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Down-regulated hsa_circ_0067934 facilitated the progression 
of gastric cancer by sponging hsa-mir-4705 to downgrade the 
expression of BMPR1B
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Background: Gastric cancer is the third most lethal cancer worldwide. Finding a novel marker is essential 
to targeted therapy and the diagnosis of gastric cancer. As newly discovered markers, circRNAs have aroused 
widespread attention on a global scale. Our research aims to understand the role of circRNAs in gastric 
cancer and to explore the underlying pathogenesis.
Methods: Raw expression data of circRNAs were obtained from the GEO database. Integrated 
bioinformatics analysis was used to screen differentially expressed circRNAs (DECs) by RobustRankAggreg 
package. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were 
performed to predict the functions of DECs. Then, the miRNAs and mRNAs at the downstream of DECs 
were predicted. Expression data of miRNAs and mRNAs were downloaded from The Cancer Genome Atlas 
(TCGA). The aberrantly expressed miRNAs and mRNAs were selected using the edgeR package. 
Results: Four datasets (GSE78092, GSE83521, GSE89143, and GSE93541) were downloaded from the 
GEO database. Among them, two DECs (hsa_circ_0007991 and hsa_circ_0067934) were screened. The 
functional analyses of DECs confirmed that they were cancer-related circRNAs. Furthermore, hsa-mir-4705 
(miRNA) and BMPR1B (mRNA) at the downstream of hsa_circ_0067934 were found differentially expressed 
in gastric cancer by expression data from TCGA database.
Conclusions: Our study discovered the critical roles of hsa_circ_0007991 and hsa_circ_0067934 in the 
development of gastric cancer, and they could be novel markers for targeted therapy and assist the diagnosis 
of early-stage gastric cancer.  Moreover, we discovered that the hsa_circ_0067934/hsa-mir-4705/BMPR1B axis 
might be involved in the carcinogenesis of gastric cancer.
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Introduction

Gastric cancer, whose incidence accounts for 5.7% of 
total cancer cases worldwide, is the fifth most commonly 
diagnosed cancer, lagging just behind lung cancer (11.6%), 
breast cancer (11.6%), colorectal cancer (10.2%), and 
prostate cancer (7.1%). Moreover, up to 8.2% mortality 
of the total cancer-related deaths makes gastric cancer the 
third leading cause of cancer-related death, ranking next 
only to lung cancer (18.4%) and colorectal cancer (9.2%) (1).  
As the only curative treatment for gastric cancer, adequate 
surgical resection can make the overall 5-year survival 
rate of patients with early-stage gastric cancer reach 98%. 
Unfortunately, most patients with gastric cancer were 
diagnosed at an advanced stage. The lack of an apparent 
syndrome and practical screening approach at an early 
stage are likely responsible for the high mortality of gastric  
cancer (2). In the past few decades, we have also developed 
adjuvant and neoadjuvant therapies applied according to the 
stage and risk assessment of gastric cancer, such as pre-/peri- 
or postoperative chemotherapy and chemoradiotherapy, as 
well as targeted therapy. Nevertheless, the overall prognosis 
of advanced gastric cancer remains poor (3,4). We must 
find new diagnostic approaches to detect gastric cancer in 
the early stage along with efficient therapies to improve the 
prognosis of gastric cancer.

Circular RNAs, also known as circRNAs, used to 
be thought of as the byproducts of the normal splicing 
process (5), and were first discovered nearly 43 years  
ago (6) and found pervasive expression in eukaryotic genes 
in 2012 (7). The critically biological functions of circRNAs 
were identified in 2013 (8). In recent years, there have 
been new research hotspots in the field of cancer, and the 
understandings about circRNAs have been deepened. Most 
circRNAs are non-coding RNA and are located in the 
cytoplasm. Different from linear RNAs, the downstream 3’ 
splice site and the upstream 5’ splice site of circRNAs are 
complementary. The formation of the unique “backsplice” 
causes circRNAs to become a highly conserved and stably 
covalently closed RNA circlea (9). Recent works have 
revealed that circRNAs mostly generated from exons 
of protein-coding genes have numerous functions. For 
instance, they can act as miRNA sponges to regulate 
the expression of miRNA; binding tumor suppressor 
proteins by protein-binding sites on circRNAs to inhibit  
oncogenesis (10); the exons of the circRNAs may translate 
protein to influence the function of cell; changing mRNA 
expression from the host gene (11). Also, increasing 

