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Introduction

Development of neural crest (NC) cell lines

The NC originates from the lateral portions of the neural 
plate and during gastrulation it contributes to the formation 
of each germ layer (1-3). The NC cells have a very precise 
timing and signaling program, here we only describe the 
major molecules which take part in its development (4). 
To gain mobility they are going through the epithelial-
mesenchymal transition (EMT), provided by several 
factors/signaling pathways (1,5,6). The first key element of 
the EMT is the rhoB protein which is responsible for the 

delamination of the NC cells from the neural plate. RhoB 
and Slug protein may be also involved in changing the 
cytoskeleton in NC cells, promoting migration (5-8). In the 
second step migrating NC cells downregulate both N and 
E-cadherins to separate from the surface ectoderm and the 
neuroepithelium and are able to move in the surrounding 
tissues, they express again N-cadherin as they reach their 
final destination (5,6,9). The third prominent step of the 
migration (and EMT) is the secretion of enzymes, which 
break down the extracellular matrix. Concerning the major 
routes of NC migration in the body, there are three routes 
can be distinguished: (I) a cranial route that is responsible 
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for forming of the placodes and the mesenchymal cells in 
the pharyngeal arches, (II) a truncal route that gives the 
melanocytes, sympathetic and paraaortic ganglia, dorsal 
root ganglia and the parenchyma of the adrenal gland, and 
(III) a route of the enteric nervous system where NC cells 
from the anterior (vagal) and a posterior (sacral) regions 
settle in the gut wall and migrate in a wavelike manner (3). 

Cranial route: The mesectoderm forms the majority of 
the skull and facial skeleton (except the basal part of the 
occipital bone), the smooth muscle, adipose tissue and 
the dermis (3,10). Several cell lines such as odontoblasts, 
C-cells, carotid body type I cells and cephalic meninges 
partially originate from NC cells. The mesodermal 
components of the aortic arch also derive from NC cells. 
NCC’s also provide the stroma of the glands of the head 
and neck and their proper migration also requires NC cells 
(1,3). Mutation in the Pax3 gene can cause the absence of 
NC cells which in turn leads to abnormal placement or 
even the absence of several glands (parathyroid, thymus)  
(11-13). The NC cells which originate from the forebrain’s 
region form the frontonasal process and the palate (3). 
Rhombomeres (segments of the neural tube) are also 
formed by the NC cells in the territory of the hindbrain. 
The 1st–2nd rhombomeres form each derivates of the 1st 
pharyngeal arch and the frontonasal process, the 2nd–4th 
forms the 2nd pharyngeal arch and the 4–6th rhombomeres 
are responsible for the development of the 3rd–4th 
pharyngeal arches and pouches (Table 1) (3). If the NC is 
excluded from those regions (including rhombomere 6), the 
thymus, parathyroid glands, and thyroid fail to form (11-13). 
According to earlier findings, the NCC’s of rhombomere 7 
are dedicated to form the aortopulmonary septum, it cannot 
be replaced by another part of the NC, this supports the 
protomap theory of neural development (14,15). 

Truncal and enteric nervous system routes: the truncal 

route involves three spatially and temporally different 
migratory pathways: (I) the ventral pathway represents the 
first populations migrating ventrally between the spinal 
cord and the somites to form the ganglia of the sympathetic 
trunk and the paraaortic ganglia as well as the adrenal gland, 
hence this pathway is often called as sympathoadrenal path 
(16,17). All the ganglia and other neural elements of the 
intestines and the lungs originate from NC cells (3). (II) the 
second wave of the NC cells form the ventrolateral pathway 
and populate the cells or the sensory ganglia and Schwann 
cells of the peripheral nervous system (Figure 1) (3). The 
adrenal medulla initially starts as a condensation of NCC’s 
which, while forming the adrenal medulla lose their neural 
features almost entirely (16,17). (III) the last wave is the 
dorsolateral pathway that gives rise to melanocytes.

Developmental-pathophysiological correlation

During development, several anomalies can cause the 
abnormal formation of NC cell lines, from chromosomal 
abnormalities [Di-George syndrome (18)], through gene 
mutations [MEN2 (19)] to external noxas (20).

