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Introduction

The Wnt gene plays a role in the normal embryonic 
development of mice. It controls the axial development of 
the embryo (1). The Wnt signaling pathway is critical for 
the regulation of cell proliferation, differentiation, apoptosis 
and migration. Mutations in the Wnt gene or Wnt pathway 
components can lead to abnormal embryonic development 
and cancer formation, including cell proliferation, 
differentiation and metastasis (2). With the continuous 
development of tumor biology, it has been found that the 
Wnt pathway is abnormally activated in tumor cells, mainly 
in three aspects: proteins and transcription factors that make 
up the Wnt pathway are destroyed; more Wnt signal makes 
the pathway active and cells proliferate excessively; other 
factors in the cell stimulate the cells to produce abnormal 
reactions through the Wnt pathway. In addition, mutations 
in different proportions of β-catenin nuclei and different 

frequencies of beta-catenin gene (CTNNB)/adenomatous 
polyposis coli (APC) were detected in many cancers (3). 
Therefore, various targeted drugs for mutation targets are 
constantly emerging (4).

Canonic Wnt signal pathway

The Wnt protein forms a trimer on the cell surface by 
completing with the Frizzled/low-density lipoprotein (LDL) 
receptor-associated protein (LRP) (5). The binding of Wnts 
to frizzle (FZD) and LRP5 or LRP6 co-receptors transduces 
a signal across the plasma membrane that results in the 
activation of dishevelled protein. Activation of disheveled 
(DVL) prevents APC, AXIN and glycogen synthase kinase 
3 (GSK3β) from forming a disruptive complex, which 
prevents the phosphorylation and subsequent degradation of 
β-catenin, and accumulates in the cytoplasm or translocates 
to the nucleus (6). Once inside the nucleus, β-catenin 
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replaces groucho with the transcription factor T-cell factor 
(TCF)/lymphoid enhancer-binding factor (LEF) binding 
transcriptional activation complex and recruit histone 
acetylases. This leads to the transcriptional activation 
of growth promoting genes such as cyclooxygenase2, 
matrilysin/matrix metalloproteinase 7, cycling D1 (7). In the 
absence of specific Wnt ligands, the Wnt receptor failed to 
bind the dishevelled protein, and the cytoplasmic β-catenin 
was phosphorescent by the disrupted complex formed by 
the three proteins APC, AXIN and GSK3β. The initial 
casein kinase 1 (CKI) phosphorylation occurs at Ser45, 
which in turn primes the molecule by phosphorylation of 
GSK3β on Thr41, Ser37 and Ser3 (7). Phosphorylated 
β-catering is recognized by the E3 ubiquity ligase β-Trcpand 
is degraded by the ubiquity proteasome pathway. As a 
result, β-catenin in the cytoplasm remains low, unable to 
enter the nucleus. As a consequence, TCF/(LEF) bind to 
transcriptional inhibitors of the gaucho family, hat recruit 
histone decarboxylase to mediate transcriptional repression 
through chromatin compaction (8). However, how DSH 
(Dishevelled) phosphorylation is controlled and what DSH 
functions in Wnt signaling are still unknown.

Non-canonic Wnt signal pathway

The non-classical pathway is divided into the planar 
cell polarity (PCP) and calcium flux. During the PCP, it 
can be initiated by Wnt-Frizzled receptor interactions 
which activate DVL. DVL regulates three small GTPases 
including RHOA, RAC and cell division control protein 42 
(CDC42) and triggers JUN N-terminal kinase (JNK), JNK 
activates nuclear factor (NFAT)-dependent transcription of 
AP1- and activated T cells after entering the nucleus.

In the calcium flux, Wnt and DVL bind to each other 
to activate PLC which releases calcium ions. Intracellular 
calcium ions activate the downstream protein kinase C 
(PKC) and calcium/calmodulin-dependent protein kinase II 
(CaMKII) which activate nuclear factor (NFAT) (9).

Wnt cooperation with other signaling pathway

Nuclear factor kappa B (NF-κB), Stat, and β-catenin-
dependent transcriptional activators in genes encoding 
in vivo plane/axis/design and stress responses in adult life 
Showing the most prominent performance (10). Stat is 
a co-activator. In advanced mammalian vertebrate hosts, 
β-catenin is based on Wnt and NF-κB/Relp65 pathways 
have become major members of Stat-associated proto-

oncogenes/oncoproteins (11).
Every family member of Wnt has unique features. 

