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Background: Globally, gastric carcinoma (GC) is one of the most commonly encountered malignancies 
and is the second highest contributor to cancer mortality. Lapatinib is a potent, orally-bioavailable small-
molecule inhibitor of both epidermal growth factor receptor and human epidermal growth factor receptor-2 
tyrosine kinases, and is administered to treat GC. However, a large proportion of patients either develop 
resistance to or do not respond to lapatinib, often because the treatment activates alternative signaling 
pathways. It is, therefore, vital to identify the key pathways which mediate resistance to lapatinib treatment.
Methods: The lapatinib sensitivity-related genes were extracted from the CellMiner database (version 
2.2) using “NCI-60 Analysis Tools”. The differentially expressed genes (DEGs) in gastric cancer were 
derived from The Cancer Genome Atlas (TCGA) database, the protein-protein interaction (PPI) network 
was derived from the Human Protein Reference Database (HPRD), and the Database for Annotation, 
Visualization and Integrated Discovery (DAVID) facilitated the functional analysis. The cell function was 
tested by CCK-8 cell viability assay, colony formation assay, acridine orange/ethidium bromide (AO/EB) 
staining, and Transwell assay.
Results: The functional linkage networks of lapatinib sensitivity were constructed. Two modules were 
identified, and pathway analysis indicated that these modules were involved in several pathways, including 
the neuroactive ligand-receptor interaction network and the Rap1 signaling pathway. Finally, the breast 
cancer anti-estrogen resistance 1 (BCAR1) gene was selected for further study with lapatinib-resistant 
SUN216 cells (SUN216/LR). We found the expression of BCAR1 was upregulated in SUN216/LR 
cells compared to SUN216 cells. The IC50 of lapatinib in SUN216/LR cells was reduced upon BCAR1 
knockdown, as measured by a CCK-8 assay. A clonogenic assay showed fewer SUN216/LR colonies with 
BCAR1 knockdown and lapatinib treatment.
Conclusions: In brief, we efficiently identified those crucial modules highly related to lapatinib sensitivity 
in GC by using a topological network method. BCAR1 was identified as a potentially critical gene that 
plays a role in lapatinib sensitivity, and experiments confirmed that BCAR1 might contribute to lapatinib 
resistance in GC. These results provide further insight into the molecular basis of lapatinib sensitivity and 
may offer novel strategies for the future treatment of GC.
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Introduction

Globally, gastric carcinoma (GC) is one of the most 
commonly encountered malignancies and is the second 
highest contributor to cancer mortality (1-3). Although 
therapy for GC has seen progressive developments in 
the last decade, especially with chemotherapeutic drugs, 
the survival rate of GC patients remains unsatisfactory 
(4,5). Therefore, methods to enhance the efficacy of 
chemotherapeutic drugs for GC patients are needed. 

Lapatinib, which is orally bioavailable, is a small-
molecule reversible inhibitor of both epidermal growth 
factor receptor (EGFR) and human epidermal growth factor 
receptor-2 (HER2) tyrosine kinases (6). Although lapatinib 
has found a purpose as a treatment of trastuzumab-resistant, 
HER2-positive advanced GC, many patients eventually 
develop resistance to or do not respond to the drugs (7,8), 
often as a consequence of the activation of alternative 
signaling pathways (9,10). 

In view of this, it is critical to be able to predict 
which signaling pathways could be activated to mediate 
resistance to lapatinib treatment, which could help 
identify combination or secondary treatments to mitigate 
this resistance (11,12). However, it has been difficult to 
identify the key pathways and proteins involved in lapatinib 
resistance. Park et al. found that FOXO1, through negative 
crosstalk, acts as a bridge between HER2 and MET 
signaling pathways, and plays a core role in the regulation of 
acquired lapatinib resistance (13). Meanwhile, inhibition of 
Hes1 enhances lapatinib sensitivity in GC sphere-forming 
cells (14), and Kim et al. demonstrated that testican-1-
mediated epithelial-mesenchymal transition signaling 
results in acquired resistance to lapatinib in GC (15). 

