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Introduction

Breast cancer (BC) is a common malignant tumor in 
women, accounting for most malignant tumors in women. 
Approximately 1.2 million new BC patients are diagnosed 
and around 500,000 people die of BC each year worldwide 
(1,2). Clinical studies have shown that the incidence of bone 
metastases (BMs) in BC is highest in two common tumor 

metastatic organs, the lung and liver (3,4). Since the BM 
mechanism of BC has not been fully elucidated, BM cannot 
be cured, resulting in a high mortality rate (5,6).

Denosumab targets the inhibition of receptor activator 
of NF-κB ligand (RANKL), which inhibits the activation 
of osteoclasts and decreases bone absorption and 
destruction (7). It has been widely used to treat or prevent 
BM of solid tumors, such as BC, kidney cancer and urinary 
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system tumors, and has been proven to exert a therapeutic 
effect (8). However, for some BM patients, the effect of 
denosumab treatment on the prevention of BM is extremely 
low (9,10), but the specific cause is unknown, and we 
suspect that this may be related to the expression of effector 
molecules downstream of RNAKL. Metastasis-associated 
lung adenocarcinoma transcript 1 (MALAT1) was found to 
be highly expressed in BC tissues and promoted the invasion 
and migration of BC cells (11,12). In addition, previous 
studies have found that RANKL can promote the expression 
of MALAT1 in human osteoblasts, thereby regulating the 
biological characteristics of human osteoblasts (13). miR-
124 has been shown to be downregulated in BC tissues and 
inhibits EMT and metastasis in BC (14,15), and regulates 
MALAT1 expression (16).

This study aimed to determine whether the downstream 
molecular mechanism of denosumab inhibition of BM in 
BC proceeds by inhibiting RANKL and if it is related with 
MALAT1 and miR-124 expression. It was also determined 
whether MALAT1 and miR-124 exert a feedback effect 
on denosumab. In this study, we constructed a BM model 
by establishing a MCF-7 and RAW 264.7 non-contact co-
culture system, and altered the expression of MALAT1 
and miR-124 in RAW 264.7 cells to explore the effect 
of MALAT1 and miR-124 on the inhibition of MCF-7-
induced osteoclastogenesis in vitro caused by denosumab. 
We found that denosumab inhibits MALAT1 expression 
by inhibiting RANKL, thereby upregulating miR-124 
expression, and ultimately inhibiting MCF-7 cell line-
induced pseudo osteoclastogenesis.

Methods

Cell culture and treatment

RAW 264.7 (SC-6003, ATCC, USA) and MCF-7 cells 
(CRL-10781) were all cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) solutions (31600091, Gibco, USA), 
into which 10% fetal bovine serum (10099-141, Gibco, 
USA) was added, while RAW 264.7 cells were co-cultured 
with MCF-7 cells in a non-contact system (Figure 1A).  
Denosumab (Amgen, USA) was added into the co-culture 
system for 5 days at a concentration of 0.1 mg/mL.

Tartrate-resistant acid phosphatase (TRAP) staining

Cells in cell culture suspension and urine were collected 

through centrifugation, and phosphate buffer saline (PBS) 
was used to resuspend the sediment. Then, the cells were 
cytospun onto slides, and TRAP staining was performed 
using a TRAP staining solution kit (Solarbio, G1942, 
China).

Cell transfection

The miR-negative control (miR-NC) and mimic of miR-
124, and si-NC and si-MALAT1 were purchased from 
Sangon Biotech (Shanghai, China), and were directly 
transferred into cells using LipofectamineTM 2000 
transfection reagent (11668019, Invitrogen, CA, USA). The 
wild type and mutated mRNA 3'-UTR of MALAT1 were 
first connected to pisCHECK2 (Promega, WI, USA) before 
being transfected into cells as miRNAs.

Real-time quantitative PCR (RT-qPCR)

RT-qPCR was used to detect mRNA, miRNA and lncRNA 
expression, as previously described (17), with the PCR 
primers used given in Table 1.

