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Introduction

MicroRNAs (miRNAs), as a kind of small non-coding RNA 
molecules (~22 nucleotides in length), were estimated to 
regulate as much as 60 % of the human protein-coding genes 
(1,2). miRNAs modulated the levels of post-transcriptionally 
targeted genes, according to their complementary sequences 
in the 3’/5’-untranslated regions or the open reading frames 
of the messenger RNAs (mRNAs) (3,4).  Meanwhile, the 
previous study has demonstrated that miRNAs might be 
promising biomarkers for cancer classification and outcome 
prediction (5). The possible inferences were that miRNAs 
participated in multiple complex processes related to 

cancer development and progression, such as proliferation, 
metabolism, differentiation, and apoptosis (6,7). Therefore, 
the investigation of miRNA functions could offer an excellent 
approach to elucidate the complex pathological mechanisms 
underlying malignant tumors, such as hepatocellular 
carcinoma (HCC).

Currently, several methods have been proposed to 
identify miRNA targets with sequence data or to study 
miRNA-mRNA interaction by incorporating expression 
data into their regulatory network (8,9). Nonetheless, 
results from different predicted methods were generally 
inconsistent, even with a high rate of false positives and false 
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negatives (10). The binding sites of miRNA were too small 
to support statistically significant prediction; besides, a small 
difference in the algorithm could lead to a great diversity 
in the results (10,11). Besides, there were generally a series 
of hypotheses on data when the model was established in 
each method, and these assumptions may be suitable for 
some datasets but not for others. Thus, these methods may 
not perform well if the assumptions violated the underlying 
relationships. What is more, for individual methods, the 
predicting process was static, and the predicted targets of 
a certain miRNA might not be expressed at all under a 
specific condition (12). 

Fortunately, an integrated method has been proposed 
by combining different prediction methods, and it has 
been validated to perform better than all the individual 
component methods (13). Here, the integrated method 
combining a correlation method (Pearson’s correlation 
coefficient, PCC), a causal inference method (IDA), 
and a regression method (Lasso) was generated with the 
Borda count election method. It could not only solve the 
inconsistent problems by considering complementary 
results, (14) but also find confirmed interactions in the 
incomplete ground truth that not discovered by existing 
individual methods (13). Above all, with the integrated 

method, more reliable results could be obtained than that of 
existing individual methods.

Therefore, in the present work, an integrated method 
was employed to predict miRNA targets for HCC patients 
because only a few studies focused on this aspect. The flow 
diagram was displayed (Figure 1). First, miRNA targets 
were predicted with the PCC, IDA, and Lasso methods, 
respectively. Subsequently, the top 100 predicted targets 
of each miRNA generated by individual methods were 
integrated based on the

Borda count election method. Then, the miRNA targets 
were confirmed by comparing them with confirmed databases. 
Finally, the Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment analysis was conducted for 
target genes enriched in top 1,000 interactions to capture 
significant pathways. These targets might be critical for 
HCC treatment and supply great insights for revealing the 
underlying pathological mechanism.

Methods

Dataset

The Cancer Genome Atlas (TCGA) was a comprehensive 
and coordinated effort to accelerate our understanding of 

Figure 1 The flow diagram for the inference of miRNA targets. PCC, Pearson’s correlation coefficient; IDA, inference method; TCGA, 
The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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the molecular basis of cancer through the application of 
genome analysis technologies, including large-scale genome 
sequencing (15). Thus, miRNA and mRNA expression data 
for HCC were recruited from the TCGA database (http://
cancergenome.nih.gov/). Only samples simultaneously 
existed in the two expression sets were regarded as study 
objects. For improving the quality of the datasets, miRNAs, 
and mRNAs with the expression values equaled to zero were 
deleted; the reserved expression values were normalized 
and converted into log2 forms. Consequently, a total of 
854 miRNAs and 20,140 mRNAs were included in the 
expression data for further exploitation.