However, these pathways and proteins linked to lapatinib 
resistance were identified by previous publications and 
experiments, and a comprehensive method to investigate 
the pathways or signaling networks involved in lapatinib 
resistance is needed. Fortunately, these limitations can be 
alleviated by the advancements that have been made with 
high-throughput experimental and bioinformatics databases. 
Exploration of the relationship between drug sensitivity and 
genomic data was facilitated by NCI-60 cell line panel and 
associated drug screens (16). Meanwhile, the furtherance 
of CellMiner has enabled the efficient retrieval of both 
genomic data and the activity reports of ~20,000 chemical 
compounds across the NCI-60 cell line (17). 

In the this study, we sought to explore the relationship 
between sensitivity genes and lapatinib response in GC 

by integrating genomic, drug sensitivity, and tumor 
transcriptomic data. We constructed a lapatinib sensitivity 
negative network (LSN) and a lapatinib sensitivity positive 
network (LSP), and identified modules within each of these 
networks. We then evaluated these modules using the extent 
of enrichment of dysregulated genes in GC. BCAR1 gene, 
which was present in module 4 and was enriched in the 
Rap1 signaling pathway, was selected for further analyses. 
Our data indicated that knockdown of BCAR1 can reverse 
lapatinib resistance in SUN216/LR cells. 

Methods

Network construction

Construction of a functional linkage network for lapatinib 
sensitivity was performed with 164 positively related genes 
and 117 negatively related genes, which were extracted 
from the CellMiner database (version 2.2) using “NCI-
60 Analysis Tools”. The potential positively and negatively 
related genes involved in lapatinib sensitivity were obtained 
by calculating the Pearson’s correlation coefficient between 
the mRNA expression profiles of the NCI-60 cell lines 
and the 50% growth inhibitory concentration values. The 
values were determined by the developmental therapeutics 
program (DTP) drug screen with CellMiner, which is a 
platform which facilitates the efficient retrieval of gene 
transcript data and the activity reports for chemical 
compounds (17). 

The protein-protein interaction (PPI) network was 
derived from The Human Protein Reference Database 
(HPRD), which contains information manually harvested 
by expert biologists who read, interpret, and analyze data 
from published literature (18). For the current study, HPRD 
release 9, which contains 37,039 PPIs among 9,465 proteins 
found in humans, was downloaded. Negatively related genes 
and positively related genes were projected into the HPRD 
PPI network and then incorporated with their first neighbors 
to construct the LSN and LSP networks, respectively. 
Visualizations were performed using Cytoscape software (19).

Identification of differentially expressed genes (DEGs) in 
gastric cancer

RNA-seq v2 datasets derived from GC were obtained from The 
Cancer Genome Atlas (TCGA) (http://tcga-data.nci.nih.gov/). 
The raw read counts were extracted for every exon from 
exon quantification file in the TCGA level 3 dataset. The 



1353Translational Cancer Research, Vol 9, No 3 March 2020

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(3):1351-1360 | http://dx.doi.org/10.21037/tcr.2020.01.30

reads per kilobase of transcript per million read mapped 
(RPKM) value of each gene could then be calculated by 
applying the formula as follows:

9EC 10RPKM
SC 1
×

=
×                                     

[1]

EC constitutes the mapped read counts of all exons of 
1 gene, while SC equates to the mapped read counts of all 
exons in a sample. The number “l” is the total length of 
all exons in a gene. GENCODE (V14) was used to obtain 
the exon structures of genes via download. We identified 
the up- and down-regulated genes using the fold-change 
method. Genes with fold change value greater than 2 or 
less than one-half were considered up- or down-regulated, 
respectively. 