Western blotting analysis

Levels of Rab27a, IL-11, activated T-cell nuclear factor 1 
(NFATc1), TRAP and GAPDH protein were analyzed using 
western blotting analysis, as previously described (17). The 
primary antibodies used were Rab27a (ab55667, 1:500), IL-
11 (ab187167, 1:1,000), NFATc1 (ab25916, 1:1,000), TRAP 
(ab65854, 1:1,500) and GAPDH (ab8245, 1:3,000), which 
were all purchased from Abcam.

Cellular immunofluorescence

Cells in cell culture suspension and urine were collected 
through centrifugation, and PBS was used to resuspend the 
sediment. Then, the cells were cytospun onto slides, and 
fixed using 4% paraformaldehyde for 0.5 hours at room 
temperature. Thereafter, they were incubated with a primary 
body, RANKL (ab45039, 1:100, ABCAM, UK), at 4 ℃ and 
left overnight. Goat anti-rabbit IgG (H+L) cross-adsorbed 
secondary antibody (A11008, 1:500, Invitrogen, USA) 
was used as the secondary antibody at room temperature 
for 1 hour, followed by incubation with 5 ug/mL  
4',6-diamidino-2-phenylindole (DAPI) (D8417, Sigma, 
USA) at room temperature for 5 minutes.
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Statistical analysis

Data were analyzed using SPSS 20.0 software. Data between 

two groups were compared using student’s t-test, and data 

between multiple groups were compared using one-way 

ANOVA, with Duncan test as the post hoc test. A P value of 

<0.05 was considered to indicate a significant difference.

Results

Denosumab inhibits spontaneous osteoclastogenesis of 
RAW 264.7 cells

First, we established a non-contact co-culture system (Figure 
1A), in which MCF-7 cells were cultured in the upper 
chamber and RAW 264.7 cells were cultured in the lower 
chamber. As shown in Figure 1B, the TRAP+ osteoclast of 
the control group was significantly higher than that of the 
denosumab group, which was added with denosumab to the 
co-culture system to prevent osteoclast differentiation of 
RAW 264.7 cells, induced by MCF-7 cells. Moreover, we 
also measured the expression of bone resorption genes, such 
as cathepsin K, CAII, integrin av and integrin β3, and the 
expression of osteoclast phenotype genes, such as RANK, 
TRAP, TRAF6 and MMP-9. We found that the mRNA 
expression levels of bone resorption genes (Figure 1C) and 
osteoclast phenotype genes (Figure 1D) in control group 
were all significantly higher than that of the denosumab 
group.

MALAT1 knockdown enhances denosumab function

We transferred si-MALAT1 into RAW 264.7 cells to 
knockdown MALAT1, and then the MALAT1 knockdown 
cells were placed in the lower chamber of the co-culture 
system to be cultured. TARP staining was used to measure 
TARP+ osteoclast. We found that (Figure 2A) the TRAP+ 
osteoclast in control group was highest, while the TRAP+ 
osteoclast in si-MALAT1 group was the lowest, and the 
results of RT-qPCR confirmed that (Figure 2B) the level 
of MALAT1 in the si-MALAT1 group was the lowest. 
However, immunofluorescence detection of RANKL in 
the si-MALAT1 group found that its expression was not 
significantly different from that of the denosumab group 
(Figure 2C).

miR-124 overexpression enhances denosumab function

We transfected the miR-124-mimic into RAW 264.7 cells 
to upregulate miR-124, and then the resulting miR-124 

Table 1 Primers for RT-qPCR

Gene Primer sequence (5'–3')

