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Introduction

Melanoma (MM) is a kind of malignant tumor which 
originates from melanocytes, and accounts for 3–5% of 
skin malignant tumors. It has high malignancy and is prone 
to invasion and metastasis (1), resulting high mortality 

rate (2). BRAF kinase is the most important subtype 

of the Raf family in the MAPK signaling pathway (3). 

BRAF overexpression or mutation is closely related to the 

occurrence of melanoma (4). More than 60% melanomas 

have BRAFV600 mutation, which may encodes a constitutively 
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activated BRAF protein and induces the aberrant mitogen-
activated protein kinase (MAPK) signaling (5). Currently, 
the BRAF inhibitor vemurafenib is approved for melanoma 
treatment, which inhibits the kinase activity mainly by 
competitively binding to the ATP binding site (6). Although 
BRAF inhibitor has a rapid efficacy and good response 
rate, most melanoma patients develop tumor progression 
and resistance after 8–9 months of treatents resulting from 
reactivation of the MAPK pathway and other signaling 
pathways (7), It’s seriously affects the survival, prognosis of 
patients. Therefore, overcoming BRAF inhibitor resistance 
has important implications for improving patient survival.

Ferroptosis is a recently recognized form of regulated cell 
death driven by small molecules or conditions that induce 
lipid-based reactive oxygen species (ROS) accumulation, and 
this iron-dependent form of cell death is morphologically 
and genetically distinct from apoptosis, necroptosis, and 
autophagy (8,9). Ferroptosis is characterized by cell volume 
shrinkage and increased mitochondrial membranes and is 
mediated by iron-dependent lipid peroxide accumulation 
(10). The ferroptosis-inducing compounds, such as erastin 
and Ras selective lethal 3 (RSL3) could inactivate cellular 
glutathione (GSH)-dependent antioxidant defenses, leading 
to the accumulation of toxic lipid ROS (11,12). Glutathione 
peroxidase 4 (GPX4) is a key antioxidant enzyme that 
is responsible for removing lipid hydroperoxides within 
biological membranes (8). Once GPX4 inactivation, GSH 
will loses ability in removing the local peroxidase reaction, 
which eventually lead to a lipid ROS accumulation and 
ferroptosis. 

Sorafenib is a novel multi-target anti-tumor drug, which 
acts on both tumor cells and tumor blood vessels (13).  
Sorafenib directly inhibits tumor cell proliferation by 
blocking the RAF/MEK/ERK-mediated cell signaling 
pathway, and also inhibits VEGF and platelet-derived 
growth factor (PDGF) receptors to block the formation of 
tumor neovascularization, indirectly inhibiting the growth 
of tumor cells (14). In addition, sorafenib-mediated cell 
death was associated with accumulated ROS (15). Sorafenib 
combination with triterpenoid oleanolic acid has highly 
synergistic effects on cell death and suppresses long-term 
clonogenic survival (16). Sorafenib stimulates significant 
intracellular ROS production, leading to ferroptosis in 
hepatocellular carcinoma (17). In melanoma, Tsoi et al. 
proposed that ferroptosis-inducing drugs present an 
orthogonal therapeutic approach to enhance the efficacy of 
targeted and immune therapies (18). Notably, It’s reported 
that there is a synergistic effects of vemurafenib and 

sorafenib in vemurafenib-resistant A375 cells (19). Thus, 
we hypothesized that the combination of sorafenib with 
vemurafenib could sensitize melanoma cells to vemurafenib 
via ferroptosis. 

In this study, we aim to investigate whether sorafenib 
could sensitize melanoma cells to vemurafenib. We found 
that sorafenib sensitized melanoma cells to vemurafenib 
by increasing ROS production through ferroptosis. Our 
study reveals that sorafenib may be a novel strategy for 
overcoming vemurafenib resistance in melanoma. 

Methods

Reagents

Vemurafenib (cat No. S1267), sorafenib (cat No. S1040), 
ferroptosis inhibitor Ferrostatin-1 (Fer-1) (cat no. S7243), 
caspase inhibitor Z-VAD-FMK (cat No. S7023) and 
MLKL inhibitor Necrosulfonamide (cat No. S8251) were 
purchased from Selleck (Shanghai, China).