Identification and evaluation of functional modules

Network modules were identified using the MCODE 
plug-in in Cytoscape. In the lapatinib sensitivity negatively 
correlated LSN and LSP networks, we identified 2 and 9 
modules, respectively. Up-regulated genes in cancers tend 
to inhibit anti-cancer drug sensitivity while down-regulated 
genes show the opposite effect. To identify the functional 
modules of lapatinib sensitivity, we assessed the significance 
of the overlap between up-regulated genes in GC and each 
module in the LSN network using a hypergeometric test. 
Modules were considered significant with a p-value of less 
than 0.05. Similarly, we also tested the significance of the 
overlap between down-regulated genes in GC and each 
module in the LSP network. The hypergeometric test used 
assumes that if the entire genome has a total of m genes, in 
which t is part of a functional module, and up-regulated or 
down-regulated genes in GC are a total of n genes, in which 
r is part of the functional modules in LSN or LSP, then the 
p-value can be worked out to assess that drug’s enrichment 
significance using the following formula: 

1

0
1 r

x

t m t
x n x

p
m
n

−

=

−  
  −  = −

 
 
 

∑ [2]

Using the above-described method, we calculated the 
enrichment significance between up- and down-regulated 
genes and each functional module.

Lastly, we identified 2 significant modules in the LSP: 
module 4 (P=0.024) and module 9 (P=0.019). To investigate 
the functions of these modules, we worked to enrich 

pathways using the Database for Annotation, Visualization, 
and Integrated Discovery (DAVID) tool (20).

Cell culture

The GC cell line, SUN216, was purchased from the 
American Type Culture Collection (Manassas, VA, USA). 
Culturing of the cells took place in Dulbecco’s Modified 
Eagle medium (DMEM, Invitrogen, USA) with 10% fetal 
bovine serum (FBS; Hyclone, USA), 50 U/mL penicillin, and 
50 μg/mL streptomycin (Invitrogen, CA, USA). All cells were 
kept at 37 ℃ in a humidified incubator at 5% CO2.

Establishment of lapatinib-resistant SUN216 cell lines 

Increasing doses of lapatinib (Shanghai Aladdin Biochemical 
Technology Co., Ltd., Shanghai, China) were consistently 
applied to the SUN216 cell line for about 12 weeks. The 
dosing began at 5 μM and increased to 10 μM after 4 weeks, 
15 μM after another 4 weeks, and remained at 15 μM for 
the last 4 weeks. The resistant SUN216 cell line that we 
established was then maintained in DMEM medium with 
10% (v/v) FBS and 10 μM lapatinib.

Cell transfection

The sequence of the BCAR1-siRNA (stQ0002578-1) was 
obtained from RiboBio (Guangzhou, China). SUN216 
cells were seeded in 60-mm dishes 24 hours before to 
transfection. BCAR1-siRNA or control-siRNA was 
transfected into cells with Lipofectamine 3000 (Invitrogen) 
in serum-free media according to experiments request. Five 
hours following the procedure, the media was switched to 
complete media. Harvesting of cell lysates was carried out 
48 hours after transfection.

CCK-8 cell viability assay

SUN216 cells transfected with control-siRNA or BCAR1-
siRNA were seeded into 96-well plates at a density of 5×103 

cells/per well and culturing took place for 4 days with varying 
concentrations of lapatinib (0, 5, 10, 20, 50 μg/mL). The 
viability of cells was determined with the Cell Counting Kit-
8 (CCK-8, Promega, Kumamoto, Japan) at days 0, 2, and 4.

Colony formation assay

Approximately 8×102 SUN216 cells transfected with 
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control-siRNA or BCAR1-siRNA were placed in 60 mm 
dishes. After 10 days had passed, colonies were stained with 
0.1% crystal violet in 20% methanol for 15 min, before 
photographs were taken and the number of visible colonies 
was counted.

Acridine orange/ethidium bromide (AO/EB) staining 

Acridine orange (20 μL) and ethidium bromide (20 μL) 
mixing solution were placed for 5 minutes (Solarbio of 
Biotechnology, Beijing, China) in 1 well with 2 mL PBS at 
room temperature. Fluorescence microscopy (×200) allowed 
cellular morphological changes to be studied. The following 
formula was used to figure out the percentage of apoptotic 
cells: apoptotic rate (%) = apoptotic cells/all cells counted.

Transwell assay 

Transwell chambers were used to test the migration (Cat No. 
3422, Corning Costar, Cambridge, MA, USA) and invasion 
(Cat No. 356234, BD Biosciences, San Jose, CA, USA). All 
procedures were conducted, as described by Zhang et al. (21).