MALAT1 Forward: AAAGCAAGGTCTCCCCACAAG

Reverse: GGTCTGTGCTAGATCAAAAGGCA

miR-124 Forward: 
ACACTCCAGCTGGGCGTGTTCACAGCGGAC

Reverse: TGGTGTCGTGGAGTCG

Cathepsin K Forward: CTGAAGATGCTTCCCATATGTGGG

Reverse: GCAGGCGTTGTTCTTATTCCGAGC

CAII Forward: CTTCAGGACAATGCAGTGC

Reverse: ATCCAGGTCACACATTCCAGC

Integrin av Forward: GCCAGCCCATTGAGTTTGATT

Reverse: GCTACCAGGACCACCGAGAAG

Integrin β3 Forward: TTACCCCGTGGACATCTACTA

Reverse: AGTCTTCCATCCAGGGCAATA

RANK Forward: ACCTCCAGTCAGCAAAGAAGT

Reverse: TCACAGCCCTCAGAATCCAC

TRAP Forward: ACACAGTGATGCTGTGTGGCAACTC

Reverse: CCAGAGGCTTCCACATCTATGCTGG

TRAF6 Forward: AGCCCACGAAAGCCAGAAGAA

Reverse: CCCTTATGGATTTGATGATGC

MMP-9 Forward: CGAGTGGACGCGACCGTAGTTGG

Reverse: CAGGCTTAGAGCCACGACCATACAG

U6 Forward: CTCATAGGGTTGTTCGCTCGG

Reverse: AACGCTTCACGAATTTGCGT

GAPDH Forward: TAGCGGCTAGCGGTAT

Reverse: CGGGGCTATGGCTAGCTAGCTTTC

RT-qPCR, real-time quantitative PCR.
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Figure 1 Denosumab inhibits MCF-7-induced spontaneous osteoclastogenesis of RAW 264.7 cells. (A) Co-culture system for spontaneous 
osteoclastogenesis of RAW 264.7 cells induced by MCF-7 cells; (B) representative field of co-culture after TRAP staining and statistics of 
TRAP+ osteoclastogenesis; (C,D) the mRNA expression of bone resorption gene (C) and osteoclast phenotype gene (D). Three times for 
each experiment and ***, P<0.001 vs. control group. Scale bar =20 mm. TRAP, tartrate-resistant acid phosphatase.

Figure 2 MALAT1 regulates spontaneous osteoclastogenesis of RAW 264.7 cells inhibited by denosumab. (A) Representative field of co-
culture after TRAP staining and statistics of TRAP+ osteoclastogenesis; (B) MALAT expressed in each group; (C) immunofluorescence 
staining of RANKL in RAW 264.7 cells of each group. Three times for each experiment; ***, P<0.001 vs. control group, and ###, P<0.001 vs. 
denosumab group. Scale bar =50 μm. TRAP, tartrate-resistant acid phosphatase; RANKL, receptor activator of NF-κB ligand.
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overexpressing cells were placed in the lower chamber of the 
co-culture system to be cultured. TARP staining was used 
to measure TARP+ osteoclast. We found that the TRAP+ 
osteoclast in control group was the highest (Figure 3A), 
and that the TRAP+ osteoclast in miR-124-mimic group 
was the lowest, and the results of RT-qPCR confirmed that 
(Figure 3B) the level of miR-124 in the miR-124-mimic 
group was the lowest. However, immunofluorescence 
detection of RANKL in the miR-124-mimic group found 
that its expression was not significantly different from that 
of the denosumab group (Figure 3C).

miR-124 negatively regulates osteoclast differentiation and 
mutual inhibition along with MALAT1

After analyzing the sequences of MALAT1 and miR-124, 
we found that MALAT1 and miR-124 have complementary 
sequences (Figure 4A). We validated the results using the 
luciferase gene reporter system and found that transfection 
with the miR-124-mimic significantly increased WT type 
3'-UTR luciferase activity of RAW 264.7 cells, but did 

not have the same effect on that of MUT (Figure 4B,C). 
In addition, we also found that MALAT1 knockdown by 
si-MALAT1 could increase miR-124 expression, and that 
miR-124 overexpression could decrease the expression of 
Rab27a, IL-11, NFATc1 and TARP proteins (Figure 4D,E).

