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Introduction

Urinary bladder cancer (BLCA) is the ninth most common 

malignant disease and the thirteenth most common cause 

of cancer death worldwide (1). Previous studies in BLCA 

identified signatures associated with stage and outcomes 

and progression, but the biological and clinical significance 

of these signatures remain unclear. Therefore, there is 
an urgent need to identify new biomarkers for a more 
precise, biology-based approach to the BLCA therapy. 
Breast cancer (BRCA) is one of the most common cancers 
with greater than 1,300,000 cases and 450,000 deaths 
each year worldwide (2). For BRCA, there are some 
maturely clinical strategies for cure patients owing to 
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widely studies on this cancer. In practice, a more in-depth 
understanding of the genetic basis of BRCA has led to the 
development of new treatments and diagnostic tools (2).  
Recent studies have found that BLCA and BRCA are 
shared commonness on many areas, such as biological 
mechanism, molecular subtypes and clinical stage. Three 
independent research groups identified intrinsic subtypes 
of muscle invasive BLCA shares molecular signatures with 
some forms of BRCA (3). Therefore, the analyses of the 
genetic commonality shared by two cancers are important, 
and a mature knowledge of BRCA can help highlight the 
treatment and prognosis of BLCA.

Genetics is already being used to direct clinical decision-
making and the contribution of it is likely to increase (4). 
It is no doubt that combining clinical data and biomarker 
measurements on a massive scale will do much to improve 
human health. Expedient biomarkers will be useful in cancer 
early prediction, diagnostic and decision of treatment. 
Recently, there are a great many studies on detection and 
application of tumor biomarker in BLCA and BRCA. 
Damrauer et al. (5) created a 47-gene predictor (BASE47) 
that can accurately classify high-grade BLCA into basal-
like and luminal type tumors. Cardoso et al. (6) provided 
prospective evidence of treatment decisions in early-stage 
BRCA by combining 70-gene signature (MammaPrint) (7) 
and clinical features, and developed the criteria in selecting 
patients for adjuvant chemotherapy. These examples clearly 
demonstrated the power of biomarkers in treatment and 
prognosis of BRCA and BLCA.

Currently, non-coding RNA (ncRNA) families are 
being vigorously researched for their physiological and 
pathological implications (8). MiRNAs are small ncRNAs 
(~22 nts) and are considered central post-transcriptional 
gene regulators, which act through transcript degradation 
and/or translation suppression in the case of mRNAs (9). 
LncRNA, noncoding transcripts usually longer than 200 
nucleotides in length, exhibit numerous functions, many 
of which are under debate or remain to be uncovered (4).  
Recent studies suggested that lncRNAs could play a 
sponge role, competing with other genes for miRNA 
binding and therefore reduce the regulatory effect of 
miRNAs on targeted mRNAs (8). This recently proposed 
post transcriptional mechanism alters the components of 
endogenous regulatory interaction networks: ncRNAs 
sharing microRNA response elements (MREs) with 
mRNAs can act as miRNA sponge and involve in the 
competing endogenous RNA (ceRNA) activity (8). In 
the last few years, ceRNA have emerged as an important 

class of post-transcriptional regulators that alter gene 
expression through a miRNA-mediated mechanism (9). 
The majority of biomarker lncRNAs reported by now are 
derived from studies based on particular type of cancer, 
for example Second Chromosome Locus Associated With 
Prostate 1 (SChLAP1) was identified as a prostate cancer—
associated lncRNA (10). Some researches indicated that 
deregulated lncRNAs were implicated in the occurrence 
and development of BLCA (7). Yang et al. proved that 
the over expression of miR-346 reduced the expression of 
SRCIN1 (SRC Kinase Signaling Inhibitor 1) and promoted 
cell proliferation, colony formation, and sensitivity to 
Docetaxel (Doc) in BRCA (11). Moreover, Jadaliha et al. 
used MALAT1 (Metastasis Associated Lung Adenocarcinoma 
Transcript 1) knockdown/over-expression experiments 
to confirm the functional significance of MALAT1 as a 
metastasis driver and a prognostic factor in ER negative, 
lymph node negative BRCA (12). Furthermore, UCA1 
(Urothelial Cancer Associated 1) is a lncRNA reported to 
promote cell proliferation in both BLCA and BRCA (10,13). 
Besides, accumulating discoveries of lncRNA functions 
in various biological processes have revealed the potential 
of lncRNAs acting as cancer biomarkers. However, to 
date, there are still little known about a genome-wide 
expression and function analysis of lncRNAs in BLCA. 
The molecular mechanisms underlying the ncRNAs role 
in carcinogenesis and progression of urinary BLCA remain 
largely unclear (14). Thus, searching lncRNAs signature 
might be of clinical value for diagnosis and prognosis 
of BLCA and BRCA. Furthermore, by comparison of 
similarities between BLCA and BRCA at the molecular 
level, an abundant BRCA knowledgebase may be utilized to 
improve the clinical treatment and prognosis of BLCA.

In the present study, we sought to reveal genetic 
commonness between BLCA and BRCA based on multiple 
transcriptome profiles including the mRNA, lncRNA and 
miRNA profiles of BLCA and BRCA patients generated 
from the Cancer Genomic Atlas (TCGA) project. 
Functional enrichment analysis based on differential 
expression genes of BLCA and BRCA was performed to 
identify cancer-associated annotations and pathways shared 
by two cancers. By constructing PPI network, we detected 
the functional organization shared by both cancers, and 
found some hub mRNA which can play critical role in 
both cancers’ progress. To further explore the similarity 
of RNA expression patterns that distinguish tumor from 
normal patients in BLCA and BRCA, we implemented 
machine learning analysis to mRNA and lncRNA profiles, 



1072 Xu et al. The genetic commonness between BLCA and BRCA

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(2):1070-1090 | http://dx.doi.org/10.21037/tcr.2019.12.92

and constructed cancer predictor which may help early 
prediction on both cancers. Moreover, we found some 
important feature mRNA/lncRNA with high distinguishing 
ability that may be novel potential biomarkers shared by 
both cancers. Besides, a comprehensive integrative analysis 
was applied to construct ceRNA networks of BLCA and 
BRCA. From these two ceRNA networks, we identified 
some common cancer-associated ceRNA pairs which may 
help uncover the relationship between BLCA and BRCA. 
By these analyses mentioned above, we identified various 

molecular commonalities of BLCA and BRCA, and these 
findings indicate that BLCA may be particularly responsive 
to some treatments for BRCA. The flowchart of our work 
was shown in Figure 1.