There are also several practical facts, which may provide 
insight on the connection between the above-mentioned 
molecular background and pathogenesis of NC derivates. 
The pathogenesis of neuroblastoma (NB) and malignant 
melanoma (MM) contain similar molecular changes, such as 
neuroblastoma-Ras (NRAS) expression (proto-oncogene), 
EMT and production of enzymes, which break down 
the extracellular matrix (21,22). The NRAS expression is 
responsible for the continuous mitotic activity of cells, while 
the EMT transformation and enzyme secretion indicates 
the malignant potential of tumor cells (23). If MM cells are 
transplanted into a normal embryonic microenvironment 
(into an embryo), they lose their malignant potential, and 

Table 1 The basic developmental aspects of the pharyngeal arches, including the innervations, skeletal structures and muscles of pharyngeal 
derivates

Pharyngeal arches Bones Muscles Cranial nerve

I Mandibula Muscles for mastication, tensor tympani, tensor veli 
palatini, mylohyoid, anterior belly of digastric

V

II Lesser horn and upper part of the 
hyoid bone, styloid process

Muscles for facial expression, posterior belly of digastric, 
stylohyoid, stapedius

VII

III Greater horn and lower part of hyoid Stylopharyngeus, upper part of the pharynx IX

IV–VI Cartilages of larynx Pharynx, muscles of the larynx X
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start to behave as normal melanocyte precursors. Since the 
melanocyte cell line is the last wave of the migrating NC 
cells, they have to travel through almost all of the tissues, 
which may contribute to the very high malignant potential 
of MM.

During the development the Schwann cell precursors 
are able to differentiate into several cell types, including 
melanocytes, peripheral neurons, fibroblasts, Schwann 
cells. This wide cell line variety is important during the 
regeneration of injuries, since the mature Schwann cells 
may de-differentiate into precursor-like cells to promote the 
healing of neighboring structures (such as skin and nerves). 
This unique feature (de-differentiation) can be the key to 
understand the presence the diversity of the involved cells 
types in neurofibromatosis 1 (Schwann cells, fibroblasts, 
dendritic cells, melanocytes) (21). 

Prominent tumors which were originating from 
mature NC lines

Prominent tumors of Schwann cell lineage

Schwannoma and neurofibromatosis 1
Schwannomas are usually solitary, well-circumscribed 
benign tumors neighboring the peripheral or cranial  

nerves (24).  In the peripheral nervous system or in 
superficial regions, localized Schwannoma usually on 
US as a well vascularised lesion (more vascular than 
neurofibromas) with eccentric location; their average size is 
a few centimeters (25). Neurofibroma is generally situated 
in the center of the nerve and they are less vascularised 
than Schwannomas. Even though both tumors contain 
Schwann cells, neurofibromas also contain fibroblasts 
and mastocytes (25). On computed tomography (CT) 
Schwannoma is hypodense to skeletal muscle with poor to 
moderate heterogeneous contrast enhancement (24). The 
7–8% of intracranial tumors are Schwannomas surrounding 
the VIII. cranial nerve (acoustic neurinoma). Intracranially 
Schwannomas are localized around the cranial nerves except 
the olfactory and optic nerve (they have glial cells instead 
of Schwann cells). On CT the tumor is hyperdense in 50% 
on unenhanced scan, and causes the bone destruction. 
In small acoustic neuromas the widening of the internal 
acoustic canal can be the first imaging finding. On magnetic 
resonance imaging (MRI), they usually have hyperintense 
signal on T2-weighted imaging (T2WI) (26,27). On T1-
weighted imaging (T1WI) they may appear as isointense 
(Antoni type B or hypocellular tumor) or hyperintense 
lesions (Antoni type A or hypercellular tumor) with 
heterogeneous enhancement (26). Neurofibromatosis 
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Figure 1 The schematic view of the distribution of neural crest cell derivates. The distribution of NC cell lines in the embryo (S28 
embryonal stage), during the folding of embryo the derivates of NC cell lines spread into the whole body of the embryo. All of the sensory, 
autonomic and enteric ganglia, melanocytes, several endocrine cell lines, and the majority of the facial skeleton forming by NC cells, all cell 
lines indicating by different colors. NC, neural crest.
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type 1 (NF1) consists of neurofibromas which are built 
up by Schwann cells, fibroblasts, mast cells and dendritic 
cells. The diagnosis is based on demonstrating at least 2 
of the following 7 clinical criteria: limb hemihypertrophy, 
pseudoarthrosis, neurofibromas, subcutaneous and 
plexiform neurofibromas, café au lait sign, gliomas and 
hamartomas of the iris (Lisch’s nodules). The plexiform 
neurofibromas is pathognomic to NF and affects 10% of 
NF1 patients which has malignant potential (28). 