Discussion

There are four basic elements required for the development 
of BM in malignant tumor cells: cancer cells, osteoblasts, 
osteoclasts and bone matrix (18). Metastatic cancer cells 
cannot directly destroy bone, and its metastases must first 
activate osteoclasts to differentiate and mature, and then 
only can osteoclasts mediate bone resorption to cause 
tumorous bone destruction for further local growth, 
which involves an important signal transduction pathway, 
the RANK/RANKL/OPG pathway (19). Normal bone 
metabolism maintains a dynamic balance between the 
osteogenic effects of osteoblasts and the bone resorption 
effect of osteoclasts, with the RANKL/RANK/OPG 
pathway being one of the main mechanisms of regulating 

Figure 3 miR-124 regulates spontaneous osteoclastogenesis of RAW 264.7 cells inhibited by denosumab. (A) Representative field of co-
culture after TRAP staining and statistics of TRAP+ osteoclastogenesis; (B) miR-124 expressed in each group; (C) immunofluorescence 
staining of RANKL in RAW 264.7 cells of each group. Three times for each experiment, ***, P<0.001 vs. control group, and ###, P<0.001 vs. 
denosumab group. Scale bar =50 μm. TRAP, tartrate-resistant acid phosphatase; RANKL, receptor activator of NF-κB ligand.
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Figure 4 miR-124 and MALAT1 inhibit each other in RAW 264.7 cells. (A) Sequence in which MALAT1 and miR-124 bind to each 
other; (B,C) dual luciferase gene reporter system validates sequence of direct binding of MALAT1 to miR-124; (D) miR-124 expressed in 
each group; (E) levels of Rab27a, IL-11, NFATc1 and TARP protein in RAW 264.7 cells after transferring to miR-NC or miR-124-mimic. 
Three times for each experiment, ***, P<0.001 vs. control group, and ###, P<0.001 vs. denosumab group. MALAT1, metastasis-associated 
lung adenocarcinoma transcript 1; NFATc1, activated T-cell nuclear factor 1; miR-NC, miR-negative control; TRAP, tartrate-resistant acid 
phosphatase.
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bone homeostasis. OPG, RANKL and RANK are members 
of the tumor necrosis factor family, and OPG and RANKL 
are expressed in osteoblasts and bone stromal cells, while 
RANK is expressed on the surface of osteoclast precursors. 
During the process of bone destruction, RANKL acts 
as an activating factor that induces the maturation and 
activation of osteoclasts by binding to RANK on the surface 
of osteoclast precursors, which ultimately leads to bone 
resorption. However, OPG is a soluble RANKL inhibitor 
that binds to RANKL and inhibits the binding of RANKL 
to RANK, thereby inhibiting the differentiation and 
maturation of osteoclast precursors (20).

In this study, we found that MCF-7 could induce the 
spontaneous osteoclast differentiation of RAW 264.7 
cells in the non-contact co-culture system of MCF-
7 and RAW 264.7 cells, and that denosumab not only 
significantly inhibited the number of TARP osteoclasts, 
but also decreased the expression of bone resorption genes 
and osteoclast phenotype genes. This indicates that: (I) 
the non-contact co-culture system of MCF-7 and RAW 
264.7 cells in this study can be used to demonstrate BM 

mechanism of BC cells in vitro; (II) Denosumab can inhibit 
the spontaneous osteoclast differentiation of RAW 264.7 
cells induced by MCF-7. As an inhibitor of RNAKL, 
denosumab has been widely used in clinical settings to treat 
BM of cancer and has been shown to produce a good effect. 
Theoretically, denosumab can block the pathway of BM by 
interfering with the RNAKL/RANK axis of bone, delay the 
progression of BM, decrease tumor burden and prolong 
patient survival time, and this theory has been confirmed in 
animal models (21). Canon and Gonzalez-Suarez found that 
denosumab can decrease tumor burden of bone in advanced 
BM animal models, hinder tumor progression, prolong 
the formation in mice and decrease the development of 
spontaneous lung metastases (22,23). However, denosumab 
did not prolong survival and BM time of patients with 
malignant tumors in clinical trials (24). Two theories that 
may explain the difference in these outcomes have been 
accepted. On the one hand, activation of osteoclasts not 
only involves OPG, RANKL and RANK, but involves many 
other related factors involved in the regulation of activation 
of bone cells, such as M-CSF and sRANKL (25,26). On the 
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Figure 5 Molecular mechanism of denosumab inhibiting MCF-7-induced spontaneous osteoclastogenesis. RANKL, receptor activator 
of NF-κB ligand; MALAT1, metastasis-associated lung adenocarcinoma transcript 1; TRAP, tartrate-resistant acid phosphatase; NFATc1, 
activated T-cell nuclear factor 1.