Western blotting

As  de sc r ibed  p rev ious l y,  Wes te rn  b lo t t ing  was 
implemented (22). Protein (60–80 μg) was separated by 
10% SDS-PAGE and then transfected to membranes for 
1 hour. Membrane blocking was achieved with 5% dry 
nonfat milk for 2 hours and subsequent incubation with 
BCAR1 (Cat: ab3183, Abcom, USA) overnight at 4 ℃. 
An electrochemiluminescence detection system (Thermo 
Fisher Scientific, CA, USA) was employed to detect signals. 

Data analysis

Data are expressed as mean ± SD. Student's non-paired t-test 
or a one-way analysis of variance (ANOVA), followed by 
Tukey’s test for multiple group comparisons, was applied for 
statistical analysis. P<0.05 signified a significant difference. 
Graph Pad Prism 5.0 and SPSS 19.0 were used to analyze data.

Results

Construction of lapatinib sensitivity-related functional 
linkage networks 

To identify the positively and negatively related genes 

involved in lapatinib sensitivity, we obtained lapatinib 
sensitivity-related genes from the CellMiner database by 
using the default cutoff. A total of 164 positively related 
genes and 117 negatively related genes were obtained 
and considered as core genes. LSP and LSN networks 
were constructed with the proteins encoded by these 
genes. Linkages between proteins were extracted from the 
HPRD database. Finally, the LSP and LSN networks were 
constructed using core genes and their first neighbors. There 
were 581 nodes and 574 edges in the LSP (Figure 1A), and 
438 nodes and 414 edges in the LSN (Figure 1B). 

Evaluation of functional modules in the LSP and LSN 
networks

Genes in similar biological processes, such as signaling 
pathways, tend to carry out similar functions, and therefore 
interact with each other as groups with high density in 
interaction networks (22). These entities are classed as 
functional modules, in which members are functionally 
linked to each other. In the LSP and LSN networks, we 
identified 2 and 9 of these modules, respectively. We 
then identified the significant modules in the LSP and 
LSN networks and evaluated these modules by the extent 
of enrichment of dysregulated genes in GC. We finally 
identified 2 significant modules in the LSN: module 4 
(P=0.024) and module 8 (P=0.019) (Figure 2). There were 
no significant modules in the LSP network. Pathway 
enrichment analysis revealed the involvement of module 4 
genes in the neuroactive ligand-receptor interaction network 
(hsa04080), the cAMP signaling pathway (hsa04024), and 
the Rap1 signaling pathway (hsa04015) (Figure 3A). Module 
8 was involved in the TNF signaling pathway (hsa04668) 
and the MAPK signaling pathway (hsa04010) (Figure 3B). 
Among these, we chose BCAR1 in the Rap1 signaling 
pathway in module 4 for further investigation, because of its 
higher degree in module 4 (Figure 2A).

Knockdown of BCAR1 sensitizes GC cells to lapatinib 
treatment 

We investigated whether knockdown of BCAR1 could 
sensitize GC cells to lapatinib treatment. We first 
established lapatinib-resistant SUN216 cells (SUN216/
LR) after 4 months of culturing with lapatinib. SUN216/
LR cells had a similar cell morphology as SUN216 cells  
(Figure 4A). Using the CCK-8 assay, we determined the 
IC50 value of SUN216 cells to be 0.24 nM. However, 
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Figure 1 Lapatinib sensitivity-related network. (A) The positive network contains 581 nodes and 574 edges; (B) the negative network 
contains 438 nodes and 414 edges.
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a much higher IC50 value (>10 nM) was determined 
for SUN216/LR cells (Figure 4B). We examined the 
levels of BCAR1 in SUN216/LR cells.  Compared 
with normal SUN216 cells, SUN216/LR cells had 
significantly higher BCAR1 levels (Figure 4C).  To 
investigate whether BCAR1 regulates lapatinib resistance, 
we first tested the expression after transfection with 
BCAR1-siRNA by Western blotting. Our data showed 
that the expression of BCAR1 was down-regulated after 
the transfection with BCAR1-siRNA (Figure 4D). BCAR1 
was knocked down in SUN216 cells using BCAR1-siRNA. 
Using the CCK-8 assay, we demonstrated that the IC50 
value of lapatinib in SUN216/LR cells was markedly 
reduced upon BCAR1 knockdown (Figure 4E). A clonogenic 
assay exhibited fewer colonies of SUN216/LR cells after 
BCAR1 knockdown and lapatinib treatment (Figure 4F). 
Next, using acridine orange/ethidium bromide (AO/EB) 
staining, we tested the cell apoptosis after transfection 
with BCAR1-siRNA and found the cell apoptosis rate to 
be more up-regulated in the BCAR1-si group than in the 
control group (Figure 4G). We also tested migration and 
invasion (Figure S1), and our data showed that the silencing 
of BCAR1 could inhibit cell migration and invasion. These 
data indicate that knockdown of BCAR1 reverses lapatinib 
resistance in SUN216/LR cells.