reports have found that circRNAs are aberrantly expressed 
in various cancers, such as breast cancer (12), colorectal 
carcinoma (CRC) (13), ovarian cancer (14), hepatocellular 
carcinoma (HCC) (15) and so on. More importantly, 
circRNAs with a highly stable structure are enriched 
in blood, plasma, and platelets. Meanwhile, changes in 
circRNA expression level (downregulation or upregulation) 
were found to be tightly related to tumorigenesis, 
progression, invasion, and cell proliferation. Given the 
circRNA properties mentioned above, we speculated that 
circRNAs might be promising cancer biomarkers that could 
be detected at an early stage of cancer and a therapeutic 
target to improve the prognosis of cancer (11).

This study aimed to screen the significantly cancer-
related circRNAs in gastric cancer and find potential 
mechanisms among oncogenesis. First, microarray 
datasets of gastric cancer tissue were downloaded from 
Gene Expression Omnibus (GEO) database. Secondly, 
integrated bioinformatics analysis methods were applied 
to filter markedly differently expressed circRNAs (DECs). 
Thirdly, the targeted miRNAs and mRNAs were predicted. 
Subsequently, Gene Oncology (GO), Kyoto Encyclopedia 
of Genes and Genomes (KEGG) analyses about the 
DECs were performed to identify the functions of DECs. 
To validate the predictions about DECs targets, we also 
downloaded the expression data of miRNAs and mRNAs 
from The Cancer Genome Atlas (TCGA). Aberrantly 
expressed miRNAs and mRNAs were obtained by the edgeR 
package. Overlapped miRNAs and mRNAs in predicted 
results and outputs from the TCGA database were obtained 
by taking the intersection. Lastly, we discovered the hsa_
circ_0067934/hsa-mir-4705/BMPR1B axis, which promoted 
the occurrence and progression of gastric cancer by 
regulating the Hippo pathway and the signaling pathways 
regulating pluripotency of stem cells.

Methods

Acquisition of expression data from GEO

We screened circRNA expression profiles from Gene 
Expression Omnibus (GEO), a regularly updated database 
storing numerous circRNAs expression profiles (16), by 
searching the keywords “circRNA and gastric cancer.” 
As a result, 8 datasets were identified. Further screening 
criteria were set as the following: (I) the specimens must be 
human gastric cancer tissue; (II) the type of datasets must be 
expression profiling by array; (III) samples must be able to 
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be divided into a normal group and cancer group; (IV) no 
special treatments, such as radiotherapy and chemotherapy, 
were applied on patients; (V) the name of circRNAs in the 
data of platforms must be a standard name or named by 
Agilent Arraystar. The raw expression profiles and platforms 
were retrieved. 

Screening of aberrantly expressed circRNAs by integrated 
bioinformatics analysis 

Normalization and log2 transformation for raw expression 
data of all datasets were performed. Then, the limma 
package in R software was used to analyze differently 
expressed circRNAs (DECs) in each dataset (17). 
|logFoldChange| >1 and P value <0.05 were set as cut-
off criteria. In order to find more significant DECs, 
RobustRankAggreg was applied to integrate and rank 
all DECs (18). Statistical significance was defined as 
|logFoldChange| >1 and adj. P value <0.05.

Prediction of miRNAs interacted with circRNAs

Cancer-specific circRNA database (CSCD) is a powerful 
web tool to annotate circRNAs functions, including the 
prediction of microRNA response element sites (MRE), 
RNA-binding protein sites, and potential open reading 
frames (19). Hence, we made use of CSCD to forecast the 
miRNAs which bind to differently expressed circRNAs. 

Prediction of miRNA target genes

The public databases, such as miRDB (20), miRTar  
Base (21), Target Scan (22), are practical online resources 
that can carry on functional annotations of miRNAs 
and predict miRNA-targeted genes. We took miRNAs 
overlapped in the three databases as significant targets.

Functional enrichment analysis

Database for Annotation, Visualization, and Integrated 
Discovery (DAVID), an online software that can conduct 
Gene Ontology (GO) analysis, can perform concretely 
functional annotations [the molecular function (MF), 
biological process (BP), and cellular component (CC)] 
of genes (23). Then, we took DAVID to implement GO 
analysis about predicted genes, and the P value <0.01 was 
statistically significant. As an R software package that 
enables us to carry on biological-term classification and the 

enrichment analysis of gene clusters, the clusterProfiler 
package was run for the Kyoto Encyclopedia of Genes 
and Genomes (KEGG) analysis to discover the potential 
pathways that DECs may participate in (24). P value <0.01 
was set as the cut-off criterion. The R package ggplot2 was 
utilized to present the results. 

