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Introduction

Endometrial cancer is the most common gynecologic 
malignancy in the United States. Approximately 61,880 
new cases of endometrial cancer are estimated in 2019, 
and 12,160 female patients are expected to die from this 
disease, according to the American Cancer Society (1). 
Obesity and diabetes are associated with an increased risk of 
endometrial cancer, which characterized by the production 
of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-
1β) and IL-6 (2), and these in turn generate oxidative stress 
via chronic low-level systemic inflammation (3), leading to 
nuclear factor-κB (NF-κB) activation. Besides, TNF-α and 

IL-1β, activators of NF-κB, are transcription factors that 
can regulate apoptosis in endometrial cancer cells (4,5). 
Hence, this inflammation-cancer interaction introduces 
issues regarding the roles of inflammatory milieu balance 
in endometrial cancer, as a double-edged sword that either 
facilitates tumorigenesis, or enters a feedback cycle of 
inflammatory cell death. Therefore, we hypothesize that 
inflammatory micro-environment should be an important 
metabolism for predicting the risk of endometrial cancer.

In recent years, molecular hydrogen (H2) has become a 
promising candidate for type 2 diabetes (6) and metabolic 
syndrome (7) as well as inflammatory diseases (8). Hydrogen 
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is safe at a concentration of less than 4.7% in the air. Due 
to its size-distribution characteristics, H2 is quite permeable 
to penetrate bio-membranes and diffuse into the cytosol, 
mitochondria and nucleus (9). On the contrary, most 
hydrophilic antioxidants are not able to penetrate across bio-
membranes and thus retain on the membranes. Hydrogen 
can be used as an inert gas at normal body temperature 
or being dissolved in water or saline up to 1.6 ppm  
under atmospheric pressure to produce hydrogen water or 
hydrogen-rich saline. Both hydrogen gas and hydrogen-
rich saline are increasingly accepted as anti-inflammatory 
targets for the treatment of pathological conditions 
via regulation of cytokine TNF-α, NF-κB and IL-1β 
expression (10). Additionally, it can attenuate brain (11),  
hepatic (12), myocardial (13), lung (14) and intestinal 
ischemia-reperfusion injuries (15) in clinical practice, as 
well as participate in different types of cell death. The 
latter observation suggests that if hydrogen can induce 
the apoptosis of endometrial cancer cells, inflammation-
dependent cell death may be proposed as the mechanisms 
underlying its positive effect in the endometrium, 
especially proinflammatory cytokines TNF-α, NF-κB 
and IL-1β. Therefore, this study aimed to investigate the 
effects of hydrogen on endometrial cancer and elucidate 
the mechanistic details underpinning hydrogen-induced 
apoptotic signaling in cancer cells via RNA sequencing. 
Specifically, annotations based on Kyoto Encyclopedia of 
Genes and Genomes (KEGG) and Gene Ontology (GO) 
databases were performed to identify genes and pathways 
involved in hydrogen-treated endometrial cancer cells.

Methods

Cell culture

Human endometrial cancer cell lines (Ishikawa and 
HEC1A) were conserved in our laboratory, while AN3CA 
cells were purchased from FuHeng Cell Center, Shanghai, 
China. These cells were cultured in Medium DMEM: F12 
(1:1, Gibco, USA) containing 10% fetal bovine serum (FBS; 
Gibco, Gaithersburg, MD, USA), 100 U/mL penicillin 
G and 100 µg/mL streptomycin (Life Technologies, Inc., 
Rockville, MD, USA), and maintained in a humidified 
atmosphere of 5% CO2 at 37 ℃.

Hydrogen treatment

Hydrogen gas (H2) was dissolved into water for 6 h under 

a high pressure of 0.4 MPa until the supersaturation level, 
by using a hydrogen water producing apparatus (Shanghai 
Yiquan Investment Limited Partnership Company, 
Shanghai, China). The hydrogen water was stored in an 
aluminum bag under atmospheric pressure at 4 ℃ with 
more than 0.6 mmol/L concentration of H2. The hydrogen 
DMEM culture medium (CM) was prepared by mixing  
28 mL of sterile hydrogen water (0.7 ppm hydrogen 
molecule) with 8 mL of 5× DMEM containing 500 U/mL 
penicillin G and 500 µg/mL streptomycin, 4 mL FBS. The 
medium was freshly prepared every time.

