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Data independent acquisition-mass spectrometry (DIA-MS)-based 
comprehensive profiling of bone metastatic cancers revealed 
molecular fingerprints to assist clinical classifications for bone 
metastasis of unknown primary (BMUP)
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Background: Bone metastasis is the third most common metastatic cancers worldwide. It is a group of 
highly heterogeneous diseases with various potential cancer primaries. Among them, one third was diagnosed 
as bone metastasis of unknown primary (BMUP) due to lack of indication for the primary tumor even after 
comprehensive examinations. Thus, the prognosis of BMUP is often very poor since the treatment was 
largely empirical and untargeted. To assist identification of the primary tumor, a series of molecular markers 
including traditional tissue-specific histochemistry as well as gene and mRNA markers were developed with 
moderate to good sensitivity and specificity.
Methods: In this paper, we carried out a comprehensive expression profiling for fresh-frozen tissue samples 
of bone metastasis from lung, prostate and liver cancers using high resolution, data-independent-acquisition 
mass spectrometry (DIA-MS). The proteome variation was analyzed and protein classifiers were prioritized.
Results: Over 6,000 proteins were quantified from 18 samples, which, to the best of our knowledge, was 
never achieved before. Further statistical analysis and bioinformatics data mining revealed 4 significant 
proteins (RFIP1, CK15, ESYT2, and MAL2) with excellent discriminating capabilities with AUCs higher 
than 0.8.
Conclusions: The comprehensive proteome map of bone metastases will complement available genomic 
and transcriptomic data. Newly discovered protein classifiers will expand current diagnostic arsenal for tissue 
of origin studies in BMUP. Furthermore, the proteome map generated in this study by DIA-MS allows 
future data re-mining as our knowledge advances to assist investigation of bone metastasis and progression of 
tumors as well as the development of diagnostic tools and prognosis management for BMUPs.
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Introduction

Cancer of unknown primary (CUP) is a heterogeneous 
metastatic carcinoma in the absence of an identifiable 
primary neoplasm. It is estimated that about 15% of all 
cancer patients were diagnosed for the first time due to 
the clinical metastatic syndromes. The primary tumor for 
the majority of these patients could be determined after 
standardized diagnostic work-ups including a thorough 
clinical history, physical examination, biopsies, and imaging 
studies (CT, MRI, PET) (1,2). However, still one third of all 
metastatic cancers with tumor origins remain elusive, which 
account for 3–10% of total cancer diagnoses worldwide 
(3-7). The peak incidence was at around 70 years of age 
and was slightly higher in males than in females (8-10).  
Although incidence has been declining since 1990s 
attributed to the diagnostic advances, CUP still remains 
the fifth leading cause of cancer-related death worldwide 
(3,11,12). Due to lack of indication of tumor origins, the 
treatment was largely empirical by utilizing taxane or 
platinum-based agents, which is usually associated with bad 
responses and resulted in poor prognosis (13-15). For this 
group, the median overall survival is only 6–9 months and 
less than 30% of 1-year overall survival (7,16).

Bone is the third most frequent site where metastases 
from primary tumor could develop after lung and liver  
(17-19). Over the past decades, average survival of patients 
with bone metastasis from lung cancer was dishearteningly 
4–8 months (20,21). Treatment decisions are currently based 
on histology classifications of cancer primary. However, 
among patients with bone metastasis, 20–30% still have 
no indication of the primary tumor after comprehensive 
examinations (22,23). The etiology of this disease remains 
unknown. For these patients in routine clinical practice, 
the main strategy for identifying the primary tumor was 
tissue-of-origin (TOO) studies using histochemistry and 
immunohistochemistry (IHC), which were considered as 
standard tests to suggest the origin of the lesion. Tissue-
specific protein markers such as cytokeratins (CKs) 
including CK7 (KRT7) and CK20 (KRT20), homeobox 
protein Nkx-2.1 (TTF1), mammaglobin-A, and homeobox 
protein CDX-2 have been widely applied to predict primary 
sites (2,24-29). These markers were mainly used as a panel, 
the choice of which greatly affected subsequent diagnosis 
(27,30-33). Meanwhile, the IHC evaluations of cases were 
performed mostly on formalin-fixed paraffin-embedded 
(FFPE) tissue sections, the specificity, sensitivity, and 
multiplexing capability of which are debated.