There are complex interactions among the 19 Wnt 
members in the Wnt signaling pathway. At the same 
time, the Wnt signal path is closely related to other signal 
paths. Recently, the role of the Wntsignaling pathway 
in the inflammatory process began to be discovered. In 
addition, Wnt/β-catenin pathway components can regulate 
inflammation and immune responses by interacting with 
NF-κB. In turn, NF-κB also affects the activity of the 
Wnt/β-catenin signaling pathway (12). Crosstalk between 
these two pathways can significantly affect inflammation 
and cancer progression. In-depth studies have found that 
NF-κB signaling pathway is a powerful target for the 
treatment of inflammatory diseases and inflammation-
related cancers, and Wnt signaling pathway can prevent 
or promote the development of inflammation. Another 
study suggests that abnormal Wnt signaling increases the 
risk of type 2 diabetes and Alzheimer’s disease in humans 
during metabolic processes in organisms. GSK-3β kinase 
links Alzheimer’s disease and diabetes. Therefore, it will 
be a potential treatment for diabetes (13). Previous studies 
have demonstrated that β-catenin is a negative regulator 
of intestinal NF-κB activity in bacterial-induced epithelial 
inflammation. In the canonical pathway, Wnt binding 
stabilizes the transcription factor β-catenin, which in turn 
enters the nucleus to regulate the Wnt pathway target gene. 
This suggests that Wnt2 may regulate the inflammatory 
response by influencing signaling pathways associated 
with cell proliferation and apoptosis, thereby promoting 
host protection in the gut. Wnt2 pathways, upregulation 
of β-catenin, and increased viability of intestinal epithelial 
cells during bacterial infection (8). Members of the Wnt/
β-catenin pathway can also serve as potential therapeutic 
targets for many types of cancer. Further studies have shown 
that Stat3 is an important mediator of FZD2-mediated 
downstream signaling, EMT planning and cell migration. 
Therefore, it is possible to c develop inhibitors targeting on 
Wnt2 combined with Stat3 (14).

Wnt/β-catenin signaling pathway in cancer

Mutations in oncogenes or tumor suppressor genes can 
lead to inappropriate activation of normal regulatory cells, 
resulting in uncontrolled cell proliferation and tumor 
formation (15). Every obstacle in any step of the Wnt 
pathway can cause cancer. The abnormalities can be roughly 
divided into three categories: one is that destruction or 
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mutation of a protein, transcription factor, or gene in the 
Wnt signaling pathway results in the pathway being shut 
down or the local pathway is abnormally active. Secondly, 
excessive Wnt signals cause abnormal activation of the 
entire pathway, and cells undergo unnecessary proliferation. 
Thirdly, when there is no Wnt signal, other activities in the 
cell will stimulate or induce abnormal reactions of the cells 
or even the body through the Wnt pathway. The β-catenin-
TCF/LEF complex is a hub in the Wnt pathway. Once 
β-catenin is easily located in the nucleus, it can be combined 
with TCF/LEF to initiate the Wnt pathway (16). Structural 
and functional changes in the upstream components lead 
to degradation of β-catenin, it will cause intracellular 
accumulation of β-catenin (17). Cells are cancerous by 
pushing the cell cycle or producing abnormal proteins. 
There are varying degrees ofβ-catenin gene mutations in 
many tumors. Such as hepatocellular carcinoma, ovarian 
cancer, skin cancer, colon cancer, etc.β-catenin mutation 
rate can be as high as 50% or more (18).