Collection of miRNAs and genes expression data  
from TCGA

TCGA is a publicly accessible database with thousands of 
tumor samples and contains a variety of molecular data 
such as gene expression, gene methylation, copy number 
variation (CNV), and so on (25,26). miRNAs and mRNA 
expression data tested by experiments in gastric cancer were 
retrieved from TCGA. The miRNA data met the following 
criteria: “Disease Type is Adenomas” AND “Primary site is 
stomach” AND “Project id is TCGA-STAD” AND “Data 
Category is Transcriptome Profiling” AND “Data Type is 
miRNA Expression Quantification” AND “Experimental 
Strategy is miRNA-Seq”, were available. Similarly, the 
standards set to filter the datasets of mRNAs were as 
follows: “Disease Type is Adenomas” AND “Primary site 
is stomach” AND “Project id is TCGA-STAD” AND 
“Workflow Type is HTseq-Counta” AND “Data Category 
is Transcriptome Profiling” AND “Data Type is Gene 
Expression Quantification” AND “Experimental Strategy is 
miRNA-Seq”. 

Selection of differently expressed miRNAs and genes in 
gastric cancer from TCGA 

The aberrantly expressed miRNAs and genes were 
identified using edgeR package, a software used to analyze 
differential expression in RNA-seq datasets (27,28), and 
|logFoldChange| >1 and P value <0.05 were defined as 
screening standards.

Results

Identification of DECs in gastric cancer

According to the above limitations, four datasets, including 
GSE78092, GSE83521, GSE89143, and GSE93541, 
were screened, and the details are shown in Table 1. The 
expression profiles of the four datasets were normalized and 
log2-transformed. Based on these standardized data, we 
conducted the aberrantly expressed analysis to screen the 
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differentially expressed circRNAs (DECs) among the four 
datasets by limma package with |logFoldChange| >1 and P 
value <0.05, respectively. Eventually, a total of 196 DECs, 
consisting of 144 down-regulated circRNAs and 52 up-
regulated circRNAs, were identified in GSE78092. In total, 
148 DECs were obtained from GSE83521, including 66 
down-regulated circRNAs and 82 up-regulated circRNAs. 
In total, 122 DECs with 94 down-regulated circRNAs and 
28 up-regulated circRNAs were selected in GSE89143. 
Also, we screened 410 DECs consisting of 202 down-
regulated circRNAs and 208 up-regulated circRNAs from 
GSE93541. The aberrant expression of four datasets was 
expressed in a volcano plot, as shown in Figure 1.

Integrated analysis based on RobustRankAggreg

The analysis outcome of the single dataset was highly likely 
to increase the ratio of false-positive results. Taking this 
into account, we decided to adopt the RobustRankAggreg 
algorithm to integrate the DECs of four datasets, to 
improve the authenticity of the results. Through rank 
analysis, two DECs, which were most likely to be linked 
to gastric cancer, were screened with an adjusted P value 
<0.05, namely hsa_circ_0007991 and hsa_circ_0067934. 
Figure 2 displays the expression of two DECs among the 
four datasets and structural patterns of two DECs. The 
characteristics of two DECs are described in Table 2.

Identification of miRNAs and genes at the downstream  
of DECs

As an online web tool that could assist us in obtaining the 
MREs of circRNAs, the CSCD was utilized to forecast 
the miRNAs binding to the DECs. As a consequence, a 
total of 60 miRNAs were discovered at the downstream 
of hsa_circ_0007991, and 36 miRNAs were selected at the 
downstream of hsa_circ_0067934. Furthermore, we took 
advantage of three online resources, miRDB, miRTarBase, 

and TargetScan, to predict the miRNA-targeted genes. 
Genes simultaneously existing in three databases and the 
relevant miRNAs were included in our study. 