Cell culture and treatment

Two melanoma cell lines, A375 and SK-Mel-28, were 
purchased from National Infrastructure of Cell Line 
Resource (Beijing, China). All cells were cultured in RP1640 
medium supplemented with 10% fetal bovine serum under 
5% CO2 and 37 ℃ conditions for further study. 

The resistant MM cells (A375/Vem and SK-Mel-28/
Vem) were established in our lab by stepwise exposure to 
escalatin concentrations of Vemurafenib. Briefly, A375 and 
SK-Mel-28 cells were treated with 0.5–6.0 μM Vemurafenib 
every 3 days for 6 weeks. By that analogy, the final 
concentration reached to 6 μM. 

For the mechanism investigation, A375 and SK-Mel-28 
cells were exposed to ferroptosis inhibitor Ferrostatin-1 
(Fer-1) (2 μM dissolve in DMSO), caspase inhibitor 
Z-VAD-FMK (50 μM dissolve in DMSO) and MLKL 
inhibitor Necrosulfonamide (1 μM dissolve in DMSO) for 
12 hours. 

Proliferation measurement

Cell Counting Kit-8 (CCK-8) (Beyotime, Hangzhou, 
China) was used to determine cell proliferation according 
to the manufacturer’ instructions. Briefly, five-thousand 
cells were seeded in each 96-well plate and treated with the 
indicated drugs. After that, CCK-8 reagents (10 μL) were 
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added to medium. After 1 h incubation, a microplate reader 
was used to detect the OD value at 570 nm.

Biochemistry detection

Commercial kits (cat No. MAK025, cat No. CS0260, cat 
No. MAK085, and cat No. MAK143 were purchased from 
Merck (Shanghai, China) were used to detect the iron, 
GSH, MDA and ROS concentrations according to the 
manufacturer’ instructions, respectively. 

Western blot

After treatment, the cells were collected and used for 
protein extraction using radio immunoprecipitation 
assay (RIPA) lysis buffer. Fifty micrograms proteins were 
separated by 10% SDS/PAG and transferred onto PVDF 
membranes. The membranes were rinsed with PBS and 
immunoblotted with primary antibodies (Rabbit mAb 
anti-NRF2 antibody, cat No. 12721, diluted at 1:1,000, 
from Cell Signaling Technology; mouse mAb anti-GPX4 
antibody, cat No. ab16739, diluted at 1:2,000, from Abcam). 
Appropriate peroxidase-conjugated secondary antibody was 
added into the membranes and incubated for 2 h. A Bio-
Rad (Hercules, CA) imaging system was sued to detect the 
specific bands.

Statistical analysis 

Statistical analyses were processed by using GraphPad 
Prism software (GraphPad Software Inc., La Jolla, CA). 
Each experiment was executed at least three times, and the 
data are presented as means ± SD. The difference between 
the two groups was processed by Student’s t-test. The 
differences among multiple groups was evaluated by one-
way ANOVA with Bonferroni test. Statistical significance 
was identified by P<0.05. 

Results

The combination of vemurafenib and sorafenib inhibits 
melanoma cell viability 

To investigate whether sorafenib could overcome 
vemurafenib resistance in melanoma cells, vemurafenib 
resistant MM cells (A375/Vem and SK-Mel-28/Vem) were 
established. The morphological changes were obvious. 
Resistant cells were larger and flatter than their native 