Methods

Genome-wide profiles and data preprocessing

The RNA-seq data and miRNA data of TCGA-BLCA and 
TCGA-BRCA projects were downloaded from Genomic 

Figure 1 The workflow of this study. Firstly, functional enrichment analysis was performed based on differentially expressed mRNAs of 
BLCA and BRCA to identify cancer-associated biology process and signal pathways shared by two cancers. Secondly, PPI network was 
constructed to detect the functional organization shared by both cancers, and some hub mRNAs were identified to play critical role in cancer 
progress. Thirdly, machine learning analysis was implemented by DEG and DEL to generate cancer predictors, and feature RNAs shared 
by both cancers were identified. Finally, the ceRNA networks in BLCA and BRCA were constructed, and some common cancer-associated 
ceRNA pairs were identified. BLCA, bladder cancer; BRCA, breast cancer; PPI, protein-protein interaction; DEG, differentially expressed 
gene; DEL, differentially expressed lncRNA; ceRNA, competing endogenous RNA.
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Data Commons (GDC). The RNA-seq and miRNA 
datasets of BLCA include 19 primary tumor samples and 
19 perineoplastic normal tissue samples from 19 patients. 
The samples of BRCA in both datasets include 107 tumor 
samples and 107 perineoplastic normal tissue samples from 
107 patients. All of the genetic expression profile were 
TMM (trimmed mean of M values) (15) normalized and 
voom (16) transformed by edgeR and limma package of R 
software (https://www.r-project.org/), respectively.

Differential expression analysis of mRNA and lncRNA 

After performed the data preprocessing, differential expression 
analysis was implemented on RNA-seq data to screen out 
significant RNAs by limma package of R software. We screen 
out the differentially expressed RNAs using the following 
criteria: (I) significance level: p<0.05; (II) |fold change|>1.5; 
(III) false discovery rate (FDR) <0.05. Then, we extracted 
differential expressed mRNAs (DEGs) and differential 
expressed lncRNAs (DELs) from these significant RNAs. 

Functional enrichment analysis based on DEGs

In order to explore meaningful annotations of genes and 
gene products in BLCA and BRCA, gene ontology (GO) 
enrichment analysis was implemented on RNA expression 
of both cancers. Because the functions of most lncRNAs 
were poorly defined, we only used DEGs of two cancers 
to implement this analysis. As we know, lncRNAs could 
regulate mRNAs by some biology mechanisms, such as  
cis-regulation and trans-regulation (9). Therefore, lncRNAs 
execute functions that might be reflected in related 
mRNAs. GO enrichment analysis of DEGs can reveal the 
role of obviously differentially regulated lncRNAs. The 
ontology has covered domains of biological processes, 
cellular components and molecular functions. We also 
performed Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis on DEGs of two 
cancers to harvest pathway clusters covering our knowledge 
on the molecular interaction and reaction networks in 
differentially regulated gene profiling. DAVID database  
(http://david.abcc.ncifcrf.gov/) was used for implementing 
the functional enrichment analysis.

Construction of protein-protein interaction (PPI) network 
and screening of hub genes

PPI network is the basic method for systematically 

displaying PPI information. It provides a valuable 
framework for a better understanding of functional 
organization. We used identical DEGs shared by both 
cancers to construct PPI network. The STRING database 
(http://string.org) was used to get the protein-protein 
pairs. Then, the Cytoscape software (version 3.4.0;  
http://cytoscape.org/) was used to visualize the PPI 
networks and to further explore the association between 
genes. Subsequently, the k-core scoring was used to 
determine core mRNA of PPI networks. A higher k-core 
score means a more central location of an node within a 
network (17). The MCODE plug-in of Cytoscape was used 
to perform this analysis.

Construction of cancer predictor based on machine learning 
method

We next investigate whether the expression of RNA (mRNA 
and lncRNA) patterns that distinguish normal from tumor 
samples in BLCA is similar to that of in BRCA by applying 
machine learning approaches which have been applied 
widely to cancer prognosis and prediction (18). Specially, we 
sought to generate gene set predictors that can accurately 
classify tumor and normal samples. We generated BLCA-
type and BRCA-type classifiers with machine learning 
method based on mRNA and lncRNA profilers of both 
cancers. We selected DEGs and DELs overlapped in BLCA 
and BRCA, and then applied random forests (RF) method 
to construct tumor predictable classifiers: mRNA-type 
classifier and lncRNA-type classifier. RF is an ensemble 
classifier that consists of many decision trees and each 
tree depends on the values of a random vector sampled 
independently (19). The out-of-bag (OOB) error was used 
as a value of self-validation and assessed the performance 
of classifiers. We then used the classifier trained by one 
cancer to predict the other cancer’s profile. We supposed 
that the prediction accuracy of classifiers will be nice if 
the expression patterns of both cancers are similar, and it 
demonstrated that BLCA and BRCA are similar in terms 
of oncogenic pathway. The program was implemented with 
the RF package of R software.

Identification of feature mRNA/lncRNA shared by both 
cancers

When we got a good cancer predictor, we want to know 
which feature (mRNA and lncRNA) can make great 
contributions on identifying tumor samples. In RF method, 

https://www.r-project.org/
http://string.org
http://cytoscape.org/
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suppose a tumor-related feature gene G is a good predictor, 
then it will appear in a large number of split trees. We used 
Mean Decrease Gini (MDG) to evaluate whether gene 
G is a feature gene or not. MDG provided possible ways 
to quantify which genes contribute most to classification 
accuracy. Greater MDG will indicate that the degree of 
impurity arising from category could be reduced farthest 
by gene G, and thus suggests an important feature gene. 
We sought to identify some feature mRNA and lncRNA 
which may play an important role in BLCA and BRCA 
diagnostic. We implemented this analysis with RF package 
of R software.

Constructing ceRNAs network 

The ceRNA hypothesis and many studies demonstrated that 
all types of RNA transcripts can bind with miRNA through 
microRNA response elements MREs, and acting as ceRNAs 
(8,9). In this part, we constructed ceRNAs networks using 
DEGs, DELs and miRNA profiles of BLCA and BRCA. 
There were three criteria (20) were used to determine the 
competing endogenous interactions between lncRNA-
mRNA pairs: (I) the lncRNA and mRNA must share 
significant number of miRNAs. (II) Expression of lncRNA 
and mRNA must be positively correlated. (III) Those 
common miRNAs should play similar roles in regulating the 
expression of lncRNA and mRNA. Hypergenometric test 
was performed to test whether a lncRNA and mRNA share 
many miRNAs significantly (significance level: P<0.01) 
based on starBase v2.0. Pearson correlation coefficient was 
used to measure the strength of a linear association between 
two RNAs. As we know, miRNAs are negative regulators 
of gene expression. If more common miRNAs are occupied 
by a lncRNA, less of them will bind to the target mRNA, 
thus increasing the expression level of mRNA. So, the 
expression of the lncRNA and mRNA in a ceRNA pair 
should be positively correlated (significance level: P<0.05). 
The regulation similarity score was defined to check 
the similarity between miRNAs-lncRNA expression 
correlation and miRNAs-mRNA expression correlation. 
We further selected lncRNA-mRNA pairs that regulation 
similarity score is not equal to zero. The regulation 
similarity score (20) was defined as below:

regulation similarity score=
M

k

k

M | corr(m ,1) corr(mk,g) |11
K=1M | corr(m ,1) corr(mk,g) |

 −
−  + 

∑
where M is the total number of shared miRNAs, k is the 

k-th shared miRNAs, corr(mk, l) and corr(mk,g) represents 
the Pearson correlation between the k-th miRNA and 
lncRNA, the k-th miRNA and mRNA, respectively. The 
ceRNA networks were constructed by GDCRNATools 
package of R, and visualized by Cytoscape. 