As molecular profiling was introduced as a new tool 
to identify the primary TOO for CUP patients, the 
expression profiles of larger set of genes in different tissue 
types were easily interpreted in a quantitative manner  
(34-38). Several studies to identify the primary sites for CUP 
patients have been carried our using RT-PCR or microarray 
techniques (39-41). The genetic mutational landscape of 
CUP patients was deconvoluted, which revealed a series of 
driver mutations and their roles for targeted therapy (42-44).  
Owing to technology advances, mass spectrometers with 
high resolution and sensitivity has become the method 
of choice for multiplexed and quantitative analysis of 
proteins and proteomes. Recently, mass spectrometry-
based proteomics had showed pivotal roles for elucidation 
of disease mechanism as well as the discovery and validation 
of protein biomarkers from clinical samples (45-48). Data 
independent acquisition mass spectrometry (DIA-MS) 
using sequential windows for acquisition of all theoretical 
fragment ion spectra, has shown great value for the analysis 
of limited and nonrenewable clinical specimen (49-51). 
By generating a permanent “digital map” of the sample 
proteome with high reproducibility, the data can be 
analyzed, re-analyzed and mined in silico to identify and 
quantify thousands of proteins across multiple samples. In 
the present study, we generated the proteome signature by 
DIA-MS for individual patient who was firstly diagnosed 
with bone metastatic cancer, aiming for deepening our 
insight into the molecular fingerprints of bone metastatic 
cancers which will be of significance for guiding TOO 
elucidation and prognosis management.

Methods

Patient cohort

Informed consent forms were received from all patients 
included in this study, and all experimental work in this 
study was approved by the Review Board and Ethical 
Committee of Shanghai Changzheng Hospital, affiliated to 
The Second Military Medical University.

A total number of eighteen freshly frozen tissue samples 
were obtained from Shanghai Changzheng Hospital Tissue 
BioBank, encompassing bone metastatic carcinoma tissues 
with primary sites from lung cancer, prostate cancer, and 
liver cancer. The disease tissues were from patients that 
were firstly diagnosed with bone metastatic cancers and 
underwent surgery without any pre radio- or chemotherapy. 
The primary tumor site was identified after comprehensive 
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examination including advanced imaging techniques and 
IHC analyses.

Tissue homogenization and protein extraction

After carefully review of all the sample information, the 
obtained bone metastatic tissue blocks were homogenized 
and lysis buffer was added into each sample. The lysis 
buffer contains 0.2% acid labile surfactant (ALS) in 20 mM 
HEPES buffer with 1× protease inhibitor (Roche, Basel, 
Switzerland). All the sample were homogenized in liquid 
nitrogen. The homogenates were then incubated for  
30 minutes on ice. After that, the lysates were spin down at 
20,000 g for 30 min at 4 ℃. All the protein concentrations 
were determined by standard BCA assay.

Protein digestion and peptide purification

Urea (6M) was used to denature the proteins at room 
temperature for 1h. Then the proteins were reduced 
with 5 mM tris (2-carboxyethyl)phosphine (TCEP) and 
incubated at room temperature for 0.5 h. Iodoacetamide 
(IAA, 6.25 mM) was added to alkylate the protein for 0.5 h 
at room temperature at dark. The mixture was then diluted 
with 6 volumes of 50 mM ammonium bicarbonate buffer 
and digested using sequence modified trypsin (Promega, 
Madison, WI, USA) at an enzyme-to-substrate ratio of 1:100 
(w/w), for 12 hours at 37 ℃. Each digested protein solution 
was quenched with 1 uL phosphoric acid and the pH was 
adjusted to 2. Then the acidified mixture was loaded onto a 
96-well C-18 cartridge (ThermoFisher, USA) and washed 
3 times with 0.1% formic acid. After that, the desalted 
peptides were eluted with 50% ACN and dried under 
vacuum.