Changes in the morphology and function of the 
components upstream of the Wnt pathway can also affect 
the state of β-catenin. Mainly including APC, GSK-3 and 
AXIN (19). APC is a tumor suppressor gene involved in 
colon cancer. The APC proteins, GSK-3 and AXIN, form 
a complex with β-catenin and promote phosphorylation of 
β-catenin. β-catenin is allowed to be degraded by proteases. 
Mutations in the APC gene can cause β-catenin to fail 
to bind the APC, and thus cannot be phosphorylated by 
GSK-3, so that β-catenin is blocked and accumulates in 
the cytosol (20). GSK can phosphorylate β-catenin which 
is a negative regulator, such as Wnt pathway, at the same 
time it is also a tumor suppressor gene. AXIN has multiple 
protein-protein domains and acts as a scaffold protein like 
APC. Detection of AXIN gene mutation in tumors such as 
liver cancer and colon cancer (21).

TCF is a downstream component of the Wnt pathway. 
In most cases it does not activate transcription. Only when 
bound to β-catenin, transcriptional activation occurs (22).  
Wnt secreted protein and its receptor FZD can also be 
abnormally expressed in tumors. In colon cancer and 
gastric cancer, the expression of FZD1/2 was found to be 
significantly higher than that of normal mucosa (23).

Targeted drug

The secreted Wnt protein is one of the largest families 
of intercellular signaling molecules in vertebrates, which 
plays a crucial role in embryonic development and tissue 

homeostasis. The Wnt gene utilizes certain forms of the 
transcriptional coactivator β-catenin, limiting the ability of 
classical genetic strategies to reveal its effects in vivo (24).  
Targeted drugs have small side effects and significant 
curative effects, which have greatly changed the treatment 
situation of indications, such as tumors (25). Targeted drugs 
are mainly divided into two categories: small molecule 
drugs and macromolecular monoclonal antibodies. Here 
we mainly focus on new drug research in the treatment of 
cancer with the Wnt signaling pathway. Table 1 summarized 
current therapeutics for Wnt pathway molecules include 
Porcupine inhibitors, coiled receptors and tankyrase, as well 
as targets for DKK1, SOST and GSK3β.

Tankyrase (TNKS), a key mediator of Wnt signaling, 
has been recognized as a novel molecular target for Wnt 
pathway-dependent cancers. Novel PARP inhibitor E7449 
(also known as tankyrase 1 and 2), an important regulator of 
classical Wnt/β-catenin signaling. It inhibits the enzymatic 
activity of PARP and additionally captures PARP1 on 
damaged DNA (26). In addition, E7449 stabilizes AXIN 
and TNKS proteins, resulting in instability of β-catenin and 
significantly altering the expression of Wnt target genes. 
E7449 enhances chemotherapy, and monotherapy has 
significant anti-tumor activity against breast cancer 1(BRCA 
1)-deficient xenografts. Although it lacks the antitumor 
activity of a single drug in vivo, the pharmacodynamic effect 
of E7449 on Wnt target genes is observed in tumors, which 
is a typical finding of selective TNKS inhibitors. The anti-
tumor activity of E7449 is increased by binding to MEK 
inhibition (27).

Wnt/β-catenin signaling is involved in embryonic 
development, tissue homeostasis, and various human 
diseases. Abnormal activation of this pathway causes 
accumulation of β-catenin in the nucleus and promotes 
transcription of many oncogenes (28). Liang Fang and his 
colleagues found that a compound called LF3 strongly 
inhibits the abnormal binding between β-catenin and  
TCF-4, with little effect on healthy cells (29). In vitro 
experiments also confirmed that mice treated with LF3 
showed a significant decrease in tumor growth and 
differentiation of in vivo cancer stem cells into benign lesions, 
while other signaling pathways other than the Wnt signaling 
pathway were not disturbed (30). All of these suggest that 
LF3 is highly promising as a lead compound and lays the 
foundation for the development of methods for treating 
human tumors that depend on the Wnt signaling pathway.

Inhibitors of Wnt production (IWPs) are known 
antagonists of the Wnt pathway, targeting membrane-
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bound O-acyltransferase, thereby preventing key Wnt 
ligand palmitoylation (31).

LGK974 is an effective and specific small molecule 
porcupine (PORCN) inhibitor. It is effective in inhibiting 
Wnt signaling both in vitro and in vivo, including reducing 
Wnt-dependent LRP6 phosphorylation and Wnt target 
genes. LGK974 is a new oral bioavailable cancer treatment 
drug in phase I clinical trials (32).