Results

Overview of DEGs and DELs 

By applying differential expression analysis, a total of 2,149 
DEGs (659 mRNAs were up-regulated and 1,490 mRNAs 
were down-regulated) and 119 DELs (48 lncRNAs were 
up-regulated and 71 lncRNAs were down-regulated) were 
identified from RNA-seq data of BLCA, while 2,693 DEGs 
(953 mRNAs were up-regulated and 1,740 mRNA were 
down-regulated) and 211 DELs (35 lncRNAs were up-
regulated and 176 lncRNA were down-regulated) from 
RNA-seq data of BRCA (Figure 2A). We displayed the 
top 10-fold change DEGs and DELs for both cancers 
in the Figure 2B. Among these biomarkers, Peptidase 
Inhibitor 16 (PI16) and PGM5 Antisense RNA 1 (PGM5-
AS1) were the most down-regulated mRNA and lncRNA 
in BLCA compared with the adjacent noncancerous tissue, 
respectively. On the contrary, Collagen Type X Alpha 1 Chain 
(COL10A1) and TRHDE Antisense RNA 1 (TRHDE-AS1) 
were the most up-regulated mRNA and the most down-
regulated lncRNA in BRCA (Figure 2B). Furthermore, we 
found that mRNAs Alcohol Dehydrogenase 1B (ADH1B) and 
Scavenger Receptor Class A Member 5 (SCARA5) as well as 
lncRNA CADM3 Antisense RNA 1 (CADM3-AS1) were 
significantly down-regulated in both cancers (Figure 2C).

GO annotations and KEGG pathways of both cancers

GO enrichment analysis revealed that DEGs in BLCA 
mostly consisted of cell cycle related terms as these processes 
were necessary to BLCA cell proliferation (Figure 3A left). 
These DEGs of BLCA were enriched on extracellular matrix 
(ECM) related terms (Figure 3A left). ECM is defined as a 
complex mixture of various proteins that provides structural 
and mechanical support for cells and tissues, and has an 
important role in the regulation of gene expression, cell 
division, survival, shape, and movement (11). Previously 
study reported that ECM molecules play an important 
role in the development of invasion, progression and 
metastasis in BLCA (11). From the GO enrichment analysis 
of BRCA (Figure 3A right), we found that many DEGs 
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Figure 2 Differential expression analyses on mRNA and lncRNA. (A) DEG and DEL expression of both cancers; (B) the absolute Log2FC 
value of top 10 DEG and DEL of both cancers. The result showed that most of DEG and DEL with high absolute Log2FC value were 
down-regulated in both cancers; (C) the mRNAs ADH1B, SCARA5 and lncRNA CADM3-AS1 were all have high fold change value in both 
cancers. DEG, differentially expressed gene; DEL, differentially expressed lncRNA.
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were significantly involved in cell adhesion and biological 
adhesion. It is now clear that adhesive interactions play a 
critical role in the process of metastatic tumor dissemination 
(21,22). Furthermore, these DEGs of BRCA are associated 
to response to a series of biomacromolecule stimulus, such 
as steroid hormone and estrogen stimulus. An interesting 
observation was that these DEGs of BRCA were enriched 
on ECM related terms, similar to the function enrichment 
result of BLCA. Some researches indicated that ECM 
may be involved in various processes of breast tumors  
growth (23). The DEGs of both cancers were also enriched 
on many cancer-related KEGG pathways, and we listed 
significant KEGG pathways in Figure 3B. From the results 
we found some important pathways shared by both cancers 

including Cell Cycle, Complement and coagulation 
cascades, ECM-receptor interaction, Axon guidance, 
Cell adhesion molecules, Focal adhesion and Pathway in 
cancer. These KEGG pathways may play an important role 
in cancer occurrence or progress. For example, Gordon  
et al. found that altered ECM and specific components of 
ECM can alter gene expression, cellular proliferation, and 
invasiveness of the overlying urothelial cells (24). For BRCA, 
ECM in necessary for normal functional differentiation of 
mammary epithelia (25). Focal adhesion kinase (FAK) is an 
important symbolic component that is activated by many 
stimuli, acting as a biosensor or an integrator to control cell 
motility (26). FAK is an also important regulator of BLCA 
cell invasion and migration, and it may become a potential 

Figure 3 GO and KEGG pathway enrichment analyses of DEGs in BLCA and BRCA. (A) Bar chart of GO enrichment analysis outcomes 
for both cancers (left for BLCA, right for BRCA). The x-axis represents fold enrichment of each term. The color key indicates the –lg(P 
value) of each term; (B) bar chart of KEGG enrichment analyses outcomes for both cancers (left for BLCA, right for BRCA). The x-axis 
represents fold enrichment of each term. The color key indicates the –lg(P value) of each term. GO, gene ontology; BLCA, bladder cancer; 
BRCA, breast cancer; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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therapeutic target (27). For BRCA, FAK may play a critical 
role in the cancer by regulating breast stem cells and BRCA 
stem cells (26,28). Emerging data suggest that FAK can be 
an effective therapeutic target in breast tumors, particularly 
in highly invasive triple-negative BRCA (26). Interestingly, 
we found that some DEGs of BRCA were enriched on 
pathway of bladder cancer.

To further explore the commonness between BLCA and 
BRCA, we selected 1,176 overlapping DEGs shared by two 
cancers to implement GO and KEGG enrichment analysis. 
The result showed that these DEGs were significantly 
enriched on cell cycle related terms, such as cell cycle 
phase, mitotic cell cycle, cell cycle process and so on, which 
are necessary to tumor cell proliferation (Figure 4A). The 
KEGG enrichment analysis revealed that overlapping 
DEGs of both cancers were enriched on the pathways of 
cancers significantly. These DEGs were mainly enriched 
on five kinds of pathways: complement and coagulation 
cascade, PI3K-Akt signaling pathway, Fanconi anemia 
pathway, progesterone-mediated oocyte maturation and cell 
cycle (Figure 4B). In these pathways, PI3K-Akt signaling 
pathway covered the most genes and was the most affected 
pathway in BLCA and BRCA (Figure 4C). In recent years, it 
has been shown that PI3K-Akt signaling pathway, involved 
in the above and other processes, are frequently disturbed 
in many human cancers (20). The major functions of 
the PI3K-Akt signal pathway are to promote growth-
factor-mediated cell growth, proliferation, migration and 
survival (12). Moreover, PI3K-Akt signal pathway plays 
role not only in tumor development but also in the tumor’s 
potential response to cancer treatment (20). Thus, many of 
the new “targeted agents” have been specifically designed 
to act on PI3K-Akt related targets. Jadaliha et al. found 
that inhibition of the Akt signaling pathway may improve 
the efficacy of endocrine therapy for BRCA (12). We thus 
believe that such endocrine therapy based on PI3K-Akt 
signaling pathway may help to treat BLCA. Recently, many 
of the effects of the new targeted anticancer drugs have 
mechanistic connections with the PI3K-Akt pathway, and 
therefore a better understanding of this essential crossroad 
can help to fully exploit the potential benefits of these new 
target therapies in both cancers.