RNA sequencing

Ishikawa, HEC1A and AN3CA endometrial cancer cells 
were cultured in hydrogen medium for 24 h. Total RNA 
was isolated using RNeasy Mini kit (Qiagen, Germany). 
Paired-end libraries were synthesized with TruSeqTM RNA 
Sample Preparation Kit (Illumina, USA) according to the 
TruSeqTM RNA Sample Preparation Guide. Briefly, the 
poly-A containing mRNA molecules were purified using 
poly-T oligo-attached magnetic beads. After purification, 
the obtained mRNA was fragmented into small pieces 
using divalent cations at 94 ℃ for 8 min. The cleaved RNA 
fragments were then copied into first strand cDNA using 
reverse transcriptase and random primers. Afterwards, 
second strand cDNA synthesis was performed using DNA 
Polymerase I and RNase H. The resultant cDNA fragments 
were subjected to an end repair process with the addition of 
a single “A” base, followed by ligation to adapter sequences. 
The products were then purified and enriched with PCR, 
in order to construct the final cDNA library. To verify the 
insert size and determine the molar concentration, the 
purified libraries were quantified by Qubit® 2.0 Fluorometer 
(Life Technologies, USA), and validated using Agilent 
2100 bioanalyzer (Agilent Technologies, USA). Cluster was 
generated by cBot with the library diluted to 10 pM, and then 
subjected to sequencing using the NovaSeq 6000 System 
(Illumina, USA). Library construction and sequencing were 
carried out at Shanghai Sinomics Corporation.

Apoptosis assay

Cell apoptosis was determined using a commercial 
fluorescein isothiocyanate (FITC) Annexin V Apoptosis 
Detection kit (BD Pharmingen, San Diego, CA, USA) 
with Annexin V-allophycocyanin (APC)/propidium iodide 
(PI) double staining, according to the manufacturer’s 
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instructions. Briefly, cells were collected, washed twice with 
cold PBS, and resuspended in 1× Binding Buffer (10 mM 
HEPES, pH 7.4; 140 mM NaCl; 2.5 mM CaCl2, Beyotime, 
Shanghai, China) at a concentration of 1×106 cells/mL. 
Then, FITC Annexin V (5 µL) and PI (5 µL) were added 
into the buffer solution (100 µL), followed by incubation at 
room temperature for 15 min in the dark. The stained cells 
were analyzed by flow cytometry (FACS CaliburTM, BD 
Biosciences, CA, USA).

Western blot analysis

Total protein was extracted from the treated cells using 
RIPA buffer. Equal amounts of cellular protein extracts were 
separated on SDS-polyacrylamide mini-gels, and transferred 
onto PVDF membranes (Millipore, Billerica, MA, USA) 
at 300 mA for 1.5 h. The membranes were blocked with 
5% BSA (Roche, Mannheim, Germany) for 1 h, and then 
incubated overnight with the indicated primary antibodies 
at 4 ℃: antibodies against GAPDH (5174; 1:1,000, CST, 
USA), NF-κB (8242; 1:1,000, CST, USA), p-NFKBIA (5209; 
1:1,000, CST, USA), NFKBIA (4814; 1:1,000, CST, USA), 
caspase-1 (2225; 1:1,000, CST, USA), caspase-3 (9662; 
1:1,000, CST, USA), caspase-9 (ab184786; 1:1,000, Abcam, 
USA). After washing with Tris-buffered saline with Tween-20 
(TBST) (9997, CST, USA) for three times, the membranes 
were incubated with the corresponding secondary antibodies 
for 1 h at room temperature. The specific bands of target 
proteins were visualized by enhanced chemiluminescence 
(ECL) substrates (Millipore, USA), and quantified using 
ImageJ software (National Institutes of Health, Bethesda, 
MD, USA).

Statistical analysis

All statistical analyses were performed using SPSS 22.0 software 
(IBM Corp, Armonk, NY, USA). Differences between groups 
were analyzed by Student’s t-test and one-way ANOVA with 
Tukey post-test and Fisher’s exact test at 95% confidence. Data 
were expressed as mean ± standard error of the mean (SEM). P 
value of less than 0.05 was considered statistically significant.