miRNA target prediction 

The integrated method was designed to take advantage 
of the individual methods (PCC, IDA, and Lasso) and to 
compensate for their drawbacks. Specifically, the miRNA-
mRNA interactions were ranked in individual methods 
based on certain criteria, such as the strength of the 
correlation coefficients. However, the new rankings in the 
integrated method were formed by merging the ranking 
rules from different methods. In detail, firstly, the miRNA 
targets were predicted the PCC, IDA, and Lasso method 
respectively, and the top k (k=100) performers in identifying 
miRNA targets were chosen (13). Secondly, the Borda rank 
election method was employed for ranking each miRNA 
and providing a single ranking list of elected mRNAs 
concerning the miRNA. Finally, the top-ranked genes from 
the list were extracted as the final output, i.e., the potential 
target genes for a certain miRNA.

Particularly, the Borda rank election method was an 
efficient algorithm for integrating orderly appraising results 
from several separated methods (16). Its specific process was 
described as following: setting an election consist of a set V 
of voters, and each identified candidate was assigned with a 
preference order, a strict, complete, and transitive order on 
the set C of candidates. Subsequently, each candidate was 
given ||C|| − N points for each voter who ranked him or 
her in Nth place (so, ||C|| − 1 points for first, ||C|| − 2 
for second, and so forth until the candidate which the voter 
ranked last received no points). Finally, the average point 
of the candidate across all voters was calculated, which 
was defined as the z-score. In brief, for all voters, u and all 
candidates v, a score (u, v) were defined as the number of 
points which u gained from v’s vote (in other words, the 
difference between the total number of candidates and 
the ordinal at which v ranked u). In the case of a weighted 

selection, score (u, v) was multiplied by v’s weight, which 
was termed as z-score. The higher the z-score was, the more 
significant the prediction results were. The top k ranked 
target genes for HCC could be obtained, ranking the 
predicted miRNA targets according to their z-scores.

Ground truth for validation 

Since the number of experimentally confirmed miRNAs 
targets has been still limited, it was difficult to evaluate and 
compare different computational methods with complete 
ground-truth. (17) In previous literature, several methods 
have been proposed (18,19), especially a semi-supervised 
method. (18) It was mainly dependent on the support vector 
machine (SVM), which involved experimentally confirmed 
database miRTarBase (20) as a train set and TarBase (21) as 
a test set. Because of the good classification performances of 
miRTarBase and Tarbase, both of them were employed, and 
another two commonly applied databases [miRecords (22)  
and miRWalk (23)] were also combined for validating 
miRNA targets, due to the limited number of confirmed 
interactions. In particular, miRTarbase provided the most 
current and comprehensive information of experimentally 
validated miRNA target interactions (24). While TarBase 
was the first resource to provide experimentally verified 
miRNA target interactions by surveying pertinent  
literature (25). Concerning miRecords, both experimentally 
validated miRNA targets and computationally predicted 
miRNA targets were accumulated (22). And miRWalk was 
a publicly available comprehensive resource, hosting the 
predicted as well as the experimentally validated miRNA 
target interaction pairs (23). 

Pathway analysis for miRNA targets

To investigate functional biological processes associated 
with miRNA targets in top k’ (k’ =1,000) miRNA-mRNA 
interactions (13), pathways enriched in the KEGG pathway 
database were screened by Database for Annotation, 
Visualization, and Integrated Discovery (DAVID, http://
david.abcc.ncifcrf.gov/tools.jsp) (26). Pathways with 
P<0.05 were selected based on the Expression Analysis 
Systematic Explorer (EASE) test applied in DAVID. EASE 
analysis of the regulated genes showed molecular functions 
and biological processes unique to each category (27).  
The threshold of the minimum number of genes ≥2 of 
the corresponding term was considered significant for a 
category.