GO enrichment analysis of DECs

GO enrichment analysis mainly consists of three parts, 
CC, BP, and MF, and was performed using the DAVID, a 
powerful online tool. The results are displayed in Figure 3. 
In the cell composition group, the predicted genes at the 
downstream of hsa_circ_0007991 were primarily enriched in 
the nucleus, cytoplasm, and focal adhesion. The predicted 
genes at the downstream of hsa_circ_0067934 were chiefly 
enriched in nucleoplasm, nucleus, and cytoplasm. In the 
MF group, the predicted genes at the downstream of hsa_
circ_0007991 were primarily concentrated in poly (A) RNA 
binding, protein binding, and nucleic acid binding. The 
predicted genes at the downstream of hsa_circ_0067934 were 
mainly enriched in protein binding, poly (A) RNA binding, 
and ubiquitin-protein ligase binding. In the BP group, the 
predicted genes at the downstream of hsa_circ_0007991 
were primarily enriched in regulation of transcription, 
DNA-templated, transcription, and positive regulation of 
protein insertion into mitochondrial membrane involved 
in the apoptotic signaling pathway. The predicted genes at 
the downstream of hsa_circ_0067934 were mainly enriched 
in Wnt signaling pathway, calcium modulating pathway, 
negative regulation of transcription from RNA polymerase 
II promoter. It illustrated that DECs existed in the nucleus 
and cytoplasm and could bind to protein and RNA, and 
therein participated in the regulation of transcription and 
signaling pathway, ultimately leading to the occurrence of 
diseases. These results are consistent with other reported 
conclusions.

Pathway analysis of DECs

KEGG pathway analysis was conducted with a clusterProfiler 

Table 1 Details for datasets from GEO

GEO Platform Sample Normal Tumor Submission Update Author

GSE78092 GPL21485 Tissue 3 3 Feb 19, 2016 Oct 26, 2017 Huang YS

GSE83521 GPL19978 Tissue 6 6 Jun 20, 2016 Dec 15, 2017 Zhang Y

GSE89143 GPL19978 Tissue 3 3 Oct 25, 2016 Jun 27, 2017 Guo J

GSE93541 GPL19978 Plasma 3 3 Jan 12, 2017 Jan 16, 2017 Guo J

GEO, Gene Expression Omnibus.
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Figure 1 Differential expression of four datasets from GEO. (A) GSE78092, (B) GSE83521, (C) GSE89143, (D) GSE93541. DECs were 
screened with |logFoldChange| >1 and P value <0.05. DECs, differently expressed circRNAs; FC, fold change; GEO, Gene Expression 
Omnibus.

Figure 2 The expression level and structural information of DECs in gastric cancer. (A) Heatmap of DECs obtained by integrated analysis; 
adjusted P-value < 0.05 was set as a criterion. (B) Structural information of hsa_circ_0009771 and hsa_circ_0067934 performed by CSCD. 
DECs, differently expressed circRNAs; CSCD, Cancer-Specific circRNA Database.
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package in R software. The results are shown in Figure 4. 
The signaling pathways of genes at the downstream of hsa_
circ_0007991 were involved in two pathways: signaling 
pathways regulating the pluripotency of stem cells and the 
p53 signaling pathway. The signaling pathways of genes 
at the downstream of hsa_circ_0067934 were primarily 
concentrated in signaling pathways regulating pluripotency 
of stem cells, autophagy–animal, and FoxO signaling 
pathway. The results proved that hsa_circ_0007991 and hsa_
circ_0067934 had a close relationship with cancer-related 
pathways and were the initiators of gastric cancer.

Validation of miRNAs and genes at downstream of hsa_
circ_0007991 and hsa_circ_0067934 through the data 
from TCGA

The miRNAs expression profiles of 42 gastric cancer 

samples and 410 normal controls were retrieved from 
TCGA. The expression of genes among 30 gastric cancer 
samples and 343 normal controls were downloaded from 
TCGA. All of them were analyzed with edgeR package from 
the Bioconductor project, independently. Volcano plots 
are shown in Figure 5. As a result, a total of 338 aberrantly 
expressed miRNAs were determined. Among them, 104 
down-regulated miRNAs and 234 up-regulated miRNAs 
were included. A total of 7042 differentially expressed 
genes, containing 2828 down-regulated genes and 4214 
up-regulated genes, were detected. To examine whether 
the predicted miRNAs and genes at the downstream of 
hsa_circ_0007991 and hsa_circ_0067934 obtained through 
bioinformatics methods were verified in the experiment, we 
took the intersection between the predicted miRNAs and 
genes and the aberrantly expressed miRNAs and genes in 
the expression data from TCGA. No overlapped miRNAs 

Table 2 The characteristics of two DECs

CircRNA ID Position Strand Best transcript Gene symbol CircRNA study

hsa_circ_0007991 chr1:21329205-21415706 − NM_001198801 EIF4G3 Jeck2013, Maass2017, 
Rybak2015, alzman2013

hsa_circ_0067934 chr3:170013698-170015181 + NM_002740 PRKCI Rybak2015, alzman2013

DECs, differently expressed circRNAs.