Discussion 

Acquired resistance is a major cause of poor clinical 
outcomes in cancer patients undergoing chemotherapy (23). 
Identification of genes of sensitivity to anti-cancer drugs 
would help to optimize the anti-tumor efficacy and lower 
toxicity of chemotherapeutic drugs like (24). Herein, we 
present a computational procedure for identifying sensitivity 
genes for lapatinib treatment based on multiple functional 
gene modules, which we verified using an in vitro model.

We first constructed 2 functional linkage networks, 
LSN and LSP, and mined the functional modules from the 
2 networks. We then investigated the significance of the 
modules in the 2 networks. Finally, 2 modules in the LSP 
network, module 4 and module 8 were identified. A Kyoto 
Encyclopedia of Genes and Genomes (KEGG) pathway 
analysis showed the involvement of genes in module 4 
in pathways, including the neuroactive ligand-receptor 
interaction network (hsa04080) and protein processing 
in the endoplasmic reticulum (hsa04141). Some tyrosine 
kinase inhibitors, such as lapatinib, produce reactive oxygen 
species-dependent endoplasmic reticulum stress and rapid 
cytosolic calcium mobilization from endoplasmic reticulum 
stores (25-27). Genes in module 8 were involved in the 
TNF signaling pathway (hsa04668), the estrogen signaling 
pathway (hsa04915), and the MAP kinase signaling pathway 

A B

Figure 2 Two significant modules in the LSN. (A) Module 4 contains 112 nodes and 125 edges; (B) module 8 contains 14 nodes and 13 
edges.
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Figure 3 The pathway enrichment analysis results of (A) module 4 and (B) module 8. Pathway enrichment was conducted using the online 
web tools of DAVID. The X-axis represents −log (P value) of enrichment significance, and the Y-axis represents enriched pathways 

hsa04080:Neuroactive ligand−receptor interaction
hsa04141:Protein processing in endoplasmic reticulum

hsa04024:cAMP signaling pathway
hsa04015:Rap1 signaling pathway
hsa04913:Ovarian steroidogenesis

hsa04713:Circadian entrainment
hsa04144:Endocytosis

hsa04976:Bile secretion
hsa04610:Complement and coagulation cascades

hsa04918:Thyroid hormone synthesis
hsa05145:Toxoplasmosis

hsa04612:Antigen processing and presentation
hsa04022:cGMP−PKG signaling pathway

hsa04611:Platelet activation
hsa05320:Autoimmune thyroid disease

hsa04923:Regulation of lipolysis in adipocytes
hsa04020:Calcium signaling pathway

hsa04062:Chemokine signaling pathway
hsa05200:Pathways in cancer

hsa04540:Gap junction
hsa04510:Focal adhesion

hsa05032:Morphine addiction
hsa04145:Phagosome

hsa04066:HIF−1 signaling pathway

hsa04668:TNF signaling pathway
hsa05031:Amphetamine addiction

hsa04915:Estrogen signaling pathway
hsa04728:Dopaminergic synapse

hsa05161:Hepatitis B
hsa05030:Cocaine addiction

hsa04010:MAPK signaling pathway
hsa05166:HTLV−I infection

hsa04918:Thyroid hormone synthesis
hsa04925:Aldosterone synthesis and secretion

hsa04911:Insulin secretion
hsa04922:Glucagon signaling pathway

hsa04725:Cholinergic synapse
hsa04261:Adrenergic signaling in cardiomyocytes

hsa04022:cGMP−PKG signaling pathway
hsa05034:Alcoholism

hsa05203:Viral carcinogenesis
hsa04151:PI3K−Akt signaling pathway

hsa05215:Prostate cancer

0                         2                         4                          6                         8                          10

