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Introduction

Breast cancer (BC) remains a significant health threat 
for women despite extensive research and progress in 
understanding its mechanisms. BC ranks first in incidence 
and fatality rates among all cancer types in women (1), 
with 1.7 million new cases diagnosed per year worldwide 
(2,3). The BC incidence rate increased slightly by 0.3% 
per year (4). The incidence of BC is higher along with 
poorer outcomes in developing countries, and the incidence 

is expected to increase by 55% with a 58% increase in 
mortality in the next 20 years (5). Therefore, there is an 
urgent need to identify more reliable prognostic biomarkers 
and potential drug targets to improve personalized 
treatments and the prognosis prediction of BC patients.

The metabolic characteristics of tumor cells are distinct 
from those of normal cells, with tumor cells exhibiting 
continuous glucose uptake and aerobic glycolysis, i.e., the 
Warburg effect (6). Glucose transporters (GLUTs) are the 
most critical rate-limiting enzymes in aerobic glycolysis; 
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however, different GLUT forms show different affinities for 
glucose, with the strongest affinities reported for GLUT1, 
GLUT3, and GLUT4, which also transport glucose at high 
rates under typical physiological or pathological conditions 
(7-9). To date, 14 GLUT factors have been identified in 
mammals, which all belong to the solute carrier 2A (SLC2A) 
family (10,11). Among them, GLUT1-4 play roles in the 
regulation of cellular and systemic glucose homeostasis (12),  
and GLUT1/3 expression has been detected in various 
normal human tissues and malignancies (12-15). A study 
comprising 118 patients with BC showed that GLUT1 
was expressed in 42% of breast tumors, particularly in 
high-grade and proliferating tumors (16). Grover-McKay 
[1998] also found that the expression level of GLUT1 
increased according to the increasing invasiveness of three 
human BC cell lines (17). A meta-analysis showed that the 
combination of GLUT1 and GLUT3 could be valuable 
in predicting the malignancy of the cancer (18). GLUT4 
was originally considered to primarily regulate the insulin 
signaling pathway (19), but was recently found to be 
amplified in prostate cancer tissues and suggested to play 
a role in tumorigenesis (20,21). Therefore, GLUT1/3/4 
show promising potential as new biomarkers for improving 
the prognosis prediction and/or personalized treatment for 
patients with BC.

Despite numerous studies on the relationship between 
GLUT factors and cancer, the underlying mechanisms by 
which they are activated or inhibited in tumorigenesis and 
the unique roles of GLUT factors in BC have not been 
completely clarified to date. Therefore, in the present 
study, we analyzed available transcriptome and clinical 
data from patients with BC in online public databases, and 
used bioinformatics approaches to explore the expression 
patterns, potential functions, and differential prognosis 
ability of GLUT1/3/4 with BC.

Methods 

Oncomine analysis 

We analyzed the expression levels of GLUT1, GLUT3, 
and GLUT4 between various types of tumors and their 
corresponding normal tissues using the online Oncomine 
database (22). All datasets met the following criteria: (I) 
threshold (fold change): 2.0; (II) Student’s t-test was used 
to determine the significance level of the difference in the 
expression of GLUTs between tumor and normal tissues; 
P<0.01 was considered statistically significant. 

Gene expression profiling interactive analysis (GEPIA) 
dataset 

We further utilized GEPIA data to determine the 
expression patterns of GLUTs specifically in BC. GEPIA 
includes RNA sequence expression data from 8,587 normal 
samples and 9,736 tumors collected from the GTEx project 
and The Cancer Genome Atlas (TCGA) (23). The analyses 
were conducted according to the instructions on the GEPIA 
website.