PPI network and key hub gene

To further investigate the similarity function of genes at the 
protein level in both cancers, we used identical DEGs of 
both cancers to construct PPI network. The PPI network 

contained 480 nodes and 2,968 edges (Figure 5A). According 
to the k-core score and the connection between nodes we 
got five main sub-networks (five clusters: blue, green, 
orange, yellow, pink) from the PPI network, and the k-core 
score of mRNA containing in these sub-networks were 
shown in the Table S1. We can see that the mRNAs which 
constitute blue sub-network have the highest degree and 
k-core scores, and this indicated that the blue sub-network 
could play critical roles in the carcinogenic process in 
both cancers (Figure 5B). By applying KEGG enrichment 
analysis on these sub-networks we found that these sub-
networks are enriched on severe signaling pathways, 
including p53 signaling pathway, chemokine signaling 
pathway, homologous mediated proteolysis and systemic 
lupus erythematosus (Figure 5C). Moreover, by taking 
intersection from genes with top 50 highest degree and 
top 50 highest k-core score we found 35 hub genes which 
could be potential biomarkers (Figure 5D). Among these 
genes, Cyclin Dependent Kinase 1 (CDK1) has highest k-core 
score (k-core score =37) and highest degree (degree =103). 
CDK1 is a universal master kinase and is required for the 
regulation of mitosis (29). Nakayama et al. (10) found that 
CDK1 plays a critical role in pacilitaxel-induced cell death, 
and its activity can be a predictor of paclitaxel sensitivity in 
BRCA treatment. Furthermore, there are other important 
genes were found, such as Cyclin B1 (CCNB1), Cell Division 
Cycle 20 (CDC20), BUB1 Mitotic Checkpoint Serine/Threonine 
Kinase ( BUB1) and so on (Figure 5D). The high-expression 
of CCNB1 can cause uncontrolled growth of the tumor. A 
study has shown that CCNB1 promotes cancer invasion and 
metastasis by enhancing epithelial to mesenchymal transition 
process (30). Moreover, the over-expression of CDC20 is 
associated with poor prognosis of BLCA (31). In the case of 
BRCA, CDC20 is a biomarker of triple-negative BRCA and 
its high expression is associated with high risk of death (32). 
Besides, over-expression of BUB1 may be a new hallmark 
for estimating the biological characteristics of BLCA (33). 
Interestingly, the expression level of BUB1 is associated with 
different clinical outcomes in BRCA patients and could be a 
potential therapeutic target (34). In addition, all of these hub 
genes were contained in blue sub-network. The study of these 
genes may help develop new means to treat BLCA and BRCA.

Cancer predictors based on RF methods

To further identify the potential relationships between 
BLCA and BRCA, we analyzed DEGs and DELs shared by 
two cancers using RF method. We used RNA expression 
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Figure 4 GO and KEGG pathway enrichment analyses of overlapping DEGs in BLCA and BRCA. (A) GO annotations of overlapping 
DEGs; (B) KEGG pathways of overlapping DEGS. The five big nodes represent pathway terms, including Cell cycle (P<0.001), 
Complement and coagulation cascades (P<0.001), Progesterone-mediated oocyte maturation (P<0.001), Oocyte meiosis (P=0.002) and Cell 
adhesion molecules (P=0.005). The small nodes indicated genes which enriched on the terms; (C) KEGG pathway of PI3K-Akt signaling 
pathway. Orange marked nodes are associated with DEGs involved in the pathway. GO, gene ontology; DEG, differentially expressed gene; 
BLCA, bladder cancer; BRCA, breast cancer; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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Figure 5 Protein-protein interaction networks. (A) The network based on protein interactions was constructed by STRING data base. Five 
sub-networks (five clusters: including blue for cluster 1, pink for cluster 2, orange for cluster 3, green for cluster 4, yellow for cluster 5) were 
identified according to topology structure and k-core score; (B) the mean of k core-score and degree in five sub-networks; (C) KEGG pathways 
of sub-networks. The color of bar indicates the KEGG pathway corresponding to the color of sub-network. Orange bar is absence in the bar 
chart because there isn’t any gene involved in KEGG pathway significantly; (D) by take intersection from top 50 highest degree and top 50 
highest k-core score, we identified 35 hub genes which could be potential biomarkers. KEGG, Kyoto Encyclopedia of Genes and Genomes.

profile of one cancer to train RF model, and applied this 
model to predict the other cancer samples based on its RNA 
expression profile. Firstly, we selected 1176 overlapping 
DEGs and 41 overlapping DELs of both cancers, and we 
got four datasets: overlapping mRNA expression profile 
of BLCA (1,176 mRNAs), overlapping mRNA expression 
profile of BRCA (1,176 mRNAs), overlapping lncRNA 
expression profile of BLCA (41 lncRNAs) and overlapping 
lncRNA expression profile of BRCA (41 lncRNAs) 
respectively. We named these four datasets as mBLCA, 

mBRCA, lncBLCA and lncBRCA datasets, respectively. 
Secondly, we used these datasets to construct four types 
RF classifiers (named as mBLCA classifier, mBRCA 
classifier, lncBLCA classifier and lncBRCA classifier, 
respectively). Finally, we applied these classifiers to perform 
the prediction. The pipeline of analysis and the result were 
shown in the Figure 6A.

As shown in Figure 6A, all of four type classifiers have 
low OOB errors. The OOB of mBLCA classifier, mBRCA 
classifier, lncBLCA classifier and lncBRCA classifier was 
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Figure 6 We constructed cancer predictors based on four types of data set. (A) The pipeline and result of random forest analysis. The result 
showed that all of four classifiers have low OOB (self-validation) and high accuracy. It demonstrated that the expression of mRNA/lncRNA 
patterns that distinguish normal from tumor samples in BLCA is similar to that of in BRCA; (B) four additionally classification methods (K-
NN, MARS, NB and SVM) were implemented in the four datasets. The bar indicates prediction accuracy of each type classifier when repeat 
above procedure. OOB, out-of-bag; BLCA, bladder cancer; BRCA, breast cancer.
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0%, 0.45%, 0%, 2.23%, respectively. Interestingly, when 
we used the classifier constructed by one cancer expression 
profile to predict the other cancer, the predictor displayed 
the good predict performance. The classification accuracy 
for mBLCA, mBRCA, lncBLCA and lncBRCA classifiers 
were up to 95.54%, 84.21%, 96.43% and 78.95%, 
respectively. The good predict performance indicating 
that the mRNA and lncRNA expression patterns that 
distinguish normal and tumor tissue of BLCA reflect the 
similarly expression patterns that defined the BRCA. To 
further validate this result, we additionally used another 
four classifier algorithms including K-Nearest Neighbor 
(KNN), Multivariate adaptive regression splines (MARS), 
Naïve Bayes (NB) and Support Vector Machine (SVM) to 
observe their predict accuracies. The result showed that 
all of four classifier algorithms have good performances 
(Figure 6B). Taken together, our study demonstrated that 
the RNA expression patterns that distinguish normal from 
tumor bladder (breast) samples reflect the RNA expression 
patterns that define the breast (bladder) tumor, which 
indicated the commonness of both cancers in the aspect of 
oncogenes’ expression. 

