moreover, Wu et al. has showed an early-stage diagnosis 
value of circulating PANDAR in clear cell renal cell 
carcinoma (146). The expression profile and function of 
PANDAR is completely different in lung carcinoma from 
other cancers mentioned above, although it is consistently 
upregulated in cancer and functions as a cancer promoter 
in most malignancies. Han et al. reported that PANDER 
exhibited a downregulated expression level in lung cancer 

and was negatively associated with tumor size and TNM 
stages. Furthermore, PANDAR was found to be regulated 
by p53. Upregulation of PANDAR inhibits Bcl-2 expression 
via interacting with RNA binding protein NY-YA, thus, 
functionally inhibiting cell growth in vitro and in vivo (89). 

LncRNA TUG1 (taurine upregulated gene1) was firstly 
reported to be upregulated in taurine-treated mouse retinal 
cells and associated with retinal development (147). Since 
Khalil et al. revealed its function of recruiting PRC2 via 
genome-wide RNA immune precipitation (148), TUG1 has 
been demonstrated to be associated with several malignant 
diseases. The same as PANDAR, the expression and 
function of TUG1 in lung carcinoma is also opposite to 
other cancers. According to a study on colorectal cancer, an 
elevated expression level of TUG1 was detected in tumor 
tissues and associated with metastasis phenotype of tumor 
cells (149). Wang et al. demonstrated that TUG1 functions 
as a ceRNA to regulate miRNA-355-5p, thereby promoting 
migration and invasion in osteosarcoma cells (150).  
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Moreover, Jiang et al. revealed that TUG1 decreases 
radiosensitivity in bladder carcinoma via regulating the 
expression of HMGB1 (high mobility group box 1 protein), 
a chromosome-binding protein associated with DNA repair, 
duplication, transcription, and nucleosome packaging (151). 
Additionally, the function of promoting cell metastasis 
in TUG1 has also been reported in breast cancer, gastric 
cancer, endometrial cancer, small cell lung cancer and 
other malignancies (152-157). Unlike the tumorigenic role 
in other the above-mentioned cancers, TUG1 exerts a 
distinctively tumor-inhibiting function in NSCLC. Recently, 
Zhang et al. demonstrated that TUG1 is downregulated and 
functions as a cancer inhibitor in lung carcinoma. Through 
univariate and multivariate analyses in a cohort of 192 lung 
cancer patients, it was revealed that TUG1expression was 
negatively associated with TNM stage, tumor size, and 
shortened overall survival in lung cancer. Furthermore, this 
study showed that TUG1 is regulated by p53 via directly 
regulating its transcription. They also found that TUG1 
inhibits cell proliferation via PRC2-mediated inhibiting of 
homeobox B7 (HOXB7), thus affecting AKT and AMPK 
pathways. The p53/TUG1/PRC2/HOXB7 axis reveals a 
distinctive anti-tumor function of TUG1 in lung carcinoma. 

The anti-tumor function of TUG1 in lung cancer has also 
been certified in another study (98,158).

These above studies showed that the role of lncRNA may 
be not consistent in different types of malignancies. The 
unique cancer-inhibiting functions of TUG1 and PANDAR 
are both mediated by RNA binding proteins, and regulated 
by p53 in lung cancer. The p53-dependent mechanisms 
have not been revealed in other malignant diseases yet. 
This unique mechanism of the two lncRNAs’ function 
may be associated with some molecular features specific 
for lung carcinoma. Thus, it is instrumental in improving 
lung cancer therapy to further elucidate the molecular 
mechanism of lung cancer specific lncRNAs.

Potential clinical applications of lung cancer-
related lncRNAs

In addition to their roles in diseases, accumulated references 
suggest that lncRNAs obtained from either blood, tissue, 
or exhaled breath may provide reliable biomarkers for the 
diagnosis and prognosis of lung cancer. Moreover, the 
potential of lncRNAs on cancer therapy remains to be 
developed (Figure 3). 

Figure 3 The potential clinical applications of lncRNAs are demonstrated in this figure. The items in the left stand for lncRNAs’ potential 
in lung cancer prevention and treatment; right ones stand for the potential applications in prediction, diagnosis and prognosis of lung cancer.
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Biomarkers for prediction, diagnosis and prognosis

It has been demonstrated that smoking is correlated to the 
incidence of lung cancer (159,160). As mentioned above, 
the expression levels of H19 and MEG3 are significantly 
increased and decreased in CSE-treated bronchial 
epithelial cells respectively, and these two lncRNAs have 
critical functions in malignant transformation. Besides, 
it has been also revealed that HOTAIR and DQ786227 
are associated with lung cancer initiation. Thus, it is 
significant for long-term smokers to screen the expression 
level of these lncRNAs in their bronchial epithelial cells 
to evaluate the incidence of lung cancer. This screening 
can be accomplished with their bronchial washing fluids or 
bronchial epithelial cells during bronchoscopy. Additionally, 
for better clinical application, it is necessary to define the 
threshold concentrations of these lncRNA biomarkers for 
lung cancer prediction.

The intraoperative pathological diagnosis is a main 
approach to differentiate benign and malignant tumors (161).  
Since it is difficult to detect these cancer cells in some early-
stage cases, more biomarkers are required for the diagnosis 
of lung cancer. Some lncRNAs (H19, MALAT1, HOTAIR, 
etc.) always significantly are overexpressed in early stage 
of lung cancer (50,60,78). Thus, the detection of these 
lncRNAs can provide us with an approach to timely detect 
pulmonary malignant tumors. Furthermore, circulating 
lncRNAs can be used in auxiliary lung cancer diagnosis. 
It has been reported that both GAS5 and MALAT1 can 
exhibit elevated expression levels in whole blood of early-
stage lung cancer patients (162,163). Screening of MALAT1 
and GAS5 in blood is significant for diagnosis of early-stage 
lung cancer.