Figure 3 GO enrichment analyses of genes at the downstream of DECs in gastric cancer. (A) hsa_circ_0007991-related GO analysis;  
(B) hsa_circ_0067934-related GO analysis. The top five terms in three functional groups: molecular function, biological processes, and cell 
composition, were presented. DECs, differently expressed circRNAs.
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Figure 4 KEGG enrichment analyses of genes at the downstream of DECs in gastric cancer. The clusterProfiler package was utilized to 
screen a significant pathway with P value <0.05. The top 18 pathways related to DECs are shown in the picture. DECs, differently expressed 
circRNAs.

Figure 5 Differentially expressed miRNAs and mRNAs in gastric cancer. (A) Differential expression of miRNAs from TCGA; (B) 
Differential expression genes from TCGA; |logFoldChange| >1 and P value <0.05 were set as criteria; (C) Venn diagram for the miRNA’s 
intersections; (D) Venn diagram for the mRNA’s intersections. Because there were no overlapped terms between the group of up-regulated 
miRNAs or genes from TCGA and the predicted miRNAs or genes at the downstream of hsa_circ_0067934, the Venn diagram is not shown.
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at the downstream of hsa_circ_0007991 were found, and 
hsa-mir-4705 at the downstream of hsa_circ_0067934 was 
identified in both datasets (Figure 5C). Therefore, we took 
further analysis to study the genes at the downstream of 
hsa-mir-4705. Among four hsa-mir-4705-targeted genes 
(TMEM68, BMPR1B, MCFD2, and ASH1L), only BMPR1B 
was verified in the expression data from TCGA (Figure 5D).  
In summary, we speculate that there may be a hsa_
circ_0067934/hsa-mir-4705/BMPR1B axis, which plays a 
vital role in the occurrence and development of gastric 
cancer.

Discussion

Gastric cancer is the third most lethal cancer in the world 
(1,29), and the most common type of gastric cancer is 
adenocarcinoma, which can be divided into two subtypes, 
including intestinal and diffuse types, based on the Lauren 
classification (30). Also, gastric cancer is a complicated 
disease attributed to the interaction of environmental 
and host-associated factors. The biological and genetic 
characteristics may play leading roles in the initiation and 
development of gastric cancer (4,31). Reports have revealed 
that the poor outcome of patients with gastric cancer is 
mainly caused by the lack of diagnosed approach at the 
early-stage gastric cancer; thus, the gene diagnosis (32) 
and targeted therapy (33,34) might represent a new dawn 
for curing gastric cancer. Over the past few decades, the 
bioinformatics approach has been widely used to detect 
potential therapeutic targets for gastric cancer with the 
boom of microarray and high-throughput sequencing 
technologies. Trastuzumab, the inhibitor of HER-2, has 
been demonstrated to be effective in patients with HER2-
positive gastric cancer (35,36). However, anti-EGFR and 
anti-MET/HGF therapies do not remarkably improve 
the overall survival (OS) in gastric cancer (37-40). The 
emerging PD-1inhibitors, pembrolizumab and nivolumab 
may be useful in suppressing the development of gastric 
cancer (41,42). There is still much room for exploration in 
the field of targeted therapy for gastric cancer.

As the highlights of cancers in recent years, circRNAs 
have been held to have the potential to become diagnostic 
and prognostic biomarkers due to the highly conserved 
and stable loop structure and tissue-specificity (11,43,44). 
An abundance of research has illustrated the importance 
of circRNAs in the progression of cancers. For instance, 
Han et al. discovered that circMTO1 is down-regulated in 
HCC tissues and can repress the development of HCC 

by sponging miR-9 to increase p21 expression (45). A 
recent publication in the Journal of Hepatology discovered 
that cSMARCA5 behaved as a tumor suppressor in HCC, 
and was able to interact with miR-17-3p and miR-181b-
5p to promote the expression of an anti-oncogene called 
TIMP3 (46). Furthermore, circ-SHPRH could code 
tumor suppressor protein, SHPRH-146aa, to regulate 
the progression of glioblastomas (47). Based on existing 
research results, we concluded that circRNAs were critical 
molecules to understand the underlying mechanism of 
carcinoma progression. 