Feature mRNA and lncRNA shared by both cancers

In above section, we constructed four types of cancer 
predictor with good performance by RF method. We used 
MDG to measure the distinguishing ability of features 
(mRNA/lncRNA). We listed the top 20 mRNA/lncRNA 
according to their MDG on Figure 7A. Their expression 
heatmaps were shown in Figure 7B. In this analysis, we 
found 2 mRNA and 10 lncRNA were overlapped in both 
cancers (RNA with red star in Figure 7). These RNAs play 
critical roles in tumorigenesis and make contribution to 
predict BLCA and BRCA tumors. For instance, the FXYD 
proteins have been proposed to function as regulators of Na, 
K-ATPase function by lowering affinities of the system for 
potassium and sodium. Floyd et al. (15) found that FXYD 
Domain Containing Ion Transport Regulator 1 (FXYD1) low 
expressed in bladder and breast tumors. Maternally Expressed 
Gene 3 (MEG3) is an imprinted gene that encodes lncRNA 
associated with carcinogenicity. Ying et al. (18) suggested 
that down-regulated MEG3 activates autophagy and induce 
cell proliferation in BLCA. Sun et al. (35) demonstrated that 
down-regulation of MEG3 in BRCA tissues affect BRCA 
cells’ malignant behaviors. These evidences indicate MEG3 
is a potential therapeutic target for BLCA and BRCA. The 
feature RNAs we found in this analysis might shed light on 

the development of new RNA-based therapeutic target for 
treating BLCA and BRCA. 

ceRNAs network 

According to ceRNA hypothesis, ceRNAs members can 
compete for the same MREs to regulate each other (8). 
Under the three criteria mentioned above, we constructed 
ceRNA networks of BLCA and BRCA base on our 
microarray data. In this analysis, we found 49 lncRNA-
miRNA-mRNA triples combined by 44 DEGs, 5 DELs and 
11 miRNAs in ceRNA of BLCA (Figure 8A). For BRCA, we 
identified 298 lncRNA-miRNA-mRNA triples combined 
by 113 DEGs, 10 DELs and 30 miRNAs (Figure 8B). These 
ceRNA pairs may provide a new potential therapeutic 
possibility for BLCA and BRCA. Interestingly, we found 
MAGI2 Antisense RNA 3 (MAGI2-AS3) and AC093010.3 
were overlapped lncRNAs involved in two cancers-related 
ceRNA networks, and some common mRNAs were 
regulated by these two lncRNAs. The heatmaps of these 
overlapping mRNA/lncRNA expression profiles in both 
cancers were shown in Figure 8C.

In two cancers-related ceRNA networks, we found that 
the Membrane- associated Guanylate Kinase, WW and PDZ 
Domain-containing 2 (MAGI2) acted as hsa-miR-374a-
5p and hsa-miR-374b-5p sponge to weaken the inhibition 
of Myosin Light Chain Kinase (MYLK) expression in both 
cancers. MYLK is a member of the immunoglobulin gene 
super family, and has been linked to the proliferative ability 
of BRCA via extracellular signal-regulated kinase and the 
P38 pathway; moreover, it is associated with modulation of 
tumor invasiveness and metastasis in BRCA (36). Robert T. 
Lawrence et al. (37) indicated that MYLK was involved in 
immunity and metastasis, and was expressed at higher levels 
in TNBC. van't Veer et al. (7) identified a circular RNA 
derived from MYLK gene, termed circRNA-MYLK, as a 
ceRNAs promotes BLCA progression through modulating 
VEGFA/VEGFR2 signaling pathway. Many studies found 
that circRNA-MYLK is a candidate oncogene in BLCA 
and correlate with BLCA progression. However, little 
was known of the lncRNA-MYLK in BLCA. In our study, 
MAGI2-AS3 was constructed ceRNA pairs with MYLK, 
and it is an interesting candidate in BRCA and BLCA 
prognostic, which should be validated by relative clinical 
trials in the future.

The Myeloid Ecotropic Viral Integration Site 1 (MEIS1) 
transcription factor gene is known to play a crucial role in 
normal and tumor development (38). We identified that 
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Figure 7 Top 20 feature RNAs of four type’s predictors. The red star indicates overlapping mRNA\lncRNA in both cancers. (A) The MDG 
scores of mRNA/lncRNA with top 20 MDG generated by mBLCA, mBRCA, lncBLCA and lncBRCA type predictors. The x-axis represents 
the value of MDG. (B) The expression heatmaps of mRNA/lncRNA with top 20 MDG in mBLCA, mBRCA, lncBLCA and lncBRCA. 
BLCA, bladder cancer; BRCA, breast cancer.
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MAGI2-AS3 acted as miRNA sponge to absorbed miRNAs 
and weakened the inhibition of MEIS1 expression. Beukers 
et al. (39) indicated that MEIS1 was a target of Polycomb 
genes in BLCA. In BRCA, MEIS1 may be useful member of 
a panel of favorable prognostic and predictive markers for 
BRCA and an understanding of their function may provide 
useful information about this disease (40). Therefore, we 
suggested that the ceRNA pair of MAGI2-AS3 and MEIS1 
could be a candidate therapeutic target of both cancers. 
L1 Cell Adhesion Molecule (L1CAM ), a transmembrane 
cell adhesion molecule of the Ig super-family, plays an 
important role in the development of the nervous system 
and in the malignancy of human tumors (41). L1CAM is 
over expressed in many human carcinomas and augments 
cell motility, invasion and metastasis formation (41,42). 
We found that lncRNA MAGI2-AS3 also acted as miRNA 
sponge to weaken the inhibition of L1CAM expression 
in BLCA and BRCA, they were bound by hsa-miR-374a-
5p and hsa-miR-374b-5p. Doberstein et al. (43) found that 
high expression of L1CAM in primary breast tumors have 
the worst clinical outcome, which indicated that L1CAM 
expression could be causally related to the bad prognosis 
of TNBCs. Faltas et al. (42) suggested that alterations in 
L1CAM and integrin signaling pathways potentially play a 

key role in chemotherapy resistance in urothelial carcinoma. 
It is thus suggested that further study of the functional role 
of MAGI2-AS3-L1CAM ceRNA pair in BLCA and BRCA 
could lead to a potential strategy for targeting therapy. 
Furthermore, the lncRNA AC093010.3 could serve as a 
sponge for hsa-miR-4735-3p, hsa-miR-18a-5p and hsa-miR-
18b-5p to abolish the endogenous suppressive effect on 
Special AT-rich Binding Protein 1 (SATB1) expression in both 
cancers. The T cell-enriched transcription factor SATB1 
is a nuclear protein which has a high level of expression 
in thymocytes, and it is an independent prognostic factor 
and a potential therapeutic target in human cancers (44). 
Moreover, altering SATB1 regulated the cell migration, 
invasion and proliferation, along with the cell cycle (45). In 
BLCA, SATB1 plays a critical role in the tumor progression 
by regulating genes controlling EMT processes, which 
makes SATB1 therapeutic target candidate for BLCA (45). 
For BRCA, some studies observed that the expression level 
of SATB1 was higher in malignant compared with normal 
breast tissue, and SATB1 over expression associated 
with TNM stage, tumor grade, and shorter overall  
survival (46). In fact, the SATB1 protein has been proposed 
as a target for BRCA progression and metastasis (44,46). 
Han et al. (44) suggested that SATB1 protein is expressed 