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://david.abcc.ncifcrf.gov/tools.jsp)
http://david.abcc.ncifcrf.gov/tools.jsp)
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Results

Predicted miRNA targets

In the current study, after performing the standard 
pretreatment on expression data of HCC in the TCGA 
database, a total of 854 miRNAs and 20,140 mRNAs 
were obtained and included for the later analysis. These 
miRNA and mRNA data were analyzed with the integrated 
method to predict miRNA targets for HCC patients. The 
integrated method combined a correlation method (PCC), 
a causal IDA, and a regression method (Lasso), according 
to the Borda count election. During this process, miRNA 
targets were referred to as target mRNAs or genes defined 
according to miRNA-mRNA interactions. Importantly, a 
z-score was assigned to each miRNA-mRNA interaction. 
The higher the z-score was, the more significant the 
prediction results were. As a result, a total of 4783 target 
interactions were obtained from the integrated method. 
Since the large scale of miRNA targets, only the top 
1,000 ranked interactions were selected, which might 
be more important than the others for HCC as study 
objects. Furthermore, the top 50 were considered to be 
highly-confident miRNA-mRNA interactions for HCC  
(Table 1) (13). The interaction between AATK and hsa-
mir-338 was observed to be the most significant one with 
the highest z-score of 4,468. The following four important 
interactions were hsa-mir-203-ASPG (z-score =4,434), 
hsa-mir-505-ATP11C (z-score =4,391), hsa-mir-1180-
B9D1 (z-score =4,308),and hsa-mir-185-C22orf25 (z-score 
=4,297). Interestingly, among the 50 interactions, AATK 
was simultaneously controlled by both hsa-mir-338 and hsa-
mir-766. Consequently, the expression of one gene might 
be co-adjusted by several miRNAs. Moreover, if a gene was 
regulated by many miRNAs or predicted for several times, 
perhaps it may be inferred as more significant than those 
only were predicted for once. Hence, the predicted times 
for genes among 1,000 miRNA-mRNA interactions were 
calculated by summing up their total predicted times from 
different miRNAs, and the targets with predicted times 
≥10 were listed (Table 2). A total of 6 miRNA targets were 
obtained, MEG3, OLFML3, DSCAML1, CCDC8, SSC5D, 
and MFAP2. Specifically, the MEG3 possessed the highest 
predicted times of 29. Both OLFML3 and DSCAML1 
were predicted for 12 times, but most of the miRNAs were 
different. This condition was also applied to targets SSC5D 
and MFAP2.

Validation of miRNA targets 

The results were compared with confirmed miRTarBase, 
Tarbase, miRecords and miRWalk database was used to 
validate the miRNA targets predicted by the integrated 
method. There were 37,372 interactions with 576 miRNAs, 
20,095 interactions with 228 miRNAs, 21,590 interactions 
with 195 miRNAs, and 1,710 interactions with 226 miRNAs 
in miRTarBase, Tarbase, miRecords and miRWalk database, 
respectively. After removing the duplicated or invalid 
miRNA-mRNA interactions, 62,858 interactions were kept 
for the validations, termed as background interactions. If 
one miRNA target interaction participated in background 
interactions, the predicted miRNA target was confirmed. 
A total of 40 miRNA-mRNA interactions were confirmed, 
which further showed that our method was an available and 
valuable measure for predicting miRNA targets.

Enriched pathways for miRNA targets

As described above, the KEGG pathway enrichment analysis 
was conducted for 860 genes in the top 1,000 miRNA-
mRNA interactions. When setting the thresholds with  
P <0.05 and count ≥2, 26 pathways were named (Table 3). In 
detail, complement and coagulation cascades (P=2.05E-08), 
bile secretion (P=4.36E-05), primary immunodeficiency 
(P=7.13E-04), Arginine and proline metabolism (P =2.25E-
03) and Alanine aspartate and glutamate metabolism 
(P=5.02E-03) were the most significant five pathways. Of 
note 10 of 26 pathways were attributed to metabolism 
pathways, including arginine and proline metabolism, 
alanine aspartate and glutamate metabolism, drug 
metabolism—cytochrome P450, phenylalanine metabolism, 
metabolism of xenobiotics by cytochrome P450, histidine 
metabolism, drug metabolism—other enzymes, fructose, 
and mannose metabolism, ether lipid metabolism, and 
ascorbate and aldarate metabolism.