Chemotherapy is one of primary therapeutic strategies 
against malignancies. According to previous studies, 
the overexpression of these chemotherapy-resistance-
associated lncRNAs (GAS5, NEAT1, UCA1, etc.) can affect 
therapeutic effect of chemotherapy. In order to improve the 
efficacy, it is highly required to screen on chemotherapy-
resistance-associated lncRNAs in lung tumor. In order to 
obtain necessary biological information for postoperative 
chemotherapy, it is of important clinical significance to 
detect these lncRNAs in intraoperative pathological tissue. 
Unlike the patients who are undergoing surgery, the 
detection of predictive lncRNA can be performed for these 
preoperative or non-operative patients during CT-guided 
percutaneous biopsy. 

The invasion and metastasis are closely related to 

prognosis of lung cancer patients (164). MALAT1 is 
overexpressed in lung cancer tissues, as well as circulating 
system, and plays a critical role in lung cancer metastasis 
(80,163,165). High MALAT1 level in intraoperative 
pathological tissues or in whole blood indicated a metastatic 
potential for patients with lung carcinoma. 

In addition, it has been reported that several lncRNAs 
are associated with prognosis of lung cancer patients 
(60,67,78,162,165-168). With the help of available big data, 
such as The Cancer Genome Atlas (TCGA), we can identify 
multifactor prognostic markers through analyzing the 
correlation between lncRNA expression and survival rate. It 
is more likely to achieve a more precise prognosis through a 
combined application of these lncRNA biomarkers for lung 
cancer patients.

Potentially therapeutic applications 

The molecule-targeted therapy is a novel and potential 
approach against malignancies featured with better 
outcomes and fewer side effects. Several lung-cancer-
associated lncRNAs are critical for initiation, progression, 
and metastasis of lung cancer, thus having potential to 
act as therapeutic targets. Theoretically, the regulation 
of expression of these target lncRNAs can prevent the 
initiation of lung carcinoma and decrease the malignancy 
of tumor cells. Antisense oligonucleotides (ASOs) are 
short single-stranded deoxyribonucleotide analogs, which 
can downregulate RNAs via binding their complementary 
sequence. One study has demonstrated that injection of 
MALAT1-specific ASO into lung tumor can significantly 
inhibit lung cancer metastasis (79). Maybe, similar 
approaches can also be used to silence H19, which is 
elevated in SCE-treated bronchial epithelial cells and 
induces lung cancer initiation as mentioned above, to 
prevent the formation of lung carcinoma induced by 
smoking. Regarding that MEG3 can prevent malignant 
transformation in bronchial epithelial cells (81), it is 
possible to prevent lung cancer through the restoration of 
MEG3 in human lung and bronchial epithelial cells with 
effective transfer vectors. In addition, lncRNAs involved in 
chemotherapy sensitivity can improve therapeutic effect of 
drugs on lung cancer. As noted above, HOTAIR can reduce 
the sensitivity of lung carcinoma cells to chemotherapeutic 
drugs, such as cisplatin (63). Theoretically, the cisplatin 
effect can be improved by treatment of lung cancer patients 
with HOTAIR-specific ASO. Moreover, several lncRNAs 
can also be used for the enhancement of chemotherapy, 
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including UCA1, NEAT1 and GAS5.

Discussion

Although numerous studies have reported that many 
lncRNAs are closely associated with lung cancer, the 
functions and clinical potential of these lncRNAs are far 
from being well-understood. Tumor-derived lncRNAs are 
not suitable to widely and clinically predict the progression 
of lung cancer due to its relatively low accessibility, while 
lncRNAs in blood are more valuable in lung cancer 
diagnosis and prognosis prediction. Therefore, it is urgently 
needed to study circulating lncRNAs more intensely for 
future clinical application. The uncontrollable recurrence 
and metastasis are the highest lethality factors for lung 
cancer patients, as well as other malignancies, and however, 
it is yet to report which lncRNAs are correlated to cancer 
recurrence. Additionally, it has been revealed that several 
cancer-inhibiting lncRNAs are implicated in lung cancer, 
such as MEG3, PANDAR, DRAIC. It is promising to 
further develop anti-tumor therapeutic strategies based on 
utilizing these tumor suppressor lncRNAs.

Up to now, several miRNAs, like miR-34, have been 
well-studied, and ready to be used for diagnosis and therapy 
of malignancies (169), while lncRNA-based therapeutics 
are still far from clinical applications. Some problems are 
needed to be solved to facilitate the clinical application 
of lncRNAs, such as safety of lncRNA-based drugs, and 
delivery of therapeutic agent into target cells. 

Circular RNAs represent a novel class of endogenous 
RNAs with diversity and universality (170). Recent studies 
have well demonstrated the relationship between circular 
and linear RNAs and the possible mechanisms of cyclization 
(171,172), thus implying that lncRNAs may transform from 
linear form into circular one. For instance, the cyclization 
of ANRIL is induced by Alu repeats flanking its exons, 
and exerts different functions from linear ANRIL (173). 
Therefore, the emerging of circular RNA provides a new 
direction for lncRNAs’ study. 

Conclusions

The authors are accountable for all aspects of the work in 
ensuring that questions related to the accuracy or integrity 
of any part of the work are appropriately investigated and 
resolved.
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