Figure 8 ceRNAs network analysis. In ceRNA networks, the yellow nodes represent mRNAs, the red nodes represent miRNAs and the 
green nodes represent lncRNAs. (A) The ceRNA network of BLCA; (B) the ceRNA network of BRCA; (C) the expression heatmap of 
common mRNCA/lncRNA in BLCA and BRCA. We used red line to highlight lncRNAs. BLCA, bladder cancer; BRCA, breast cancer; 
ceRNA, competing endogenous RNA.
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during carcinogenesis to alter the gene expression profile 
of BRCA cells to support an aggressive cell phenotype that 
promotes tumor growth and metastasis. Thus, AC093010.3-
SATB1 pair is a therapeutic target candidate for BLCA 
and BRCA. These findings suggested that the constructed 
ceRNA networks of BLCA and BRCA can provide different 
angle of view for detecting commonness of different types 
of cancers.

Discussion

The conventional view of gene regulation focused on 
protein-coding genes until the discovery of numerous 
miRNAs and lncRNAs. Especially, some researches of 
deregulated lncRNA expression covering various kinds of 
cancer indicated that abnormal lncRNA expression might 
contribute to carcinogenic and progression (47). BLCA 
and BRCA are highly heterogeneous tumors with variable 
clinical courses. For BLCA, there are some conventional 
clinical therapeutic strategies but patients got limited 
benefit from their (48). Therefore, there is an urgent need 
to develop biology-based approach to the management of 
BLCA. On the contrary, for BRCA, there are quit maturely 
clinical strategies for cure patients owing to deep studies 
on BRCA (2). Recent studies found BLCA are remarkably 
similar to BRCA in molecular level, which means that 
uncover their similarities at the molecular level may be 
possible to leverage the larger BRCA knowledge base to 
enable more rapid progress in the clinical management of 
BLCA (3,5). 

In the present study, we used mRNA, miRNA and 
lncRNA express profiles to explore the commonness 
between BLCA and BRCA from four perspectives: 
functional enrichment, PPI network, machine learning 
and ceRNA network. Our research identified some 
significantly function annotations shared by both cancers, 
such as cell proliferation related terms and ECM related 
terms. Besides these terms mentioned above, we found 
that the DEGs of BLCA were significantly involved in 
calcium signaling pathway whereas DEGs of BRCA take 
part in calcium ion binding. Ionized calcium (Ca2+) as an 
intracellular second messenger is ubiquitous and controls 
various critical biological processes (49). The S100 family 
of proteins, belonging to Ca2+-modulated proteins, is a large 
group of low molecular weight Ca2+-binding protein (50). 
Some studies confirmed that S100 Calcium Binding Protein 
P (S100P) can mediate BLCA tumor growth, metastasis 
and invasion through the binding of Ca2+ ions, which 

indicated that S100P can serve as the potentially diagnostic 
marker and therapy target for BLCA (51). For BRCA, 
some studies reported that the S100P Ca2+-binding protein 
could be used as a hallmark to differentiate lesions at high 
risk of malignant evolution (50). Further investigation into 
the physiological role of S100 proteins in the mammary 
gland may lead to the characterization of potentially new 
therapeutic targets for BRCA. Therefore, an improved 
knowledge of the functioning of Ca2+ signaling will help 
in diagnosing and treating cancers. By applying KEGG 
enrichment analysis we observed that the most overlapping 
DEGs of both cancers were significantly involved in PI3K-
Akt signaling pathway. Meanwhile, some critical oncogenes 
of BLCA and BRCA take part in the pathway, such as 
BRCA1 (BRCA1, DNA Repair Associated), BRCA2 (BRCA2, 
DNA Repair Associated), BUB1B (BUB1 Mitotic Checkpoint 
Serine/Threonine Kinase B), MYC (MYC Proto-Oncogene, 
BHLH Transcription Factor) and so on. It is suggested that 
explore the mechanisms of these alteration carcinogenic 
pathway is extraordinary helpful in development clinical 
strategies of early diagnosis and target therapy. 

Different types of cancers can be shared similar basic 
regulatory system, even if the phenotype and tissue origin 
may differ. To detect the similarity of mRNA interaction 
relationships, we implemented the PPI network analysis 
using identical DEGs. We identified hub genes which 
could play important role in cancer progress. Besides, we 
also found some other important genes in sub-network. 
For instance, we found that BRCA1 and BRCA2 with high 
degree in blue sub-networks. BRCA1 and BRCA2 were 
widely reported to be BRCA -related genes, and were high 
risk family of oncogenes (13). In the practice, it is suggested 
that BRCA1 expression could be used for predict the 
efficacy of cisplatin-based neoadjuvant chemotherapy and 
may help to customize therapy in BLCA patients (16).

To further detect the relationships between BLCA and 
BRCA in the view of expression patterns, we used machine 
learning methods to analyze identical DEGs and DELs of 
both cancers. For both cancers, we applied RF algorithms 
to construct mRNA type classifiers and lncRNA type 
classifiers, and we found all of four type classifiers have good 
performances. When applied four additionally classification 
algorithms including K-NN, MARS, NB and SVM, 
we got the similar results. These results supported that 
BLCA and BRCA have similar RNA expression patterns, 
which indicated that these two cancers may have potential 
relationships in terms of RNA expression phenotype. 
Moreover, when constructed RF classifiers we obtained 
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some critical feature mRNAs and lncRNAs with high 
MDG including FXYD1, MEG3 and so on, which might be 
candidate biomarkers for diagnostic and treatment. 

Importantly, it is known that identifying a smallest 
possible but most informative subset of genes is the goal 
of gene selection. A small subset of genes is also desirable 
in developing gene expression-based diagnostic tools. 
Although there are some predictor which can accuracy 
classify cancer subtypes by small number of gene, such as 
BASE47 (5) for high-grade BLCA and PAM50 (52) for 
BRCA, there is little research on cancer predictor with small 
number of lncRNA. For this, we add another analysis to 
construct mRNA and lncRNA type predictor with smallest 
number but highest prediction accuracy of RNA subset. We 
applied multiple support vector machine recursive feature 
elimination (MSVM-RFE) (53) method to select smallest 
but most informative subset of RNAs, and constructed 
cancer classifiers for BLCA and BRCA. Specially, we 
performed MSVM-RFE on the whole differential 
expression RNAs including 2149 DEGs of BLCA, 119 
DELs of BLCA, 2693 DEGs of BRCA and 211 DELs of 
BRCA on both cancers. We computed feature ranking 
score by MSVM-RFE method on BLCA and BRCA. 
The top 20 ranked RNAs were shown in Figure S1A. The 
feature subset was examined by 10-fold cross validation of 
linear SVM classifier trained with features in the subset as 
input variables. We test feature subsets with size ranging 
from 1 to 200, and plot the average test errors (generate 
from 10-fold cross validation) of linear SVM classifiers 
on gene subsets selected by MSVM-RFE on two cancers 
(Figure S1B). We take the feature subset with the least 
average test error as the best feature subset. The best 
features number of mRNA of BLCA, mRNA of BRCA, 
lncRNA of BLCA and lncRNA of BRCA were 12, 17, 91 
and 5 respectively. Additionally, we constructed four type of 
predictor, including NB, SVM, K-NN and Artificial Neural 
Network (ANN). We used ten times leave-one-out method 
to assess the classification accuracy rate of these different 
machine learning methods, and the results were shown in 
Table S2. Interestingly, the predictors constructed by best 
RNA subset showed good classification accuracy. 