Discussion

HCC has been the third leading cause of cancer-related 
mortality, and there were 700,000 new cases diagnosed 
every year (28). The heterogeneity of HCC brought about 
great unique challenges for treatments (29); thus, it was so 
important to find early diagnostic markers and therapeutic 
targets (30). Among various cancer-associated markers, 
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miRNAs have attracted particular attention for its regulation 
of genes. Since many miRNAs were located on chromosomal 
regions that were frequently varied in cancer (31)  

indicating their roles as a novel class of oncogenes and 
tumor suppressors (32). This finding clarified a new aspect 
for us to investigate miRNA targets as HCC biomarkers.

Up to date, several computational approaches were 
developed to predict miRNA targets utilizing the expression 
data, such as PCC (33), IDA (34,35), and Lasso (36). 

Specifically, PCC, a correlation method, was the commonly 
used measure for evaluating the strength of the association 
between a pair of variables (33). The data was ranked in 
the descending order based on absolute PCC values. Thus 
negative miRNA-mRNA correlations may be ranked 
at the top since the general down-regulation effects of 
miRNAs (13). Meanwhile, the availability of PCC would 
be greatly reduced if the correlations were non-linear (37).  
IDA, a causal IDA, was aimed to evaluate the causal effect 
between two variables (34,35). A large portion of miRNA-
mRNA causal regulatory relationships revealed by IDA 
was overlapped with the results of the follow-up gene 
knockdown experiments (38). Lasso, a regression method, 
minimized the usual sum of squared errors, with a bound 
on the sum of the absolute values of the coefficients (36). 

Table 1 Highly confident miRNA-mRNA interaction

ID mRNA miRNA z-score

1 AATK hsa-mir-338 4,468

2 ASPG hsa-mir-203 4,434

3 ATP11C hsa-mir-505 4,391

4 B9D1 hsa-mir-1180 4,308

5 C22orf25 hsa-mir-185 4,297

6 C6orf155 hsa-mir-30a 4,272

7 C7orf50 hsa-mir-339 4,241

8 C9orf5 hsa-mir-32 4,236

9 CALCR hsa-mir-653 4,219

10 COPZ2 hsa-mir-152 4,200

11 FGF13 hsa-mir-504 4,187

12 GIPR hsa-mir-642a 4,168

13 GPC1 hsa-mir-149 4,105

14 HOXA10 hsa-mir-196b 4,063

15 HOXD8 hsa-mir-10b 4,001

16 HTR2C hsa-mir-1911 3,974

17 IGF2 hsa-mir-483 3,881

18 KLF7 hsa-mir-2355 3,863

19 MEST hsa-mir-335 3,847

20 OSBP2 hsa-mir-3200 3,809

21 PDE2A hsa-mir-139 3,794

22 PDE4D hsa-mir-582 3,766

23 PTK2 hsa-mir-151 3,735

24 PTPRN2 hsa-mir-153- 3,682

25 RASGRF1 hsa-mir-184 3,657

26 RCL1 hsa-mir-101-2 3,584

27 RPS6KA1 hsa-mir-1976 3,560

28 RSAD2 hsa-mir-3614 3,548

29 AATK hsa-mir-766 3,504

30 SH3TC2 hsa-mir-584 3,499

31 SREBF1 hsa-mir-33b 3,485

32 TMEM164 hsa-mir-652 3,468

33 TRPM1 hsa-mir-211 3,461

34 TYW3 hsa-mir-186 3,457

35 UGT8 hsa-mir-577 3,442

Table 1 (continued)

Table 1 (continued)

ID mRNA miRNA z-score

36 ZNF826 hsa-mir-1270-2 3,423

37 C21orf34 hsa-mir-125b-2 3,419

38 MIA3 hsa-mir-664 3,406

39 ODZ4 hsa-mir-708 3,376

40 RMST hsa-mir-1251 3,364

41 TTF2 hsa-mir-942 3,351

42 CHRM2 hsa-mir-490 3,307

43 LRRC29 hsa-mir-328 3,240

44 RXRB hsa-mir-219-1 3,197

45 SKA2 hsa-mir-454 3,007

46 XKR6 hsa-mir-598 2,972

47 CXorf66 hsa-mir-505 2,748

48 HOXA9 hsa-mir-196b 2,680

49 HOXD9 hsa-mir-10b 2,549

50 hsa-mir-155 2,308
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Similar to the PCC method, the downregulation was 
favored, and the miRNA-mRNA pairs with negative effects 
were ranked at the top of the ranking list.