Prominent tumors of the ventral pathway 
(sympathoadrenal cell lineage)

Paragangliomas are tumors of the sympathetic trunk ganglia 
and the ganglia of parasympathetic nerves. Based on the 
widespread presence of vegetative ganglia, the tumors may 
arise anywhere in the body from the skull (jugulotympanic 
membrane) to the pelvis. Recent findings indicate 
that the molecular basis of the development of several 
paragangliomas contain germline mutations (RET, VHL) 
(29,30). Note that all neuroendocrine neoplasms express 
somatostatin receptors, the special ligand is the Indium-111 
octreotide (29).

Pheochromocytoma
It would be more precise if we used ‘pheochromocytoma’ 
for the adrenal tumors and ‘paraganglioma’ for the extra-
adrenal masses. The CT appearance is largely variable, 
they can either be heterogenous or homogenous depending 
on the size and compartments they have, they may show 
calcification, fatty degradation, cystic and/or solid parts 
(31,32). Most pheochromocytomas show attenuation 
higher than 10 HU, making the differential diagnosis 
easier from adenomas (32). In both arterial and venous 
phases, pheochromocytomas usually take up more contrast 
medium than adenomas, rapidly (31,32). With MRI, 
most pheochromocytomas are hyperintense on T2WI 
(compared to liver) and hypointense on T1WI (31,32). 
On diffusion-weighted imaging (DWI), the tumors show a 
heterogeneously high signal intensity (32). The gadolinium 
enhancement profile of this neoplasm is also heterogeneous 
without any notable characteristics. Cystic and necrotic 
parts of the solid tumors do not take up contrast media 
independently (32). Some of the tumors may contain either 
septa or walls, these parts show contrast enhancement on 
MRI images (31). 131I or 123I labeled MIBG scintigraphy is a 
potential diagnostic tool in nuclear medicine. 

Paragangliomas
Carotid body paraganglioma is a highly vascularised  
tumor (33), the bifurcation of the common carotid artery is 
the most common site, the arising tumor can enclose, but 
does not compress the neighboring great vessels. With US 
a highly vascularised, solid, visible tumor can be detected 
adjacent to the carotid sheath. On MRI T2WI the lesion 
is hyperintense to the vascular nature, the classic “salt and 
pepper” pattern is obvious (29). Computed tomography 
angiography (CTA) reveals a hypervascular lesion with large 
feeding arteries. From a practical approach, the tumors can 
be divided into three groups (Shambling classification). 
Group 1 contains tumors that are minimally attached to the 
vessels and are smaller than 5 cm. Group 2 involves partially 
enclosed blood vessels and group 3 lesions break through 
the vessel walls (34). Although it is estimated that less than 
10% of paragangliomas are malignant, in some studies 
malignancy rates are as high as 50%. It is noteworthy that 
all carotid body tumors have malignant potential and it is 
not always possible to predict malignant behavior based 
only on histological features.