Furthermore, the BLCA and BRCA type of ceRNA 
networks were constructed by applying integration 
analysis based on mRNA, miRNA and lncRNA profiles. 
In two cancers-related ceRNA networks, we identified 
some meaningful ceRNA pairs. For instance, the lncRNA 
MAGI2-AS3 acted as miRNAs sponge to weaken the 
inhibition of some critical oncogenes, such as MYLK, MEIS1 

and L1CAM in both cancers. The lncRNA AC093010.3 
acting as competitor in ceRNA networks of both cancers 
can absorb miRNAs and regulate SATB1 expression. 
Besides overlapping ceRNA pairs mentioned above, we 
found some other critical competitor relationships in each 
cancer. For instance, the small nucleolar RNA host gene, 
including Small Nucleolar RNA Host Gene 1 (SNHG1), 
SNHG3 and SNHG12, could serve as a sponge for miRNA 
to abolish the endogenous suppressive effect on target 
mRNAs expression in BLCA ceRNA network. Among 
these lncRNAs, SNHG1 has been considered as indicator 
of several human cancers (54), and in this study we found 
that SNHG1 is ceRNA of hsa-miR-421 and hsa-miR-377-
3p target E2F Transcription Factor 8 (E2F8). Some studies 
demonstrated that deregulation of E2F family activity was 
correlated with aberrant cell proliferation and in some 
instances cell death (55). The lncRNA SNHG3 acted as 
miRNA sponge to absorb miRNAs and weakened the 
inhibition of S-Phase Kinase Associated Protein 2 (SKP2) 
expression. Accumulating evidence suggested that SKP2 
is an important oncoprotein and a potential target of 
Wnt regulation in several human cancer cells (56). It is 
noted that some studies indicated that over expression 
of SKP2 has been implicated in cell transformation and 
carcinogenic in BRCA (57). Moreover, in the case of 
BRCA, the lncRNA Long Intergenic Non-Protein Coding 
RNA 667 (LINC00667) was a hub node with the highest 
degree in the BRCA ceRNA network, indicating that it 
can regulate a great number of mRNAs by competitively 
bound with miRNAs. For instance, LINC00667 acted as 
hsa-miR-19a-3p and hsa-miR-19b-3p sponge to weaken the 
inhibition of Transferrin Pseudogene 1 (TFP1) expression, 
and acted as hsa-miR-081a-5p, hsa-miR-081b-5p, hsa-miR-
081c-5p and hsa-miR-081as-5p sponge to regulate Reversion 
Inducing Cysteine Rich Protein with Kazal Motifs (RECK) 
and Inhibitor of DNA Binding 4 (ID4) expressions. Among 
these mRNAs, Zhang et al. (58) indicated that RECK is an 
important molecule in preventing tumor cell metastasis 
in BRCA. RECK is a novel predictor of breast carcinoma 
for that LINC00667-RECK could emerge as an attractive 
new drug target in the treatment of BRCA. Some 
researches indicated that down regulation of Tissue Factor 
Pathway Inhibitor (TFPI) induced intracellular tyrosine 
signaling and increased the self-sustained growth and 
metastatic abilities of BRCA cell lines (59). In addition, 
ID4 is a potential tumor suppressive gene that involve in 
aggressiveness of tumor behavior (60). Thus, LINC00667-
TFPI and LINC00667-ID4 pair might be proven useful as 
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a genetic marker to predict early metastasis and progress. 
Furthermore, we found that Long Intergenic Non-Protein 
Coding RNA 893 (LINC00893) acted as ceRNA in the 
BRCA ceRNA network, and it regulated the expression of 
11 mRNAs, such as Ubiquitin Specific Peptidase 2 (USP2) 
and EPH Receptor A2 (EPHA2). Moreover, the lncRNA 
Pvt1 Oncogene (PVT1), lncRNA EPB41L4A Antisense 
RNA 1 (EPB41L4A-AS1) were ceRNA of seven miRNAs 
targeting Nuclear Factor I B ( NFIB), Family With Sequence 
Similarity 13 Member C ( FAM13C), SH3 Domain Binding 
Glutamate Rich Protein Like 2 (SH3BGRL2), CUGBP 
Elav-Like Family Member 2 (CELF2), Tumor Protein P53 
Inducible Nuclear Protein 1 (TP53INP1), Cyclin D2 (CCND2) 
and Coiled-Coil Domain Containing 68 (CCDC68). LncRNA 
Zinc Finger BED-Type Containing 3 (ZBED3-AS1) was 
ceRNA of hsa-miR-382-5p targeting NDRG Family Member 
2 (NDRG2) and Integral Membrane Protein 2A (ITM2A). 
These RNA interactions can supply novel perspective for 
the tumorigenes of BLCA and BRCA. 

In summary, we uncovered molecular commonness 
between BLCA and BRCA by applying a comprehensive 
integrative analysis. Our results suggested that specific 
genes, lncRNAs and ceRNA pairs could be valuable for 
diagnosis and therapy of cancers and be of biological 
importance. Our data might lay a foundation for further 
functional research of commonness between BLCA and 
BRCA. Furthermore, this computational framework can be 
easily extended to other cancer types or diseases, if samples 
are simultaneously measured from mRNA, lncRNA and 
miRNA expression levels.

Some limitations of this study should be pointed out. 
On one hand, the increasing volume of multi-omics data 
can help improve the accuracy and stability of machine 
learning analysis, and integrate more molecular biomarkers 
to explore the relationship between BRCA and BLCA are 
our future work. On the other hand, although our study 
provided biological insights into the molecular similarity of 
BLCA and BRCA, additional experiments will be required 
to further validate these findings. 
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Supplementary

Table S1 The mRNAs containing in five sub-networks.