In our study, the Borda count election method was 
employed to combine the above three methods and obtain 
the integrated method. Later, the prediction results from 
the integrated method were compared with the background 
interactions from the confirmed database for confirming the 
feasibility of the integrated method. Based on the integrated 
method, miRNA targets from the top 1,000 miRNA-
mRNA interactions for HCC samples were predicted. 
Because experimentally validated databases were still spare, 
a set of highly confident interactions were reported for 
further experiment validations. Among the 50 interactions, 
hsa-mir-338-AATK was the most important one with the 
highest z-score. AATK (Apoptosis-associated tyrosine 
kinase), a tyrosine kinase domain at the N-terminus and a 
proline-rich domain at the C-terminus, has been shown to 
play a role in cell differentiation, growth, and apoptosis (39).  
It demonstrated a coordinated reduction of miR-338-3p 
and AATK under insulin resistance conditions, providing 
evidence for a cooperative action of the miRNA and its 
hosting gene in compensatory β-cell mass expansion (40). 

Apart from the hosting role of AATK for miR-338-3p, this 
gene also played active roles in the enzymatic activity and 
the chromosomal generation of intronic miR-338. Huang 
et al. suggested that the level of miR-338 expression was 
associated with clinical aggressiveness of HCC in patients, 
such as tumor size, tumor-node-metastasis stage, vascular 

invasion, and intrahepatic metastasis (41). In all, AATK 
played significant roles in the progression of HCC.

It was well known that one gene might be targeted by 
several miRNAs [8], and dysregulation of these relationships 
would make effects on the biological functions associated 
with a specific tumor (42). Thus, the repeated predicted 
times for one target gene were computed, and the result 
uncovered that MEG3 possessed the highest predicted 
times of 29. MEG3 (maternally expressed gene 3) was an 
imprinted gene belonging to the imprinted DLK1 (delta-
like non-canonical Notch ligand 1)-MEG3 locus, which 
was located at chromosome 14q32.3 in humans (43). It 
was expressed in normal tissues, but its expression was 
lost in multiple cancer cell lines from various tissue. The 
previous study revealed that MEG3 was one of the most 
significantly down-regulated long non-coding RNAs 
(lncRNAs) in malignant hepatocytes of HCC patients (44). 

Besides, deregulation of MEG3 accompanied by extensive 
aberrations in DNA methylation could be confirmed 
experimentally in an independent series of

HCC (45). Zhuo et al. indicated that MEG3, acting 
as a potential biomarker in predicting the prognosis of 
HCC, was regulated by UHRF1 (ubiquitin-like with Ph.D. 
and ring finger domains 1) via recruiting DNMT1 (DNA 
methyltransferase 1) and regulating p53 expression (46). 

Hence MEG3 was closely correlated to HCC.
For investigating functional gene sets involved in the 

miRNA targets, KEGG pathway enrichment analysis 
was conducted. A total of 26 pathways were obtained, of 

Table 2 miRNA targets with predicted times ≥10

Targets Times miRNAs

MEG3 29 hsa-mir-127, hsa-mir-134, hsa-mir-154, hsa-mir-299, hsa-mir-323, hsa-mir-323b, hsa-mir-337, hsa-mir-369, 
hsa-mir-370, hsa-mir-376a-2, hsa-mir-376b, hsa-mir-377, hsa-mir-379, hsa-mir-381, hsa-mir-382, hsa-
mir-409, hsa-mir-410, hsa-mir-411, hsa-mir-412, hsa-mir-431, hsa-mir-432, hsa-mir-433, hsa-mir-485, hsa-
mir-487a, hsa-mir-493, hsa-mir-494, hsa-mir-539, hsa-mir-541, hsa-mir-889