Liquid chromatography tandem mass spectrometry (LC-
MS/MS) analysis

The dried peptides were dissolved in 0.1% formic acid 
(0.5 µg/µL). iRT kit (Biognosys, Switzerland) was added 
according to manufacturer’s instruction prior to LC-MS/
MS analysis. LC-ESI-MS/MS was performed by coupling a 
nanoLC (Dionex Ultimate 3000, ThermoFisher Scientific) 
to an Orbitrap Fusion mass spectrometer (ThermoFisher 
Scientific). For each analysis, 2 µL of dissolved peptides 
was delivered to an analytical column (Dikma, inspire C18,  
3 µm, Canada, 150 mm × 75 µm, self-packed) and separated 
using a 62 min gradient from 7% to 35% of solvent B (0.1% 

formic acid in acetonitrile) at 300 nL/minute flow rate.
For spectral library generation, an Orbitrap Fusion mass 

spectrometer was operated in data dependent acquisition 
(DDA) mode, automatically switching between MS and 
MS/MS. Full scan MS spectra (350–1,550 m/z) were 
acquired in the Orbitrap at 60,000 resolution (at m/z 400) 
after accumulation precursor ions to a target value of 
200,000 for a maximum time of 100 ms. Internal lock mass 
calibration was enabled using the ion signal (Si(CH3)2O)6 
H+ at m/z 445.120025 present in ambient laboratory air. 
Tandem mass spectra were recorded for maximum 3 seconds 
by higher energy collision induced dissociation (HCD, 
target value of 10,000, max 35 ms accumulation time) at 
a normalized collision energy of 30% in the orbitrap. To 
maximize the number of precursors targeted for analysis, 
dynamic exclusion was enabled with one repeat count in  
60 s exclusion time.

DIA analysis was performed with the same mass 
spectrometer and LC system as DDA. The same analytical 
column, same gradient, same flow rate and buffers were 
used. The mass spectrometer was operated in t-MS2 mode. 
The duty cycle started from a high-resolution MS1 scan 
event acquired at a resolution of 60,000 and followed by 30 
DIA scans with 21 m/z isolation windows (1 m/z overlapped 
between each window) at 30,000 resolution covering the 
precursor mass range from m/z 400 to 1,000 over the entire 
chromatographic elution profile. The rest of the acquisition 
parameters remained identical to the DDA analyses.

Spectral library construction and data analysis

The spectral library was built up by combination of 10 DDA 
files (acquired from different tissue subtypes), the peaks 
lists from these files were picked from raw MS data files 
and were then searched against Uniprot Human Protein 
Database (2016.09.16) using Proteome Discoverer version 
1.4 (Thermo Fisher Scientific). The search was performed 
considering carbamidomethylation of cysteine residues as 
fixed modification and methionine oxidation as variable 
modifications. Trypsin was specified as the proteolytic 
enzyme and up to two missed cleavages were allowed. The 
mass tolerances were set to 10 ppm for the precursor ions 
and 0.02 Da for the fragments. All peptides were filtered 
at high confidence level. The protein false discovery rate, 
which was determined by a target-decoy search strategy, 
was set to 1%. The spectral library was generated from 
DDA data using Spectronaut (Biognosys, Switzerland) 
with a FDR cutoff set to 0.01. The assay fragments were 
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restricted from 3 to 6, and fragments were selected from 
m/z 300–1800. All DIA raw data files were imported in 
Spectronaut after being converted in HTRMS Converter 
(Biognosys, Switzerland). Peptide fragment ion peak areas 
were extracted by searching against above-mentioned 
library. Retention time prediction type was set to dynamic 
iRT and correction factor of 1. Cross run normalization 
was enabled for systematic variance correction of the LC-
MS performance and local normalization strategy was used 
based on the assumption that although a small fraction of 
peptides will be up or down regulated, the total quantity of 
all the peptides within the sample will remain equal across 
runs and along retention time due to the equal amount of 
protein sampling guided by BCA assay. All results were 
filtered by a Q value cutoff of 0.01 (corresponds to a FDR 
of 1%). Peptide intensity was calculated by summing the 
peak areas of their respective fragment ions for MS2 and 
protein intensity was calculated by summing the intensities 
of their respective peptides. Significance analysis of protein 
abundance changes was calculated using two-side t-test. 
Further data interpretation and functional annotation 
were performed using DAVID, v6.8, Ingenuity Pathway 
Analysis (IPA), R and online tool powered by R language  
(http://www.omicsolution.org/wu-kong-beta-linux/main/).