Neuroblastoma 
Radiographic images of NB may reveal a posterior 
retroperitoneal, mediastinal or neck mass (35). Metastasis 
may show different manifestations such as hepatomegaly, 
lucency in the submetaphyseal zones, periosteal reaction, 
additionally, dural metastases could cause sutural widening 
(36). On US, NB can contain anechoic areas pertaining 
to hemorrhage or necrosis. Calcification appears as focal 
echogenic areas or diffuse hyperechogenecity, the latter 
caused by fine calcifications (37). US is a useful tool in 
evaluation of, e.g., the liver for metastases, though it is 
better to perform CT or MRI (36). On CT, NB’s appear 
as large, lobulated, heterogeneous soft tissue masses with 
little to no enhancement. Eighty-five percent of abdominal 
manifestations and 50% of thoracic manifestations show 
coarse calcification. Diffuse hepatic metastasis is usually 
undetectable on CT; lung metastases are rare, they only 
appear in 3% of the cases (38). On MRI, NB is usually 
heterogenous and displays a variable but mostly low 
enhancement or non-enhancing pattern. T1 hypointensity 
and T2WI hyperintensity is typical. Unlike calcifications, 
cystic and hemorrhagic areas within the lesion are 
commonly visible. On diffusion-weighted images, increased 
tumor signal can be measured due to restricted diffusion 
within the tumor matrix (39). In children with paraspinal 



2920 Papp et al. Imaging of the NC disorders in medicine

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2019;8(8):2916-2923 | http://dx.doi.org/10.21037/tcr.2019.10.38

NB, it is better to apply MRI to assess epidural extension. 
Leptomeningeal dissemination in 10% of abdominal, 28% 
of thoracic and occasionally in cervical NB, dumbbell-
like NB’s can be seen (35). Bone marrow infiltration is 
usually diffuse but it may show a nodular pattern, with T1 
hypointensity and T2 hyperintensity. Bone scan with 99mTc-
MDP and 123I-MIBG are the most commonly performed 
examinations. Entirely omitting scintigraphic studies may 
cause incorrect staging in up to 10% of cases (35). 

Carcinoid
Carcinoid emerges from the submucosa into the lumen 
of the gastrointestinal tract or situated in the gut wall 
(70–90%), an uncommon location is the bronchial tree 
(lung also develops from the foregut) (40,41). The incidence 
is about 2–5/100,000 (40,42). Carcinoids are usually well 
circumscribed small lesions (under 2 cm) however, some 
carcinoids can cause an unnatural kink or curvature of the 
intestinal wall (40,42). In 70% of the cases calcification 
in the mesenteric lymph nodes is present, which is 
an important indirect sign (43). Carcinoids are highly 
vascularised tumors and generally produce hormones. Small 
carcinoid (<1 cm) tumors are usually undetected on CT 
scans (42), however CT enteroclysis has 100% sensitivity 
and 96% specificity in identifying patients with small bowel 
neuroendocrine tumors (NETs) (44). Intramural carcinoids 
may be visible during colonoscopy or gastroscopy. According 
to limited data, MR enterography and enteroclysis has 86–
94% sensitivity and 95–97% specificity (45,46). T1-weighted 
MR images with fat suppression (FS) may be helpful to detect 
nodules or GI wall thickening with gadolinium enhancement 
(40,47). Carcinoids express somatostatin receptors, granting 
the possibility to use 111In octreotide for imaging (46). Using 
18F-FDG is not widely applied since a low-grade malignancy 
can be undetectable (48,49).

Medullary thyroid carcinoma
The calcitonin releasing C-cells take place sporadically 
in the thyroid gland, their malformation may lead to 
medullary thyroid carcinoma (MTC) which is around 
1% of all thyroid malignancies (50-52). From the time 
of diagnosis, the serum calcitonin level is an evident and 
special marker for follow-up. Echogenicity is variable, 
calcifications it can be divided into the following groups: 
microcalcifications (less than 1 mm), macrocalcifications 
(larger than 1 mm) or rim calcifications (53). A cystic part 
inside a nodule is more common in MTC compared with 
papillary thyroid carcinoma. MTC shows homogeneous 

echogenicity in 58.7% of the lesions, which is significantly 
higher than in the papillary thyroid carcinoma [30.9% of 
the lesions (53)]. CT features of MTC are nonspecific (50). 
In suspicion of metastasis or invasion CT is preferred, from 
the skull to the bifurcation of the trachea with 2-mm slices 
in axial, coronal and sagittal planes, providing the best  
sensitivity (54). In case of metastases to the CNS and 
abdomen, MRI is the best choice (54). A head and neck 
protocol covering the same anatomical territories with T1, 
T2 FS images, followed by post-contrast T1 images has the 
best specificity in finding metastases (54,55). 