Kaplan-Meier (KM) plotter 

We used KM analysis to assess the relationship between 
GLUT1/3/4 expression and the prognosis of BC patients (24),  
including gene expression information and clinical data 
for 6,234 BC patients. We divided the BC patients into 
a high expression group and low expression group based 
on the median GLUT expression level. The associations 
of GLUT expression with overall survival (OS), relapse-
free survival (RFS), and distant metastasis survival (DMFS) 
were determined according to the KM survival plot; a log-
rank test was used to analyze the significance of a KM plot, 
P<0.05 represented statistical significance.

cBioPortal 

The Breast Cancer (METABRIC, Nature 2012 & Nat 
Commun 2016) dataset (25), including data from 1,904 
pathologically reported cases, were utilized to analyze the 
genomic profiling information (including mutation and 
mRNA enrichment) of GLUT1, GLUT3, and GLUT4 in BC 
patients with cBioPortal online tools (26,27). In addition, 
networks were constructed following standard processing 
procedures to obtain the 50 neighboring genes with the 
highest frequency of alteration between BC and normal 
tissues. 

TCGA and Gene Expression Omnibus (GEO) dataset 
analysis

GDC TCGA Breast Cancer (BRCA) (15 datasets) was 
downloaded from UCSC Xena (http://xena.ucsc.edu/). 
The matrix data of each TCGA dataset were normalized 
and converted into TPM. GSE109169 and GSE9574 were 
downloaded from GEO. The expression level of GLUTs 
between normal and tumor tissue was analyzed via the 
Student’s t-test, P<0.05 represented statistical significance.
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Cell culture

Cells were cultured in Dulbecco’s modified Eagle’s medium 
(Thermo Fisher Scientific, USA) with 10% fetal bovine 
serum (Gibco, USA), 100 U/mL penicillin (Beyotime, 
China), and 100 mg/mL streptomycin (Beyotime, China). 
All cell lines were incubated at 37 ℃ at 5% CO2.

Western blot

Cells were lysed with RIPA buffer (Beyotime, China). 
Equal amounts of protein in cell lysates were measured 
by standardization with the BCA Protein Assay Kit 
(Beyotime, China). Proteins were resolved by SDS-PAGE 

and transferred to nitrocellulose membranes (Whatman, 
Dassel, Germany). After blocking with 5% skimmed 
milk in TBST, membranes were incubated with primary 
antibodies overnight in 4 ℃, followed by 2 h incubation 
with HRP-conjugated secondary antibodies. Protein bands 
were visualized with ECL. Antibodies against GLUT1/3/4 
were purchased from ABclonal (Hubei, China). Antibodies 
against beta-tubulin were purchased from Cell Signaling 
Technology (Beverly, MA, USA). The grey of the protein 
bands was measured using ImageJ software. A two-
tailed Student’s t-test was applied to assess the statistical 
significance of the difference between two independent 
groups. 

Results 

Transcription levels of GLUTs in patients with BC 

Comparison of the transcription levels of GLUTs in BC and 
normal breast tissues from the Oncomine datasets showed 
different patterns of differential expression depending on 
the GLUT considered (Figure 1). Abundant upregulation of 
GLUT1 expression was found in BC samples in 11 datasets 
(Figure 1). In the dataset of Zhao et al. (28), the transcription 
level of GLUT1 was higher in invasive ductal (ID) and 
invasive lobular (IL) BC than in normal breast tissue, with 
fold changes (FC) of 2.800 and 2.075, respectively (Table 1). 
By contrast, the transcription levels of GLUT3 and GLUT4 
were significantly reduced in 14 and 8 BC patient datasets, 
respectively (Figure 1). In the dataset of Glück et al. (29), 
GLUT3 expression was down-regulated in ID BC with a 
FC of -2.102 compared to that of normal tissues, and the 
dataset of Curtis et al. (30) showed down-regulated GLUT3 
expression in all BC types compared with that of breast 
tissues (FC of −2.753 for ID BC and −2.665 for IL BC) 
(Table 1). In the TCGA Breast dataset, GLUT4 expression 
was also down-regulated in all BC types compared to that 
of breast tissues, with an FC of −5.889 for ID BC and FC of 
−6.020 for IL BC (Table 1).