Results

Overview of patient proteomic profiles

As described in Figure 1, we collected three most common 
bone metastatic cancer tissues from each patient in the 
population (n=18), with primary tumors located in lung 
(n=7), prostate (n=3), and liver (n=8).

Our proteomic workflow followed the general sample 
preparation procedure, via tissue homogenization in liquid 
nitrogen, protein alkylation and digestion. Each fresh-
frozen specimen was homogenized and lysed using a 
simplified and highly efficient “precipitation-free” protein 
extraction protocol as described before. Detergent-free, 
ALS were utilized in the lysis buffer, since ALS can degrade 
easily under acidic conditions which is perfect to be coupled 
to proteomics pipelines. Resulted peptides were purified 
via 96-well C18 plates and delivered to a nanoLC coupled 
with high resolution mass spectrometer (Orbitrap Fusion). 
Three samples from the cohort (from each primary location 
category) were used for data independent acquisition (DDA) 
to establish a comprehensive spectral library. All samples 
were subjected to LC-MS/MS individually for generation 

of a quantitative “proteome map” for each single patient via 
data independent acquisition mass spectrometry (DIA-MS). 
The raw data were processed and quantified proteins were 
further analyzed with bioinformatics tools.

The samples were divided into 3 subgroups according 
to their diagnostic tumor primary: 7 with primary lung 
cancer (BM_Lung), 3 with primary prostate cancer (BM_
Prostate) and 8 with primary prostate cancer (BM_Liver). 
After protein quantification and data normalization (see 
methods), more than 6000 proteins were quantified  
(Figure 2A) from 18 DIA-MS runs at q-value less than 
0.01, each in a 62-minute elution gradient. The majority 
of identified proteins were shared among different cancer 
tissues. With 527 proteins exclusively identified in patients 
with bone metastases from liver, this group showed the 
highest number of proteins identified in their proteomic 
profiles. There are 741 proteins that were found in 
patients with bone metastases from liver and lung, but not 
prostate; 675 proteins were shared by patients with bone 
metastases from liver and prostate, but not lung. Principle 
component analysis (PCA) on all identified proteins from 
all samples reveals no obvious batch effects between samples  
(Figure 2B). Gene ontology (GO) analysis on shared 
proteins suggested that these proteins mainly located in 
cytoplasm and extracellular exosomes, and participated in 
molecular functions such as cell adhesion and oxidation-
reduction processes, many of which are vital activities taken 
place in tumorigenesis and metastasis (Figure 2C).

Tissue-specific proteome profiles

Current cancer treatment strategies were mainly based 
on histological classifications of cancer tissues. Therefore, 
treatment options for CUP patients are very much 
dependent on TOOs studies. Some reported molecular 
classifiers from gene/mRNA expression studies are able 
to predict primary of cancer tissues, but to the best of 
our knowledge, there are no systematic investigation 
on proteomic signatures of bone metastatic cancers. To 
uncover potential tissue-specific proteome profiles, we 
further applied statistical analysis (student’s t-test, double 
sided, P<0.01) on their expression profiles of all proteins, 
shortlisted protein candidates for each origin category (BM_
Lung/Prostate/Liver) and annotated their roles in terms 
of cellular location, biological processes, and molecular 
functions (Figure 3). Most quantified proteins were from 
cytosol or cytoplasm, for BM_Lung/Prostate groups, 
considerable proteins were also identified from nucleus/

http://www.omicsolution.org/wu-kong-beta-linux/main/
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nucleoplasm, indicating potential active transcriptional 
regulations in the cancer cells of these tissues. As expected, 
the top enriched biological process for BM_liver group is 
oxidation-reduction process. While for BM_liver/prostate 
groups, transcription regulation and cell division are the top 
two enriched processes. Most of the tissue-specific proteins 
were found to be binding proteins in terms of molecular 
function, to interact with metal ions (Zinc), kinases, ATPs, 
RNAs, chromatins and so on.