Prominent tumors of melanocytic lineage

Melanoma 
CT, US and chest radiography has very poor efficiency 
(around 0.1%) to screen patients for early stage melanoma, 
especially in asymptomatic patients (56). The sensitivity 
of US is 39–79% and specificity is almost 100% (57).  
PET/CT is the best imaging approach in finding metastasis 
(97% sensitivity) (57,58). MRI can show characteristic 
signal features such as T1 hyperintensity and T2 
hypointensity with hypointensity on the short-tau inversion 
recovery (STIR) sequence since melanin contains metal 
ions in paramagnetic compounds (59,60). The amelanotic 
type shows the opposite signal intensity on MRI due to the 
absence of melanin, furthermore, hemorrhagic components 
(found in up to 40% of cases) may also alter the signal 
intensity. The CNS and its adnexes contain metastases in 
7% of the cases according to dissection reports (60). CT, 
MRI and ultrasound are the most common radiological 
imaging tools used in scanning for metastases; however the 
slice thickness or resolution has to be under 2 mm (56). 
In scanning for intrathoracic metastasis, CT is the first 
choice. On CT metastases are usually iso- or hypodense; 
enhancement is typical in abdominal lesions, the specificity 
is 87% (57,60)

Abnormal migration of NC cells

Dysganglionosis group
The dysganglionosis group contains gastrointestinal 
disorders based on the abnormal migration of NC cells that 
can involve all segments of the gastrointestinal tract from 
the esophagus to the rectum, however the most commonly 
involved site is the colon (61). In hypo-, or aganglionosis 
the following abnormalities can be seen: narrowing of the 
lumen where the ganglion cells are missing and prestenotic 
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dilatation of the lumen usually with air-fluid level, achalasia 
may develop which can be divided into primary and 
secondary achalasia. 

Hirschsprung disease, also coined congenital megacolon, 
has an incidence of 1 in 5,000 live births (62). The most 
prominent symptoms are delayed meconium defecation, 
abdominal distension, vomiting and enterocolitis, 
however, in many cases the patient is asymptomatic until  
adolescence (63). On plain radiography a transition zone 
can be seen between the gas-filled colon and a non-
dilated proximal colon. The first imaging procedure 
may be contrast enema with barium which reveals not 
only the transition zone, but also the irregular colonic 
contractions, irregular mucosa (suggesting enterocolitis), 
and an abnormal rectosigmoid index (64). In adults, CT and 
double-contrast enema reveals a markedly dilated proximal 
colonic segment with a transition zone and a narrowed 
distal colonic segment can be detected in conjunction with 
chronic refractory constipation. 

Multiple lineage tumor syndromes

Multiple endocrine neoplasia 2
MEN2 is a hereditary disease in which the RET gene, 
which has a principal role during the development, 
migration of NC cells, is subject to mutation. MEN2 
includes pheochromocytoma, medullary thyroid carcinoma, 
acoustic neurinoma, parathyroid hyperplasia. Additionally, 
the connection between MEN2 and Hirschsprung disease 
is not well understood, but overlapping between these 
abnormalities is evident according to statistical analysis (65).

Conclusions

In this article we attempted to highlight a connection 
between the general developmental processes of NC 
cells and the daily radiological practice. Routinely the 
radiologist is not responsible in establishing a diagnosis in 
the majority of the discussed tumors. It is worth noting that 
several tumors can be a part (or first element) of the above-
mentioned syndromes/diseases. Numerous articles contain 
poorly-defined practical information about the coincidence 
of at least two tumors/disorders of NC cell derivates, 
without firm conclusion. To our current understanding 
the scientific background is not well understood regarding 
the coincidence of the diseases mentioned previously, 
but indicates that we have to consider these diseases as a 
homogenous group from a developmental aspect.
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