Results

Quality control and mapping of RNA sequencing in 
hydrogen-treated endometrial cancer cells

RNA sequencing is a common next-generation sequencing 

technique for assaying genome-wide gene expression 
profiles. In this study, it was used to explore the roles 
of signaling pathways and functional gene groups in 
hydrogen-treated endometrial cancer cells. The quality 
assessment of sampling results was carried out. The 
intensity distributions of 6 samples and the differences 
between hydrogen CM (H-CM) and CM groups for 
Ishikawa, HEC1A and AN3CA endometrial cancer cells 
were examined by ring diagram. The reads were aligned 
to the specific sequences of each sample, as presented in 
a circular graph via Circos Software package (Figure 1A).  
The mapping relationship among the sequences was 
existed in this study, with an increased number of genes in 
the genome, as revealed by sequencing saturation analysis 
(Figure 1B). The greater the depth of sequencing, the 
higher the number of genes entered a saturation phase. 
Mapping of regional distribution categorized all the 
aligned reads into different regions of a gene based on 
their regulatory elements (Figure 1C). Scatterplot graph 
showed that all genes were plotted on the horizontal and 
vertical coordinates according to their expression values 
(Figure 1D). Mean expression levels were indicated by 
fragments per kilobase of exon model per million mapped 
(FPKM) across samples, and the levels of differential 
gene expression among 6 samples were calculated by log2 
obtained from FPKM values called Log2 (FPKM).

GO and KEGG pathway enrichment analysis of different 
expressed genes in hydrogen-treated endometrial cancer cells

The characteristics that contributed significantly to 
different biological functions and signaling pathways 
were identified from GO and KEGG database between 
H-CM and CM groups for Ishikawa, HEC1A and 
AN3CA endometrial cancer cells. GO enrichment analysis  
(Figure 2) revealed that the up-regulated genes in H-CM 
group were highly correlated to biological process 
(biological regulation, cellular process, metabolic process 
and regulation of biological process), cellular component 
(cell, cell part and organelle) and molecular function 
(binding). The classification of genes in hydrogen-treated 
Ishikawa, HEC1A and AN3CA cells were determined by 
KEGG analysis based on their functions and signaling 
pathways. As shown in Figure 3, most up-regulated genes 
in H-CM group were classified into metabolism (global 
and overview maps), genetic information processing 
(folding, sorting and degradation) and environmental 
information processing (signal transduction). 
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Figure 1 Quality control in hydrogen-treated Ishikawa, HEC1A and AN3CA group (H-CM) compared to control group (CM). (A) Ring 
diagram, the outermost circle shows the chromosome distribution, and each color inside represents the coverage distribution a sample 
on the chromosome. (B) Sequence saturation analysis, the abscissa denotes the depth of sequencing, and the ordinate represents the gene 
percent which is the ratio of the total genes mapped by the sequences to all genes in a genome. (C) Variant discovery reads called mapping 
ratio under the region distributions of gene, coding, splicing, intron, noncoding and intergenic. The six callers are represented by different 
colors. The greater the depth of sequencing, the higher the number of genes entered a saturation phase. (D) Scatterplot graph showing the 
expression level of each gene on the horizontal and vertical coordinates according to the different expression values between groups/samples. 
Differentially expressed genes among 6 samples were identified through fold-change filtering by Log2(FPKM). The red dots indicate 
the significant upregulated genes, while the blue dots indicate the significant downregulated genes. The gray dots indicate not significant 
regulated genes. H-CM, hydrogen culture medium; CM, culture medium.
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Figure 2 Annotation mapping enrichment analysis through GO database. Annotation mapping enrichment analysis of biological functions 
between H-CM and CM groups in Ishikawa, HEC1A and AN3CA cell line, by searching GO database entries (terms) for differential genes 
(q-value ≤0.05) and focused on the distribution of enriched gene sets represented by the abscissa at three GO terms: red bar for biological 
process, green bar for cellular component, blue bar for molecular function. The ordinate represents number of genes in different enrichment 
of biological functions. AA, antioxidant activity; BA, biological adhesion; BE, behavior; BI, binding; BR, biological regulation; CA, catalytic 
activity; CA2, chemorepellent activity; CCO, cellular component organization or biogenesis; CELL, cell; CJ, cell junction; CK, cell killing; 
CP, cell part; CP2, cellular process; DE, detoxification; ECA, electron carrier activity; ER, extracellular region; ERP, extracellular region 
part; GR, growth; ISP, immune system process; LOCA, localization; LOCO, locomotion; MC, macromolecular complex; ME, membrane; 
MEL, membrane-enclosed lumen; MFR, molecular function regulator; MOP, multi-organism process; MOP2, multicellular organismal 
process; MP, metabolic process; MPT, membrane part; MTA, molecular transducer activity; NABTFA, nucleic acid binding transcription 
factor activity; NRBP, negative regulation of biological process; NU, nucleoid; OR, organelle; OO, other organism; OOP, other organism 
part; OP, organelle part; RBP, regulation of biological process; RE, reproduction; PRBP, positive regulation of biological process; PT, 
protein tag; PPICST, presynaptic process involved in chemical synaptic transmission; RP, reproductive process; RP2, rhythmic process; RS, 
response to stimulus; SC, supramolecular complex; SI, signaling; SOP, single-organism process; SP, synapse part; SY, synapse; STA, signal 
transducer activity; SMA, structural molecule activity; TA, transporter activity; TFA, transcription factor activity, protein binding; VI, virion; 
VP, virion part.