In our study, four expression profiles (GSE78092, 
GSE83521, GSE89143, and GSE93541) were retrieved from 
the GEO database and integrated to analyze the aberrantly 
expressed circRNAs using the RobustRankAggreg 
algorithm. Through integrated analysis, two circRNAs, 
namely hsa_circ_0007991 and hsa_circ_0067934, were 
screened, and all of them were dysregulated in gastric 
cancer tissue. According to the theory of MREs, we utilized 
CSCD, a web tool, to predict the miRNAs interacting with 
DECs. Sixty miRNAs were forecasted at the downstream of 
hsa_circ_0007991, and 36 miRNAs were hsa_circ_0067934-
targeted.  Then,  three onl ine resources ,  miRDB, 
miRTarBase, and TargetScan, were combined to predict 
the miRNA-targeted genes. Genes simultaneously existed 
in three databases and relevant miRNAs were included in 
our study. Forty miRNAs and 371 genes were determined 
at the downstream of hsa_circ_0007991, and 31miRNAs 
and 530 genes were predicted at the downstream of hsa_
circ_0067934.

Furthermore, to understand the functions of hsa_
circ_0007991 and hsa_circ_0067934 in gastric cancer, we 
performed the GO and KEGG analyses. CircRNA hsa_
circ_0007991 acted on genes enriched in the nucleus and 
cytoplasm. These genes could bind to RNA, protein, 
and nucleic acid, and regulated transcription and protein 
insertion into mitochondrial membrane involved in the 
apoptotic signaling pathway, leading to abnormal signal 
transductions of signaling pathways regulating pluripotency 
of stem cells and p53 signaling pathway.

Similarly, the hsa_circ_0067934-targeted genes were 
concentrated in the nucleoplasm, nucleus, and cytoplasm, 
and interacted with RNA, protein, and ubiquitin-protein 
ligase. Finally, it could have obstructed the signal conduction 
of the Wnt signaling pathway and calcium modulating 
pathway. This may be a potent mechanism in gastric cancer. 
These discoveries indicate that hsa_circ_0007991 and hsa_
circ_0067934 may be pivotal molecules in the development 
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mechanism of gastric cancer and could be a potential target 
for gastric cancer.

To ascertain the expression of predicted miRNAs 
and genes at the downstream of DECs, we obtained the 
expression profiles of miRNAs and mRNAs from TCGA 
database. The differently expressed analyses were performed 
separately by edgeR package in R software. In total, 104 
down-regulated miRNAs and 234 up-regulated miRNAs 
were identified. A total of 7,042 differentially expressed 
genes, including 2,828 down-regulated genes and 4,214 up-
regulated genes, were detected. Subsequently, we obtained 
overlapped miRNAs and genes in the predicted results 
and outputs from TCGA database by the intersection 
method. The predicted miRNAs at the downstream  
of hsa_circ_0007991 were not found in expression data from 
TCGA.

Nevertheless, hsa-mir-4705, a hsa_circ_0067934-targeted 
miRNA, was overlapped in two datasets, and the expression 
of it in data from TCGA was down-regulated. Accordingly, 
we took hsa-mir-4705 as the focus. BMPR1B, one of the 
four dysregulated genes (TMEM68, BMPR1B, MCFD2, 
and ASH1L) at the downstream of hsa_circ_0067934 was 
confirmed in DEGs from TCGA database. As mentioned 
above, we deduced that hsa_circ_0067934 could regulate 
the expression of BMPR1B by interacting with hsa-
mir-4705, and all of them functioned as a tumor suppressor 
in gastric cancer. In other words, there may be a hsa_
circ_0067934/hsa-mir-4705/BMPR1B axis to regulate 
the occurrence, progression, and prognosis of gastric 
cancer. To study the potential pathway related to the hsa_
circ_0067934/hsa-mir-4705/BMPR1B axis, we researched 
the predicted pathways that BMPR1B at the downstream 
of hsa_circ_0067934 participated in. Three pathways, 
including signaling pathways regulating pluripotency 
of stem cells, the Hippo signaling pathway, and axon 
guidance, were included. Among them, signaling pathways 
regulating the pluripotency of stem cells and the Hippo 
signaling pathway was involved with carcinomas (Figure 6).  
This implies that the hsa_circ_0067934/hsa-mir-4705/
BMPR1B axis regulated the differentiation of gastric cells 
and the progression of gastric cancer by impacting signaling 
pathways regulating pluripotency of stem cells and Hippo 
signaling pathway.