GLUT transcription levels and clinicopathological 
parameters of patients with BC 

Comparison of the transcription levels of GLUTs between 
BC samples and non-cancer breast samples in the GEPIA 
dataset confirmed that the GLUT1 level was higher in 
BC tissues, whereas the transcription levels of GLUT3/4 
were lower in the BC samples (Figure 2). Moreover, the 

Figure 1 Transcription levels of GLUT1/3/4 in tumor tissues and 
normal tissues. 
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transcription levels of GLUT1 and GLUT3 were correlated 
with clinical cancer stage, whereas the GLUT4 levels were 
not (Figure 3).

Association of GLUT transcription levels with patient 
prognosis

Online KM tools indicated that the expression levels of 
GLUTs could provide reliable predictions of survival in 
BC patients. KM plotter and the log-rank test suggested 
that up-regulated GLUT1 expression and down-regulated 

GLUT4 expression were significantly related to a poor 
OS, RFS, and DMFS in BC patients (P<0.05; Figure 4). 
Moreover, BC patients with a relatively high transcription 
level of GLUT3 were predicted to have a high RFS (P<0.05; 
Figure 4).

Predicted functions and pathways of the changes in GLUT 
factors and their associated gene networks in patients with 
BC

GLUT expression was altered in 336 of the 1,904 (18%) BC 

Table 1 Transcription levels of glucose transporters (GLUTs) in different types of breast cancer (BC) and normal tissues

GLUTs Type of BC vs. normal tissues Fold change (FC) P value t-statistic Ref

GLUT1 Invasive ductal breast carcinoma (ID BC) 2.800 1.03E-11 9.276 Zhao et al., 2004

Invasive lobular breast carcinoma (IL BC) 2.075 6.62E-6 5.631 Zhao et al., 2004

GLUT3 ID BC −2.753 3.52E-44 −19.000 Curtis et al., 2012

IL BC −2.665 5.64E-34 −13.812 Curtis et al., 2012

Invasive BC −2.102 0.018 −3.438 Glück et al., 2012

GLUT4 ID BC −5.889 2.14E-26 −16.643 The Cancer Genome Atlas (TCGA)

IL BC −6.020 1.82E-16 −9.886 TCGA

GLUTs, glucose transporters; BC, breast cancer; ID BC, invasive ductal breast carcinoma; IL BC, invasive lobular breast carcinoma; FC, 
fold change.

Figure 2 Transcription levels of GLUT1/3/4 in breast cancer and normal tissues. The profile of transcription levels of GLUT1/3/4 between 
breast cancer and normal tissues (A). The boxplot of transcription levels of GLUT1/3/4 between breast cancer and normal tissues (B), *, 
P<0.05.
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Figure 3 Association between GLUT1/3/4 transcription and clinical cancer stage in breast cancer patients. 
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Figure 4 Prognostic prediction in patients with breast cancer according to the transcription levels of GLUT1/3/4. 
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GLUT1 levels were higher in basal-like BC cells and 
T47D cells, whereas the levels of GLUT3/4 were higher in 
luminal BC cells (Figure 10).

Discussion

Aberrant expression of GLUT has been reported in several 

types of tumor tissues (9,37-41). Although a role of GLUT 
in predicting the prognosis has been demonstrated for 
some cancers (42-44), the detailed associations with BC 
and underlying mechanisms have remained unclear so far. 
By the comprehensive analysis of available public data and 
bioinformatics, we demonstrated clear and distinct patterns 
of up-regulated GLUT1 expression, and down-regulated 
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Figure 5 GLUT1/3/4 mutation analysis and network construction in breast cancer patients. 
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GLUT3 and GLUT4 expression in BC, which can help 
guide personalized treatment and improve the accuracy of 
prognosis for BC patients.