counterparts, with abundant cytoplasm and alterations of 
cytoplasmic membrane shape (Figure 1A). A375/Vem and 
SK-Mel-28/Vem and their parental cells were exposed 
to a series of concentrations of vemurafenib. The cell 
viability was significantly decreased in all cells. However, 
the rates of descent in A375/Vem and SK-Mel-28/Vem 
cells were significantly lower than that of in their parental 
cells (Figure 1B), implying that A375/Vem and SK-Mel-28/
Vem cells obtain a certain degree of resistance. In addition, 
the IC50 of A375/Vem (4 μM) and SK-Mel-28/Vem  
(7 μM) were significantly higher than in A375 (1 μM) and 
SK-Mel-28 (2 μM) (Figure 1C). Moreover, the resistant 
cells maintained a highly active MAPK pathway in the 
presence of vemurafenib (Figure S1). Then, BRAF-wild-
type cells WM35, BRAF-mutation-type cells A375, the 
resistant cells A375/Vem and SK-Mel-28/Vem cells, were 
treated with vemurafenib or combined with sorafenib and 
measured the cell viability. We found that vemurafenib 
treatment significantly inhibits MM cells viability. 
This effect was also observed in sorafenib treated cells  
(Figures  2,S2) .  Importantly,  we observed that the 
combination of vemurafenib with sorafenib showed a 
synergistic effect in inhibiting cell viability in a dose-
dependent manner (Figures 2,S2).

The effects of sorafenib on oxidative stress in vemurafenib 
resistant melanoma cells

We further investigate the mechanism of sorafenib 
sensitizing MM cells to vemurafenib. Ferroptosis is a new 
form of programmed cell death characterized with the 
iron-dependent lipid peroxides, the iron-dependent ROS 
accumulation triggers ferroptosis mainly by inactivation 
of GPX4 or GSH deficiency (10). So we treated the 
vemurafenib resistant cells with either vemurafenib or 
together with sorafenib (10 μM) for 48 h, then detected 
the level of iron and lipid oxidation related molecules. As 
shown in Figures 3 and 4, the concentrations of Iron, GSH, 
MDA (an end product of lipid peroxidation), and ROS 
in cells treated with vemurafenib or sorafenib alone have 
no significant changes compared with the control cells. 
However, the combination of vemurafenib and sorafenib 
dramatically increased the concentration of Iron, MDA, 
and ROS, but reduced GSH in vemurafenib resistant 
cells compared with the cells treated with vemurafenib 
and sorafenib alone. In RAF-wild-type cells WM35 and 
BRAF-mutation-type cells A375, the levels of Iron, GSH, 
MDA, and ROS were increased, but GSH were reduced 
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Figure 1 IC50 in vemurafenib-resistant MM cells. Vemurafenib-resistant MM cell lines were established. The cells were treated with a 
series of concentrations of vemurafenib (Vem). (A) The photographs obtained by light microscope showed the morphology changes of 
the cells. Bar =200 μm. (B) CCK-8 assay was performed to measure the cell viability in vemurafenib-resistant SK-Mel-28 cells and A375 
cells after 48 h-treatment. (C) IC50 was calculated for vemurafenib-resistant SK-Mel-28 cells and A375 cells and their parental cells. MM, 
melanoma. *, P<0.05.and MLKL inhibitor Necrosulfonamide for 12 hours. CCK-8 assay was performed to measure the cell viability in 
vemurafenib-resistant A375 cells (A) and SK-Mel-28 cells (B). *, P<0.05.

Figure 2 Sorafenib sensitizes MM cells to vemurafenib. The vemurafenib-resistant cells were treated with vemurafenib or sorafenib alone, 
or both of them for 48 hours. CCK-8 assay was performed to measure the cell viability in vemurafenib-resistant A375 cells (A) and SK-
Mel-28 cells (B) after 48 h-treatment. *, P<0.05. The coefficient of drug interaction (CDI) was calculated as follows: CDI = AB/(A × B). 
According to the absorbance of each group, AB is the ratio of the combination groups to control group; A or B is the ratio of the single 
agent group to control group. Thus, CDI value <1, =1 or >1 indicates that the drugs are synergistic, additive or antagonistic, respectively. 
MM, melanoma.
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Figure 3 The effects of sorafenib on iron, GSH and MDA in vemurafenib-resistant MM cells. The cells were treated with vemurafenib or 
sorafenib alone, or both of them for 48 hours. (A) Iron Assay Kit was used to measure the iron concentration. (B) Glutathione Assay Kit was 
used to measure the GSH concentration. (C) Lipid Peroxidation (MDA) Assay Kit was used to measure the MDA concentration. *, P<0.05.
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in cells treated with sorafenib alone or in combination 
with vemurafenib, and the effects induced by the drug 
combination were more intense than sorafenib treating 
alone (Figures S3,S4). These results implied that sorafenib 
may aggravated oxidative stress in vemurafenib resistant or 
treated melanoma cells.