other hand, the OPG/RANKL/RANK pathway regulated 
osteoclast activation also requires downstream effector 
molecules, which undergo various changes in BM.

In this study, we found that inhibition of MALAT1 
expression or upregulation of miR-124 expression in 
RAW 264.7 cells did not alter RANKL expression, but 
significantly increased denosumab induced inhibition of 
spontaneous osteoclast differentiation caused by MCF-
7 cells, while denosumab could also inhibit MALAT1 
expression and increase miR-124 expression.

MALAT1 is also named nuclear-enriched autosomal 
transcript 2, and is an important member of the lncRNA 
family that was discovered in NSCLC tissues in 2003 (27). 
Many studies have found that MALAT1 is abnormally 
expressed in multiple tumor tissues (28,29). Previous 
research has found that MALAT1 can promote the 
proliferation, metastasis and invasion of tumor cells (30,31) 
through the recruitment of specific SR protein family 

members (32,33), and is involved in epigenetic regulation 
(34,35) and cell cycle regulation (36). In BC, MALAT1 
is considered as an oncogene and was found to be highly 
expressed in BM tumor tissues, and the high expression 
of MALAT1 was found to promote the proliferation, 
migration and invasion of BC cells. In addition, MALAT1 
has been shown to promote cancer cell BM in non-small 
cell lung cancer (37). In human mature bone cells, RNAKL 
promotes the expression of MALAT1. Combined with the 
results of the present study, MALAT1 may be considered 
as a downstream effector molecule of RANKL, and high 
expression of MALAT1 may play a role in promoting BM 
of BC cells.

miR-124 is a miRNA that is closely involved with 
malignant tumors, and many studies have shown that miR-
124 is downregulated in a variety of malignant tumor 
tissues, including BC, and in vitro and in vivo experiments 
have confirmed that miR-124 is a tumor suppressor gene 

RAW 264.7
Osteoclasts

TR
A

P
N

FATc1
IL-11 
R

ab27a

Osteogenic differentiation

…………

RANKL

MALAT1

miR-124

Denosumab



2489Translational Cancer Research, Vol 9, No 4 April 2020

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(4):2482-2491 | http://dx.doi.org/10.21037/tcr.2020.03.17

that inhibits the proliferation, invasion and migration of 
many malignant tumor cells, including BC cells. Moreover, 
previous research has also found that miR-124 can inhibit 
osteoclast differentiation (38). In this study, we found that 
miR-124 targeted the inhibition of MALAT1 expression, 
but its expression was also inhibited by MALAT1, and miR-
124 could significantly inhibit the expression of Rab27a, 
IL-11, NFATc1 and TARP proteins. Previous studies 
have found that miR-124 could inhibit the osteoclastic 
differentiation of RAW 264.7 cells, induced in BC cell lines 
through the targeted inhibition of IL-11 (39), Rab27a (40) 
and NFATc1 (41).

Conclusions

Taken together, the results of this study found that 
denosumab inhibits MALAT1 expression by inhibiting 
RANKL, thereby upregulating miR-124 expression, which 
ultimately inhibits the pseudo osteoclastogenesis caused 
by the MCF-7 cell line (Figure 5). High expression of 
MALAT1 and low expression of miR-124 in BC tumor 
tissues may be reasons why denosumab cannot be used to 
effectively treat and prevent BM in BC patients.
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