DSH is a positive regulator of the Wnt pathway. It binds 
to AXIN and the PDZ which domains in the central region. 
DVL binds to the carboxy terminus of the FZD receptor 
using the PDZ domain. The small molecule compound 
NSC668036 is an organic inhibitor of the PDZ domain in 
DVL. It can block FZD binding to PDZ, inhibits β-catenin-
driven gene transcription, and eliminates TGF-β1-induced 
migration (33).

Dickkopf-1 (DKK-1) protein, one of the inhibitors of 
Wnt signaling pathway, can be competitively bound to 
lipoprotein receptor-associated protein 5/6 (LRP5/6), or 
through transmembrane protein kremen. LRP5/6 forms a 
ternary complex resulting in rapid endocytosis, reducing 
plasma membrane LRP5/6 and inhibiting the Wnt 
signaling pathway (34). CBX7 inhibits the Wnt/β-catenin/T 
cytokine pathway by enhancing the expression of the Wnt 
antagonist DKK-1. In particular, CBX7 increases DKK-1 
transcription by complexing with p300 acetyltransferase and 
subsequently enhancing histone acetylation of the DKK-1  
promoter. Furthermore, pharmacological inhibition of 
DKK-1 in CBX7 overexpressing cells showed restoration of 
Wnt signaling (35,36).

The ubiquitin-specific protease (USP) family is the 
largest cysteine protease. Overexpression of USP21 is 
associated with progression of human pancreatic ductal 

Table 1 summarized current therapeutics for Wnt pathway 
molecules

Target Drug Stage of drug development

WNT LGK974 Phase I cancer

XNM7201 Phase I cancer

CGX1321 Phase I cancer

WNT974 Preclinical cancer

GNF6231 Phase I cancer

E7449 Phase I cancer

ETC-159 Phase I cancer

IWP-2 Preclinical cancer

WNT-C59 Preclinical cancer

OMP-54F28 Phase I cancer

FZDs        Vantictumab Phase I cancer

IgG-2919 Preclinical cancer

OMP-54F28 Phase I cancer

OMP-131R10 Preclinical cancer

OTSA101 Phase I cancer

ROR1      KAN 0439834 Preclinical cancer

Cirmtuzumab Phase I cancer

ROR1-CD3-DART Preclinical cancer

APVO425 Preclinical cancer

UC-961 Preclinical cancer

ROR1R-CAR-T Preclinical cancer

AXIN        AZ1366 Preclinical cancer

G007-LK Phase I cancer

NVP-TNKS656 Preclinical cancer

NCB-0846 Preclinical cancer

E7449 Preclinical cancer

SKL2001 Preclinical cancer

XAV939 Preclinical cancer

β-catenin      BC2059 Preclinical cancer

CGP049090 Preclinical cancer

CWP232228 Preclinical cancer

ICG-001 Preclinical cancer

LF3 Preclinical cancer

MSAB Preclinical cancer

PKF115-584 Preclinical cancer

PRI-724 Phase II cancer

C-82 Phase I cancer

SAH-BCL9 Preclinical cancer

Table 1 (continued)

Table 1 (continued)

Target Drug Stage of drug development

DKK1 BHQ880 Phase I cancer

DKN-01 Phase I cancer

CBX7 Preclinical cancer

SOST Blosozumab Phase I cancer

BPS804 Phase I cancer

Romosozumab Phase I cancer

RSPO3 OMP-131R10 Phase I cancer

DVL NSC668036 Preclinical cancer

USP P5091 Preclinical cancer
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adenocarcinoma (PDAC), a PDAC oncogene. USP21 is 
capable of ubiquitination and stabilizes the TCF/LEF 
transcription factor TCF7, thereby promoting the dryness 
of cancer cells (37). Previous preclinical studies have shown 
that USP7 may be a potential drug target. USP7 regulates 
Wnt signaling catenin by deubiquitinating β-positive. 
P5091, a small molecule inhibitor of USP7, which can 
inhibit the proliferation of CRC cells and induce apoptosis 
in vitro. In vitro, P5091 inhibits proliferation of CRC cells 
and induces apoptosis. In the HCT116 xenograft mouse 
model, P5091 also inhibited tumor growth in vivo, which 
was consistently associated with decreased expression of 
β-catenin and Wnt target genes. P5091 is worthy of further 
development as an anticancer agent for Wnt pre-activated 
CRC treatment (38).