0                           1                             2                            3                            4                            5

−Log (P-value)

−Log (P-value)

A

B

(hsa04010).
Among these pathways, the role the Rap1 signaling 

pathway takes on in cancer was recently noted (28,29). 
Rap1 signaling is a major player in the control of cell-
cell and cell-matrix interactions through its regulation in 
the function of integrins and other adhesion molecules in 
a variety of cell types (30,31). Rap1 is also a regulator of 

MAP kinase activity in a fashion which is highly conditional 
on cell type context (32). In this pathway, we found that 
one of the annotated genes, BCAR1, encodes a scaffold 
protein that acts as a central pivot in cellular signaling. It 
paves the way for multi-protein complexes that regulate 
diverse cellular processes, such as migration, invasion, 
proliferation, and survival, to assemble. BCAR1 takes part 
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Figure 4 Knockdown of BCAR1 sensitizes GC cells to lapatinib treatment. (A) Morphology of sunitinib-resistant cells and related control 
cells; (B) BCAR1-siRNA decreased IC50 of lapatinib treatment in SGC7901/LAP cells; (C) the expression of BCAR1 in SGC7901/LAP and 
SGC7901; (D) the expression of BCAR1 after knockdown; (E,F) knockdown of BCAR1 suppressed colony formation ability of SGC7901/
LAP cells upon lapatinib treatment; (G) AO/EB staining after transfection with BCAR1-siRNA. SGC7901-S, SGC7901-sensitive or 
SGC7901; SGC7901-R, SGC7901-resistant or SGC7901-LAP. *P<0.05. 

in the signal transduction of major oncogenic kinases such 
as Abl, FAK, and Src. Consequently, the overexpression of 
BCAR1 in a diverse range of malignancies, including cancer 
of the breast, lung, liver, and brain, has been demonstrated, 
and a link between BCAR1 overexpression and adverse 
features in these organs had been made (33,34). Earlier 
evidence also suggested that BCAR1 is a factor in prostate 
cancer progression (35), as its overexpression was linked 
to an adverse tumor phenotype and biochemical relapse 
in 3 studies analyzing 110, 130, and 242 prostate cancer 
specimens (36). However, there are no studies concerning 
the relationship between BCAR1 and lapatinib in GC. 

Therefore, we assessed the role of BCAR1 in lapatinib 
sensitivity by using lapatinib-resistant SUN216 cells in vitro. 
We found that BCAR1 was up-regulated in SUN216/LR 
cells compared to SUN216 cells. Interestingly, knockdown 
of BCAR1 dramatically reduced the IC50 of lapatinib in 
SUN216/LR cells. Thus, we discovered that BCAR1 might 
contribute to lapatinib resistance in GC. 

In this study, we efficiently identified the crucial modules 
that were highly related to lapatinib sensitivity in GC by 
using a topological network method. BCAR1 was identified 
as a potentially critical gene playing a role in lapatinib 
sensitivity, and experiments confirmed that BCAR1 might 
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contribute to lapatinib resistance in GC. These results 
provide further insight into the molecular basis of lapatinib 
sensitivity and could offer novel strategies for the future 
treatment of GC. However, different GC cell lines, as well 
as in vivo experiments, are required to confirm the function 
of BCAR1 in the lapatinib resistance in GC. 
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Figure S1 Knockdown of BCAR1 inhibits migration and invasion. To detected the migration and invasion of SUN216/LR cells after 
treatment with BCAR1-siRNA. SUN216/LR cells under the surface were treat with MA (methyl alcohol) and stained with 0.1% crystal 
violet for 20 min. *P<0.05.

BCAR1-
siR

NA

Con
tro

l 

100 μm

100 μm 100 μm

100 μm