GeneSymbol Degree K-core score Cluster Sub-NetworkColor

CDK1 103 37 Cluster1 Blue

CCNB1 89 37 Cluster1 Blue

CCNB2 71 37 Cluster1 Blue

PLK1 69 37 Cluster1 Blue

CDC20 68 37 Cluster1 Blue

AURKB 67 37 Cluster1 Blue

BUB1 65 37 Cluster1 Blue

MAD2L1 63 37 Cluster1 Blue

CENPE 58 37 Cluster1 Blue

KIF2C 57 37 Cluster1 Blue

CDCA8 53 37 Cluster1 Blue

CENPA 52 37 Cluster1 Blue

BUB1B 52 37 Cluster1 Blue

KIF18A 50 37 Cluster1 Blue

NDC80 50 37 Cluster1 Blue

BIRC5 49 37 Cluster1 Blue

CENPF 47 37 Cluster1 Blue

MLF1IP 45 37 Cluster1 Blue

CENPO 45 37 Cluster1 Blue

CENPN 45 37 Cluster1 Blue

CENPM 45 37 Cluster1 Blue

CENPL 45 37 Cluster1 Blue

CENPK 45 37 Cluster1 Blue

CENPI 45 37 Cluster1 Blue

CASC5 45 37 Cluster1 Blue

NUF2 41 37 Cluster1 Blue

ERCC6L 40 37 Cluster1 Blue

SKA1 39 37 Cluster1 Blue

ZWINT 38 37 Cluster1 Blue

ZWILCH 38 37 Cluster1 Blue

SPC25 38 37 Cluster1 Blue

SPC24 38 37 Cluster1 Blue

SGOL2 38 37 Cluster1 Blue

SGOL1 38 37 Cluster1 Blue

RCC2 38 37 Cluster1 Blue

KNTC1 38 37 Cluster1 Blue

DSN1 38 37 Cluster1 Blue

CDCA5 38 37 Cluster1 Blue

ESPL1 41 36 Cluster1 Blue

ADCY5 34 17 Cluster2 Pink

ADCY4 33 17 Cluster2 Pink

GNG2 33 17 Cluster2 Pink

GNG7 32 17 Cluster2 Pink

GNG11 32 17 Cluster2 Pink

LPAR2 26 17 Cluster2 Pink

C3 24 17 Cluster2 Pink

CXCL12 22 17 Cluster2 Pink

CCL21 18 17 Cluster2 Pink

SSTR1 18 17 Cluster2 Pink

GPER 18 17 Cluster2 Pink

S1PR1 17 17 Cluster2 Pink

P2RY14 17 17 Cluster2 Pink

OXER1 17 17 Cluster2 Pink

CXCL2 17 17 Cluster2 Pink

ADRA2C 17 17 Cluster2 Pink

ADRA2B 17 17 Cluster2 Pink

ADRA2A 17 17 Cluster2 Pink

IGF1 21 13 Cluster3 Orange

VWF 18 13 Cluster3 Orange

A2M 17 13 Cluster3 Orange

HGF 16 13 Cluster3 Orange

CLU 15 13 Cluster3 Orange

SERPING1 15 13 Cluster3 Orange

FIGF 15 13 Cluster3 Orange

CFD 14 13 Cluster3 Orange

F8 14 13 Cluster3 Orange

RARRES2 13 13 Cluster3 Orange

PROS1 13 13 Cluster3 Orange

MMRN1 13 13 Cluster3 Orange

GAS6 13 13 Cluster3 Orange

CLEC3B 13 13 Cluster3 Orange

POLE2 26 12 Cluster4 Green

GEN1 12 12 Cluster4 Green

PCNA 43 11.86813187 Cluster4 Green

BRCA1 33 11.86813187 Cluster4 Green

BLM 30 11.86813187 Cluster4 Green

RAD51 23 11.86813187 Cluster4 Green

RMI1 22 11.86813187 Cluster4 Green

BRCA2 21 11.86813187 Cluster4 Green

EXO1 19 11.86813187 Cluster4 Green

DNA2 19 11.86813187 Cluster4 Green

RMI2 17 11.86813187 Cluster4 Green

BRIP1 17 11.86813187 Cluster4 Green

XRCC2 14 11.86813187 Cluster4 Green

RAD51AP1 14 11.86813187 Cluster4 Green

EME1 18 11 Cluster4 Green

CLSPN 20 10 Cluster4 Green

SOCS3 16 10 Cluster4 Green

CCNF 13 10 Cluster4 Green

KLHL13 13 10 Cluster4 Green

UBE2S 13 10 Cluster4 Green

PARK2 11 10 Cluster4 Green

TRAIP 11 10 Cluster4 Green

ZBTB16 10 10 Cluster4 Green

KLHL21 10 10 Cluster4 Green

ASB1 10 10 Cluster4 Green

ORC1 19 9.848484848 Cluster4 Green

MCM10 17 9.848484848 Cluster4 Green

ORC6 17 9.848484848 Cluster4 Green

DBF4 12 9.848484848 Cluster4 Green

H2AFX 41 15 Cluster5 Yellow

HIST2H2BE 39 15 Cluster5 Yellow

HIST1H2BD 39 15 Cluster5 Yellow

STRA13 22 15 Cluster5 Yellow

OIP5 15 15 Cluster5 Yellow

MIS18A 15 15 Cluster5 Yellow

HJURP 15 15 Cluster5 Yellow

AURKA 38 14.90333333 Cluster5 Yellow

NUSAP1 23 14.55882353 Cluster5 Yellow

DLGAP5 33 14.40692641 Cluster5 Yellow

TTK 23 14.31372549 Cluster5 Yellow

KIF11 44 14.12169312 Cluster5 Yellow

KIF4A 22 14 Cluster5 Yellow

KIF15 19 14 Cluster5 Yellow

KIFC2 14 14 Cluster5 Yellow

KIFC1 14 14 Cluster5 Yellow

KIF26B 14 14 Cluster5 Yellow

KIF26A 14 14 Cluster5 Yellow

KIF22 14 14 Cluster5 Yellow

KIF18B 14 14 Cluster5 Yellow

KIF23 37 13.71428571 Cluster5 Yellow

KIF20A 39 13.44 Cluster5 Yellow

CCNA2 55 13.37662338 Cluster5 Yellow

PRC1 29 13.31168831 Cluster5 Yellow

UBE2C 36 13 Cluster5 Yellow

TOP2A 44 12.6 Cluster5 Yellow

TPX2 27 12.45833333 Cluster5 Yellow



Table S2 The prediction performances of four type classifiers trained by best subsets.

Cancer Dataset Method Accuracy Sensitivity Specificity

BLCA mRNA NB 1 1 1

SVM 1 1 1

K-NN 1 1 1

ANN 1 1 1

lncRNA NB 0.99 0.99 1

SVM 1 1 1

K-NN 0.98 1 0.96

ANN 1 1 1

BRCA mRNA NB 1 1 1

SVM 1 1 1

K-NN 1 1 1

ANN 1 1 1

lncRNA NB 1 1 1

SVM 0.99 1 0.98

K-NN 0.99 1 0.98

ANN 0.99 0.98 1

BLCA, bladder cancer; BRCA, breast cancer.

Figure S1 MSVM-RFE analysis. (A) The average rank scores of mRNA/lncRNA with top 20 highest rank calculated by MSVM-RFE 
algorithm. The x-axis represents the average rank of each RNA; (B) the average test errors of subsets for four type datasets. The green 
node in each figure indicated the best subset with smallest test errors, and the red numbers indicated the corresponding number of mRNA/
lncRNA in the subset.
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