Biological functions and signaling pathways response to 
hydrogen treatment in endometrial cancer cells

The coefficients of variation between H-CM and CM groups 
were determined through the enrichment P value (≤0.05) of 
genes and pathways using Fish’s exact test. Mean expression 
levels were indicated by FPKM across samples, differentially 
expressed genes were identified through fold-change (FC) 
filtering. FC value of ≥1.0 indicates upregulated expression, 
while ≤−1.0 represents downregulated expression. FC value 
of ≥1.5 indicates significantly increased expression, while 
≤−1.5 represents significantly reduced expression. Besides, 

FC of ≤−1.5 or ≥1.5 denotes a significantly activated or 
inhibited signaling pathway, respectively.

Among the 135 differentially expressed canonical 
pathways, 58 pathways were significantly downregulated and 
77 pathways were significantly upregulated in the hydrogen-
treated group compared to non-treated group (P≤0.05; 
Table 1). As we put emphasis on aspect of inflammatory and 
cell death in hydrogen treated endometrial cancer cells, 
GO pathway enrichment analysis demonstrated that the 
signaling pathways of TNF, NF-κB, apoptosis, necroptosis 
and ferroptosis (P≤0.05) were among the top 30 enriched 
pathways in hydrogen-treated HEC1A and AN3CA cells, and 
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Figure 3 The coefficients of variation analyzed by KEGG database. The abscissa indicates coefficients of variation for the signaling 
pathways between H-CM and CM groups in Ishikawa, HEC1A and AN3CA cell line, or differential genes (q-value ≤0.05) analyzed by 
KEGG database. The ordinate indicates number of genes in different signaling pathways. Red bar represents cellular processes, brown bar 
represents environmental information processing, green bar represents genetic information processing, another green bar represents human 
disease, blue bar represents metabolism, purple bar represents organismal systems. KEGG, Kyoto Encyclopedia of Genes and Genomes; 
H-CM, hydrogen culture medium; CM, culture medium.
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TNF pathways ranged first in the GO pathway enrichment 
analysis in hydrogen-treated AN3CA cells (Tables 2,3, Figure 4), 
suggesting that the differential expressed genes are associated 
with inflammatory and cell death signaling pathways.

In addition, the results demonstrated a significant 
discordant regulation among the transcriptional levels of 
genes. Comparison between transcriptome and proteome 
data revealed that the expression patterns of proteins were 
correlated with their mRNA expression at transcription 
level. A total of 607 upregulated and 716 downregulated 
genes were identified in hydrogen-treated Ishikawa, 
HEC1A and AN3CA endometrial cancer cells compared 
to non-treated cells. The distributions of raw and filtered 
gene expression counts in TNF and NF-κB pathway are 
presented in Tables 2,3 and Figure 5A. Notably, JUN, JUNB, 
JUND, NFKBIA, NFKBID, NFKBIE, NFKBIZ, TNF, 
TNFAIP2, TNFAIP3 and TNFRSF21 were upregulated 
in hydrogen-treated HEC1A cells, while JUN, JUNB, 
NFKBIA and TNFFRSF12A were upregulated in hydrogen-
treated AN3CA cells [Log2 (FC) ≥1]. 