A previous study had reported that mechanisms mediated 
by circRNAs are liable for the progression of gastric  
cancer (48). hsa_circ_002059 (49) and hsa_circ_0014717 (50)  
were found significantly dysregulated in gastric cancer 
tissues and could be detected in body fluid. In other 

analyses, the low expression of hsa_circ_0001649 (51), hsa_
circ_104916 (52), and hsa_circ_100269 (53) were closely 
related to the development of gastric cancer. As for hsa_
circ_0067934 in our study, Xia et al. demonstrated that hsa_
circ_0067934 is up-regulated in ESCC and promoted the 
proliferation of ESCC cells. The reason why the result in 
the study of Xia et al. is contrary to our conclusion might 
be that circRNAs are tissue-specific (54). In the same way, 
the hsa_circ_0067934 could also be detected in plasma (the 
samples of gastric cancer were plasma in the GSE93541 
dataset) and have a low expression.

Consequently, we inferred that hsa_circ_0067934 might 
be a novel biomarker and therapeutic target in gastric cancer. 
The hsa-mir-4705 was firstly discovered in breast cancer 
through the next-generation sequencing approach (55).  
Not much is known about how hsa-mir-4705 regulates the 
progression of carcinoma. Our study disclosed that the 
dysregulated hsa-mir-4705 suppressed the expression of 
BMPR1B in gastric cancer.

Further experiments are needed to illustrate the role 
of hsa-mir-4705 in gastric cancer. BMPR1B, as the target 
of hsa-mir-4705, is a transmembrane serine-threonine 
kinase receptor among the bone morphogenetic protein 
(BMP) receptor family (56). The responsibility of it is to 
transduce the BMPs signal by binding to transforming 
growth factor-β (TGF-β) and activin (57). Recent studies 
indicated that BMPR1B acted as an oncogenesis factor, 
and the declined expression of it was highly connected 
with the poor prognosis of breast cancer (58,59). These 
discoveries are consistent with our results. Chapellier et al.  
demonstrated the vital role of BMPRIB in the initiation 
of stem cell transformation (60). The Hippo pathway is 
conserved, and the pivotal signaling pathway functions as 
a regulator to modulate cell proliferation, differentiation, 
and apoptosis, leading to the alteration of tissue growth and 
homeostasis. The processes are mainly mediated by YAP 
and TAZ. Moreover, BMPRIB can possibly integrate with 
the Hippo pathway through crossing talks with TGF-β 
signaling pathways (61). Evidence is available that elucidates 
the connections between BMPRIB and signaling pathways 
regulating the pluripotency of stem cells and the Hippo 
pathway.

Conclusions

In summary, we detected two DECs, hsa_circ_0007991, and 
hsa_circ_0067934, which were involved in the progression 
mechanisms of gastric cancer and could be novel diagnostic 
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Figure 6 Two cancer-related pathway possibly effected by hsa_circ_0067934/hsa-mir-4705/BMPR1B regulatory axis in gastric cancer. (A) 
Signaling pathways regulating pluripotency of stem cells; (B) Hippo signaling pathway.
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or prognostic markers, as well as therapeutic targets for 
gastric cancer. Also, a hsa_circ_0067934/hsa-mir-4705/
BMPR1B regulatory axis was identified in gastric cancer. 
No matter which molecules among hsa_circ_0067934, hsa-
mir-4705, or BMPR1B were abnormally expressed, the signal 
transduction of signaling pathways regulating pluripotency 
of stem cells and Hippo pathway would be disturbed and 
accompany the occurrence and progression of gastric 
cancer. This may be one of the underlying mechanisms 
by which gastric cancer develops. Indeed, the absence of 
experiments is the most significant limitation in our study. 
We do realize the problem, and further experiments are on 
the schedule. We will knock down the hsa_circ_0067934 in 
the normal gastric cell line to examine whether the changes 
of hsa-mir-4705 and BMPR1B expression are accordant 
with the results we predicted in this study. More functional 
assays will also be conducted to validate the effects of the 
hsa_circ_0067934/hsa-mir-4705/BMPR1B regulatory axis on 
the biological behavior of gastric cancer cells.
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