Protein marker panel to differentiate bone metastasis from 
lung, prostate and liver cancers

Systematic analyses of known primaries provide tumor-
specific gene signatures for classifying cancers which were 
reported in many studies with high accuracy (52-54). Many 
of these gene classifiers have been applied successfully 
to assist TOO prediction and diagnosis. Based on the 
aforementioned tissue-specific proteome signature proteins, 
we further probed the possibility to generate a protein 
marker panel to differentiate the three metastatic cancer 
groups (BM_Liver/Prostate/Lung). Analysis of variance 
(ANOVA) and orthogonal partial least square-discriminant 

analysis (OPLS-DA) was applied which led to 30 proteins 
with significance (P<0.01, Figure 4A). PCA clearly showed 
that each group represented a distinct cluster from the 
rest groups on PC1 or PC2 dimension, indicating the 
obvious variations of marker protein expressions among 
three groups (Figure 4B). Heat map using 30 significant 
proteins revealed details on protein abundance among three 
groups (normalized abundance, Figure 4C). Unsupervised 
clustering also gave acceptable grouping results, showing 
four subgroups representing BM_Liver (purple), BM_
Liver/Prostate (cyan), BM_Prostate/Lung (green), and 
BM_Lung (red) (Figure 4D). There is a high likelihood 
that interference from prostate samples gave rise to the 
internal split of both BM_Lung and BM_Liver groups, 
which resulted in 4 individual subgroups. Network analysis 
showed alcohol dehydrogenase (ADH) and aldehyde 
dehydrogenase (ALDH) family members are significant 
molecules in aberrant metabolic pathways across many 
cancers as reported (Figure 4E) (55,56).

To further narrow down the candidate list to obtain a 
more practical panel for clinical applications, we applied 
regression analysis and assess the performance of these 
classifiers by plotting their receiver operating characteristics 

Figure 1 Proteomic workflow of this study. The proteomic workflow followed the general proteomic sample preparation procedure, via 
tissue homogenization, protein alkylation and digestion. Resulted peptides were purified via 96-well C18 plates and delivered to a nanoLC 
coupled with high resolution mass spectrometer (Orbitrap Fusion). Three samples were used for data independent acquisition (DDA) to 
establish a comprehensive spectral library. All samples (n=18) were subjected to LC-MS/MS individually for data independent acquisition. 
The raw data were processed and quantified proteins were further analyzed with bioinformatics tools. LC-MS, liquid chromatography 
tandem mass spectrometry.
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(ROC) curves (Figure 5A). Four protein classifiers, RFIP1, 
KRT15, ESYT2 and MAL2, were finalized to distinguish 
bone metastasis from liver and lung cancer (prostate 
samples were excluded due to small sample size). These 
markers displayed very good sensitivity and specificity to 
differentiate two tumor primaries, with areas under the 
curves (AUC) higher than 0.8 (Figure 5B). Their expression 
patterns across different primaries were plotted in  
Figure 5C. CK family members (KRT7 and KRT20) were 
existing tumor markers for IHC analysis in clinically 
practice. In this study, another CK family member KRT15 

(CK15) has achieved the highest AUC of 0.93, indicating 
the strong capability of this molecule to distinguish tumor 
origins from lung and liver.