OLFML3 12 hsa-mir-127, hsa-mir-299, hsa-mir-337, hsa-mir-370, hsa-mir-377, hsa-mir-379, hsa-mir-381, hsa-mir-382, 
hsa-mir-409, hsa-mir-411, hsa-mir-433, hsa-mir-494

DSCAML1 12 hsa-mir-299, hsa-mir-323, hsa-mir-323b, hsa-mir-369, hsa-mir-370, hsa-mir-377, hsa-mir-409, hsa-mir-432, 
hsa-mir-433, hsa-mir-485, hsa-mir-493, hsa-mir-889

CCDC8 11 hsa-mir-125a, hsa-mir-136, hsa-mir-181c, hsa-mir-199b, hsa-mir-299, hsa-mir-377, hsa-mir-381, hsa-mir-409, 
hsa-mir-411, hsa-mir-598, hsa-mir-758

SSC5D 10 hsa-mir-10a, hsa-mir-1247, hsa-mir-125a, hsa-mir-136, hsa-mir-153-2, hsa-mir-199b, hsa-mir-214, hsa-mir-
376b, hsa-mir-376c, hsa-mir-758

MFAP2 10 hsa-mir-1287, hsa-mir-299, hsa-mir-376b, hsa-mir-409, hsa-mir-485, hsa-mir-487a, hsa-mir-493, hsa-mir-496, 
hsa-mir-887, hsa-mir-99b
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which complement and coagulation cascades were most 
significant. The complement system was a proteolytic 
cascade in blood plasma and a mediator of innate immunity, 
as well as a nonspecific defense mechanism against 
pathogens (47). While blood coagulation was another 
series of proenzyme-to-serine protease conversions. The 
formation of thrombin culminated, and the enzyme was 
responsible for the conversion of soluble fibrinogen to the 
insoluble fibrin clot (48). It reported that the differentially 
expressed genes might be involved in hepatocarcinogenesis 

through downregulating the pathways of complement 
and coagulation cascades (49). Hence this pathway was 
important for HCC.

In summary, miRNA targets (such as AATK and MEG3) 
for HCC were predicted based on the integrated method 
and confirmed according to confirmed databases. The 
results showed that this method was valuable and possible 
for miRNA prediction. Meanwhile, the findings would 
supply potential biomarkers for the diagnosis and treatment 
of HCC, as well as revealing the pathological mechanisms 

Table 3 KEGG pathways for target genes in top 1,000 miRNA-mRNA interactions

ID Pathway P value

1 Complement and coagulation cascades 2.05E-08

2 Bile secretion 4.36E-05

3 Primary immunodeficiency 7.13E-04

4 Arginine and proline metabolism 2.25E-03

5 Alanine aspartate and glutamate metabolism 5.02E-03

6 Cytokine-cytokine receptor interaction 9.22E-03

7 Drug metabolism—cytochrome P450 1.41E-02

8 Phenylalanine metabolism 1.84E-02

9 Metabolism of xenobiotics by cytochrome P450 2.83E-02

10 Pancreatic secretion 3.07E-02

11 Histidine metabolism 3.16E-02

12 Drug metabolism—other enzymes 3.46E-02

13 Cell adhesion molecules (CAMs) 3.53E-02

14 Peroxisome 3.73E-02

15 Pentose and glucuronate interconversions 3.83E-02

16 Phenylalanine tyrosine and tryptophan biosynthesis 3.84E-02

17 Proximal tubule bicarbonate reclamation 4.15E-02

18 Fat digestion and absorption 4.16E-02

19 Vascular smooth muscle contraction 4.19E-02

20 Fructose and mannose metabolism 4.23E-02

21 Ether lipid metabolism 4.29E-02

22 Hematopoietic cell lineage 4.38E-02

23 Ascorbate and aldarate metabolism 4.59E-02

24 Primary bile acid biosynthesis 4.69E-02

25 Glycolysis/gluconeogenesis 4.71E-02

26 T cell receptor signaling pathway 4.94E-02

KEGG, Kyoto Encyclopedia of Genes and Genomes.
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underlying this tumor. However, experimental validations 
should be performed to confirm the target genes and highly 
confident miRNA-mRNA interactions in the future.
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