Sorafenib sensitizes melanoma cells to vemurafenib 
through ferroptosis

In addition, we found that the combination of vemurafenib 
and sorafenib could suppress the antioxidant enzyme 
GPX4 and nuclear factor (erythroid-derived 2)-like 2 
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Figure 4 The effects of sorafenib on ROS production in vemurafenib-resistant MM cells. The cells were treated with vemurafenib or 
sorafenib alone, or both of them for 48 hours. Fluorometric Intracellular ROS Kit was used to measure the ROS concentration. *, P<0.05. 
ROS, reactive oxygen species; MM, melanoma.
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(NRF2) (Figure 5). Vemurafenib resistant cells were treated 
with vemurafenib or sorafenib, and then exposed to the 
ferroptosis inhibitor Ferrostatin-1 (Fer-1), caspase inhibitor 
Z-VAD-FMK and MLKL inhibitor Necrosulfonamide. We 
found that the caspase inhibitor Z-VAD-FMK and MLKL 
inhibitor Necrosulfonamide did not significantly alter the 
inhibitory effects of vemurafenib and sorafenib (Figure 6). 
However, ferroptosis inhibitor Ferrostatin-1 treatment 
abolished the inhibitory effects of sorafenib or together 
with vemurafenib in A375/Vem and SK-Mel-28/Vem cells 
(Figure 6). 

Discussion

MM is an aggressive disease. Molecular targeted therapies 
largely improved the overall survival of MM (20). BRAF 
inhibitors Vemurafenib is a drug that targeting to mutations 

in the BRAF/MEK/ERK pathway. The application of 
Vemurafenib results in a good clinical outcome as well 
as better safety and efficacy. However, BRAF inhibitors 
resistance brings out new targets in this pathway (21). One 
of the promising targets is the constitutive activation of 
the PI3K/AKT pathway that leading to intrinsic BRAF 
resistance (22). MAPK/ERK and PI3K/AKT pathways can 
be activated by c-Met (23), leading to drug resistance via 
upstream or downstream effectors (24). 

In normal conditions, the MAPK signaling network 
was activated by receptor tyrosine kinases through RAS 
proteins. RAS can regulate BRAF in the MAPK pathway 
to trigger MEK 1/2 activation, and subsequent activation 
of ERK 1/2 to induce several pro-growth factors and 
inhibit pro-apoptotic signals (25). A high percentage of 
melanomas have a mutated MEK1/2-activated MAPK 
signaling pathway (26), which leads to the promotion of 
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Figure 5 The effects of sorafenib on NRF2 and GPX4 in vemurafenib-resistant MM cells. The cells were treated with vemurafenib or 
sorafenib alone, or both of them for 48 hours. The untreated cells were used as control. (A) Western blot was performed to analyze the 
expression of NRF2 and GPX4. (B) The quantification of bands was shown in lower panel. *, P<0.05. MM, melanoma.
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Figure 6 Lipid peroxidation inhibitors ferrostatin-1 reverses Sorafenib-mediated cell death. The cells were treated with vemurafenib or 
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cell proliferation. However, these mutations also result 
in increased sensitivity to MAPK kinase inhibitors (20). 
Therefore, targeting MEK1/2 would be a promising 
candidate for cancer therapy (27). The addition of the 
MEK inhibitor cobimetinib to vemurafenib was associated 
with a significant improvement in progression-free survival 

among patients with BRAF V600-mutated metastatic 
melanoma (28). 