Discussion

Bone metastatic cancers showed highly heterogeneous 
morphology and clinical outcomes. The rarity of this tumor 
around the globe has resulted in poor understanding of 
the tumor biology and etiology. This study carried out 
proteomic profiling of individual bone metastatic cancer 
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Figure 3 Tissue-specific proteome profiles. Statistical analysis shortlisted protein candidates for each origin category (BM_Lung/Prostate/
Liver) and annotated their roles in terms of (A) cellular location, (B) biological processes, and (C) molecular functions. Results showed that 
most quantified proteins were from cytosol or cytoplasm, for BM_Lung/Prostate groups, considerable proteins were also identified from 
nucleus/nucleoplasm, indicating potential active transcriptional regulations in the cancer cells of these tissues. As expected, the top enriched 
biological process for BM_liver group is oxidation-reduction process. While for BM_liver/prostate groups, transcription regulation and cell 
division are the top two enriched processes. Most of the tissue-specific proteins were found to be binding proteins in terms of molecular 
function, to interact with metal ions (Zinc), kinases, ATPs, RNAs, chromatins and so on.
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showed that each group represented a distinct cluster from the rest groups on PC1 or PC2 dimension, indicating the obvious variations of 
marker protein expressions among three groups (B). Heat map using 30 significant proteins revealed details on protein abundance among 
three groups (C). Unsupervised clustering also gave acceptable grouping results, showing four subgroups representing BM_Liver (purple), 
BM_Liver/Prostate (cyan), BM_Prostate/Lung (green), and BM_Lung (red) (D). Network analysis (E) showed alcohol dehydrogenase (ADH) 
and aldehyde dehydrogenase (ALDH) family members are significant molecules in aberrant metabolic pathways across many cancers as 
reported.

patients, using 18 fresh frozen samples across different 
cancer primaries, including lung, prostate and liver. To 
the best of our knowledge, this is the first comprehensive 
proteomic study with identification of over 6,000 proteins, 
which were associated with a vast area of cellular activities 
such as inflammation and cell adhesion. It is exciting that 
two plasma membrane proteins, ESYT2 and MAL2, were 
found with good differentiating performance, which could 
act as cell surface markers to facilitate further research 
on bone metastatic cancer primary studies and the many 
further uses that can be envisaged.

The more comprehensive picture of the proteomic 
profile of bone metastases will complement available 
genomic and transcriptomic data, in the meantime enable 
navigation of patient proteomes, which will deepen our 
understanding concerning cancer metastasis development 
and progression. The generated digital, re-minable 
“proteome map” by next generation data independent 
acquisition mass spectrometry for each individual sample 

provided fundamental information to characterize the 
landscape of the proteome variations for bone metastatic 
cancers, which will provide biological insight and hold 
considerable promise to accelerate the development of 
novel markers for precise diagnosis of bone metastasis of 
unknown primary (BMUP).

Further experiments concerning extending the scope of 
bone metastatic cancer primaries including breast cancers, 
gastrointestinal cancers, kidney cancers as well as thyroid 
cancers are currently ongoing. With more upcoming 
proteomics data acquired from bone metastatic patient 
samples in the future, we could conduct big data analysis 
eventually, which will deepen our insight into the molecular 
fingerprints of BMUPs and guide the therapeutic and 
prognostic management.

Conclusions

We characterized proteome landscape for individual bone 
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Figure 5 Four classifier panel to differentiate bone metastasis from liver and lung. Regression analysis was performed to shortlist four 
protein classifiers and the performance of these classifiers was evaluated by plotting their receiver operating characteristics (ROC) 
curves in (A). Four protein classifiers, RFIP1, KRT15, ESYT2 and MAL2, were finalized to distinguish bone metastasis from liver and 
lung cancer (prostate samples were excluded due to small sample size). These markers displayed very good sensitivity and specificity 
to differentiate two tumor primaries, with areas under the curves (AUC) more than 0.8 (B). Their expression patterns across different 
primaries were plotted in (C).

metastasis patient tissues. Compared to previous proteomic 
studies, it is the first time that proteome signatures of fresh-
frozen samples with more than 6,000 newly identified 
proteins which covered various cellular locations and 
biological processes. Systematic analysis of patient proteome 
revealed four novel and significant protein classifiers, two 
of which were cell surface proteins. Furthermore, the 
permanent proteome map generated in this study by DIA-
MS allows future re-analysis and re-mining of data in silico 
as our knowledge advances, which is extremely practical 
for precious and nonrenewable clinical specimen, to assist 
investigation of bone metastasis and progression of tumors 
as well as the development of diagnostic tools and prognosis 
management for BMUPs.
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