Combinatorial therapeutic

In the central nervous system (CNS), Wnt signaling has 
been shown to have neuroprotective effects. Conversely, its 
inhibition causes neurodegenerative changes, suggesting 
that inhibition of PORCN in cancer therapy should be 
used with caution and its recognition known functions may 
be suppressed. In addition, a study showed that the use of 
porcupine inhibitors for cancer treatment may increase the 
risk of fracture (39). Therefore, the discovery of new targets 
and the combined use of drugs are particularly urgent. The 
combination of WNT974 (formerly LGK974) and carboplatin 
resulted in a higher percentage of samples with a ≥30% 
reduction in ATP compared to monotherapy (31). Another 
study found that aspirin and LGK974 can effectively inhibit 
the signaling pathways of Wnt and MAPK, block cell cycle 
and induce apoptosis of CRC cells (40).

The combination of the PORCN inhibitor ETC-159 
and the pan-PI3K inhibitor GDC-0941 enhances the 
inhibition of cell proliferation and glucose metabolism, and 
effectively inhibits the growth of RNF43 mutant pancreatic 
cancer xenografts in vivo. These findings indicate that dual 
PORCN and PI3K/mTOR inhibition are potential strategies 
for the treatment of Wnt-driven pancreatic cancer (41).

Although tankyrase (TNKS) inhibitors have been 
proposed as promising candidates, many colorectal cancer 
models have no positive response to TNKS inhibition  
in vitro and in vivo. Therefore, a TNKS inhibitor (G007-LK)  
was used in combination with PI3K (BKM120) and EGFR 
(erlotinib) inhibitors (42). The data indicate that TNKS 
inhibitors enhance the inhibition of PI3K and EGFR in 

colorectal cancer cell lines (43).
XAV939 combined with 5-fluorouracil (5-FU)/cisplatin 

(DDP) treatment of colon cancer cells, cirmtuzumab and 
ibrutinib for the simultaneous treatment of leukemia cells is 
much more effective than treatment with either drug alone (44).  
The combination of ETC-159 and anti-absorbent 
alendronate can reduce bone loss after treatment with 
ETC-159 by regulating osteoclast activity and blocking the 
accumulation of bone marrow adipocytes (45).

A recent combination of XNM7201 and Treprizumab 
will be clinically tested. XNM7201 is a small molecule 
inhibitor of the Wnt pathway Porcupine protein. Trepril 
monoclonal antibody is a recombinant humanized anti-
PD-1 monoclonal antibody, and is the first Chinese 
domestic PD-1 monoclonal antibody approved for 
marketing (46). The combination of the two drugs is the 
first drug cooperation between PD-1 monoclonal antibody 
and Wnt inhibitor in China, and it is expected to break the 
long-term treatment vacancies of digestive tract tumors in 
the future.

Conclusions

The Wnt signaling pathway has been discovered and 
extensively studied for more than 30 years, and it has induced 
several intracellular signal transduction pathways, particularly 
the Wnt/β-catenin-dependent pathway, the classical 
pathway, non-classical and β-catenin-dependent pathways. 
The latter include Wnt/Ca2+ and PCP pathways (47).  
Wnt signaling pathway is widely involved in various 
processes of cancer, including tumor initiation, tumor 
growth, cell senescence, cell death, differentiation and 
metastasis (48). At present, research on the target of Wnt 
“impossible medicine” is actively carried out. In the past 
few years, some small molecule drugs and biological agents 
have entered clinical trials, and several Ib/IIa phase clinical 
trials of Wnt antagonists combined with cytotoxic drugs 
are also underway. For example, LGK974 is a new type of 
oral bioavailable cancer treatment drug in phase I clinical  
trials  (49).  The monoclonal antibody OMP-18R5 
antagonizes Wnt ligands and inhibits the growth of many 
cancers and has been used in phase Ia trials of preclinical 
solid tumor models (50). With the gradual deepening of 
people’s understanding of genes and their functions, the 
pathogenesis of many tumors has become more and more 
clear, which laid a good foundation for the development of 
targeted therapy.
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