Sorafenib inhibits tumor growth through disrupting 
tumor vasculature and targeting the MAPK pathway (29),  
including VEGFR, and platelet-derived growth factor 
receptor (PDGFR)-β  (1). Sorafenib can efficiently 



1591Translational Cancer Research, Vol 9, No 3 March 2020

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(3):1584-1593 | http://dx.doi.org/10.21037/tcr.2020.01.62

inhibited the growth of tumors that harboring k-ras or 
b-raf mutations in a dose-dependent manner, including 
melanoma (30). In addition, Sorafenib-induced death has 
also been shown to be associated with oxidative stress (31).  
Sorafenib could rapidly increase the production of ROS, 
inducing intracellular glutathione depletion in hepatocellular 
carcinoma (32). Sorafenib treatment resulted in ROS 
accumulation and necroptotic cell death activation in 
Hodgkin’s lymphoma (33). It was also demonstrated 
that melatonin can increase the cytotoxic sensitivity of 
sorafenib through mitochondria stability and mitophagy 
in hepatocellular carcinoma cells (15). In this study, we 
found that sorafenib treatment did not significantly alter the 
production of ROS and the content of iron, GSH, and MDA 
in vemurafenib resistant melanoma cells, but cotreatment 
of sorafenib and vemurafenib dramatically upregulated 
ROS production, MDA and iron, but decreased GSH 
concentration. Interestingly, In WM35 and A375 cells, the 
levels of Iron, GSH, MDA, and ROS were increased, but 
GSH were reduced in cells treated with sorafenib alone or in 
combination with vemurafenib. The indistunctive effects on 
oxidative stress by sorafenib in A375/Vem and SK-Mel-28/
Vem cells may be ascribe to the character of multidrug 
resistance, which contributed to a degree sorafenib resistance 
in A375/Vem and SK-Mel-28/Vem cells. Anyhow, these 
results implied that sorafenib may sensitize melanoma to 
vemurafenib through activation of oxidative stress. Moreover. 
sorafenib strongly promoted vemurafenib-mediated cell 
death. And the lipid peroxidation inhibitors ferrostatin-1 
blocked these effects. Ferroptosis is characterized by the 
accumulation of iron-dependent ROS (34), and is can be 
induced sorafenib in cancer cells (35). MAPK activation and 
endoplasmic reticulum stress (ERS) upregulation are involved 
in ferroptosis (36). Ferroptosis is negatively regulated by 
glutathione peroxidase 4 (GPX4) and nuclear factor erythroid 
2-related factor 2 (NRF2), which inhibits ROS accumulation 
and cellular iron uptake (37). Our recent results showed that 
cotreatment of sorafenib and vemurafenib suppressed GPX4 
and NRF2 expression in vemurafenib resistant melanoma 
cells, which would increase ROS production and cellular iron 
uptake (38).

Conclusions

Our study identifies an association between sorafenib and 
ferroptosis in vemurafenib resistant melanoma cells. Our 
findings demonstrate that sorafenib treatment may be a novel 
strategy for overcoming vemurafenib resistance in melanoma.
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Figure S1 The vemurafenib-resistant cells maintained a highly level of phospho-MEK in the presence of vemurafenib. 1, 3, 5, 7: respectively 
indicate each cell culturing without vemurafenib; 2, 4, 6, 8: respectively indicate each cell culturing in the presence of vemurafenib, and the 
drug concentrations were 0.2, 1, 0.4, 2 μM, respectively.

Figure S2 Sorafenib sensitizes A375 and WM35 cells to vemurafenib. The A375 and WM35 cells were treated with vemurafenib or 
sorafenib alone, or both of them for 48 hours. CCK-8 assay was performed to measure the cell viability after 48 h-treatment. *, P<0.05.
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Figure S3 The effects of sorafenib on iron, GSH and MDA in A375 and WM35 cells. The cells were treated with Vemurafenib or sorafenib 
alone, or both of them for 48 hours. (A) Iron Assay Kit was used to measure the iron concentration. (B) Glutathione Assay Kit was used to 
measure the GSH concentration. (C) Lipid Peroxidation (MDA) Assay Kit was used to measure the MDA concentration. *, P<0.05.
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Figure S4 The effects of sorafenib on ROS production in A375 and WM35 cells. The cells were treated with vemurafenib or sorafenib 
alone, or both of them for 48 hours. Fluorometric Intracellular ROS Kit was used to measure the ROS concentration. *, P<0.05. ROS, 
reactive oxygen species.