In line with the present results, GLUT1 has been reported 
to be overexpressed in many cancers (15), and was associated 
with poor survival in BC (16), lung cancer (45,46), oral 

squamous cell carcinoma (47,48), esophageal cancer (49,50), 
rectal cancer (51), tongue squamous cell carcinoma (52)  
and pancreatic cancer (53). GLUT1 was higher in TNBC 
cases than in non-TNBC cases (54). Moreover, high 
expression levels of GLUT1 were suggested to contribute 
to the tumorigenesis of BC (16,55), and a recent study 
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showed a link between the overexpression of GLUT1 and 
the hypoxic condition of the tumor microenvironment (56).  
The transcription factors c-Myc and sinoculis homeobox 
1 (Six1) have been reported to directly activate GLUT1 
transcription (57,58). The analysis of miRNA-mRNA 
network reveals miR-140-5p as a suppressor of BC 
glycolysis via targeting GLUT1 (59). Among colorectal 
cancer cell lines, those with KRAS/BRAF mutations also 
showed a higher transcription level of GLUT1 than wild-
type cells (60). By contrast, thioredoxin-interacting protein 
(TXNIP) and p53 repress GLUT1 transcription (61-64). 

GLUT3 has also been reported to be overexpressed in 
many tumors (65), and was considered a potential marker 
of poor prognosis in oral squamous cell carcinoma and 

non-small cell lung cancer (16,47). However, we found an 
opposite pattern of a reduced transcription level of GLUT3 
in BC than in non-cancer tissues, which was associated with 
a worse OS and clinical cancer stage. 

GLUT4 expression was also found to be down-regulated 
in BC in the present study, and was a significant predictor 
of poor OS, RFS, and DMFS. Loss of GLUT4 induces 
metabolic reprogramming and impairs viability of BC 
cells (66). Previous studies have shown diverse patterns of 
GLUT4 expression, with overexpression reported in gastric 
cancer (67,68) and reduced transcription levels in pancreatic 
cancer (69).

In summary, we have provided new insight to clarify 
the expression pattern and prognosis-related features of 

Figure 9 Analysis of GLUT1/3/4 with The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. Expression 
levels of GLUT1/3/4 between BC and normal breast tissues in TCGA dataset (A), and GEO datasets (C), The relationship between the 
expression levels of GLUT1/3/4 and OS in TCGA dataset (B). P<0.05 represented statistical significance, *, P<0.05; ****, P<0.0001; ns means 
P>0.05.

SLC2A1

SLC2A1

SLC2A1

SLC2A3

SLC2A3

SLC2A3

SLC2A4

****
****

**** ****ns

ns ns*

****

Normal Normal Normal

Normal

Normal

Overall Survival SLC2A1

0          1721      3442       5163      6884      8605 0          1721      3442       5163      6884      8605 0          1721      3442       5163      6884      8605

Overall Survival SLC2A3 Overall Survival SLC2A4

Low (n=596)

High (n=483)

Logrank=0.351

Low (n=584)

High (n=495)

Logrank=0.345

Low (n=703)

High (n=376)

Logrank=0.009

Days Days Days

Normal Normal

Normal Normal

Tumor Tumor Tumor

Tumor

Tumor Tumor Tumor

Tumor Tumor

TP
M

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

P
er

ce
nt

 s
ur

vi
va

l

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0

G
S

E
10

91
69

G
S

E
95

74

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

m
R

N
A

 e
xp

re
ss

io
n

12

11

10

9

8

7

1500

1000

500

0

200

150

100

50

0

150

100

50

0

12

11

10

9

8

7

10

9

8

7

6

5

TP
M

TP
M

10

8

6

4

2

0

6

4

2

0

8

6

4

2

0

SLC2A4

SLC2A4

A B

C



2374 Zeng et al. GLUT1/3/4 in Breast Cancer Prognosis

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2020;9(4):2363-2377 | http://dx.doi.org/10.21037/tcr.2020.03.50

GLUT1, GLUT3, and GLUT4 in BC by integrating the 
data of online databases. These results demonstrate that 
the amplified transcription of GLUT1 might play a critical 
role in BC tumorigenesis. Moreover, a high transcription 
level of GLUT1 can be considered as a reliable marker for 
discerning high-risk subtypes of BC, suggesting an effective 
therapeutic target for BC. In addition, the high transcription 
of GLUT3/4 can serve as a potential prognostic marker for 
BC patients, implying a better prognosis.
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