To highlight the importance of post-transcriptional 
processes, the protein levels of NF-κB, p-NFKBIA, 
NFKBIA and cleaved caspase-1 were detected by Western 
blotting. It was found that the levels of NF-κB, p-NFKBIA, 
NFKBIA and cleaved caspase-1 as well as p-NFKBIA/
NF-κB ratio were significantly increased in H-CM group 
compared to CM group (P≤0.05; Figure 5B).

Hydrogen-induced apoptosis in endometrial cancer cells

Based on the above results, it was speculated that hydrogen 
could induce the apoptosis of endometrial cancer cells. The 
apoptotic rates of endometrial cancer cells were evaluated 
by FITC analysis using Annexin V-APC and PI staining. 
The percentage of apoptosis was calculated by the sum of up 

right (UR) and low right (LR) quadrant which represented 
the early phase of apoptosis. As shown in Figure 6A, 
Ishikawa and HEC1A cells exhibited significantly increased 
apoptotic rates after 24 h of hydrogen treatment compared 
to non-treated group (H-CM vs. CM; 4.60%±0.53% 
vs. 2.60%±0.16%, 6.53%±0.12% vs. 4.60%±0.06%, 
respectively; P≤0.05). To assess the possible role of 
hydrogen treatment in radiotherapy-induced apoptosis in 
endometrial cancer cells, the cultured Ishikawa and HEC1A 
cells were exposed to a 60Co radiation source, in order 
to attain a desired dose of 7 Gy. Interestingly, there was 
significant difference in the apoptotic rate of radiotherapy-
induced HEC1A cells between H-CM and CM groups 
(H-CM vs. CM; 5.10%±0.0026% vs. 3.07%±0.0082%, 
respectively; P=0.0079). Additionally, higher apoptotic 
rate of Ishikawa cells exposed to radiation was found in 
H-CM group compared to CM group (H-CM vs. CM; 
4.83%±0.0086% vs. 2.83%±0.0047%), but not statistically 
significant (P=0.1115).

Overall, higher rates of apoptosis were observed in 
hydrogen-treated Ishikawa (H-CM vs. CM; 3.50%±0.1732% 
vs. 2.33%±0.0882%; P=0.0039) and AN3CA (H-CM vs. 
CM; 3.50%±0.1155% vs. 0.10%±0.0577%; P<0.0001) cells. 
Intriguingly, pre-incubated with 5 mM of ROS generation 
blocker N-acetylcysteine (NAC) 1 h before treatment 
with hydrogen inversely decreased the apoptotic rates 
of hydrogen-treated Ishikawa (H-CM vs. H-CM+NAC; 
4.83%±0.0086% vs. 2.1%±0.1155%; P=0.0025) and 
AN3CA (H-CM vs. H-CM+NAC; 3.50%±0.1155% vs. 
2.1%±0.0577%; P=0.0004) cells (Figure 6B).

Similar results were obtained for hydrogen-treated 
HEC1A (P=0.000613) cells, as demonstrated by Annexin 
V-APC/PI double staining method (Figure 7A). To further 
characterize the markers of hydrogen-induced apoptosis 
in endometrial cancer cells, Western blotting was used 

Table 1 Signaling pathways involved in hydrogen-treated endometrial cancer cells 

Cell line

Up-regulated Down-regulated

Gene Significant pathway Gene Significant pathway 

log2(FC) =1–1.5 log2(FC) ≥1.5 P≤0.05 log2(FC) =−1 to −1.5 log2(FC) ≤−1.5 P≤0.05

Ishikawa 167 67 12 150 65 38

HEC1A 163 85 22 229 84 29

AN3CA 81 44 24 150 38 10

Total 411 196 58 529 187 77

FC, fold change.
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to examine the levels of caspase-3, cleaved caspase-3 and 
cleaved caspase-9. Notably, the expression levels of these 
apoptotic proteins were significantly increased in hydrogen 
treated HEC1A cells (Figure 7B).

Discussion

Necroptosis, ferroptosis and apoptosis are distinct cell 

death processes that cooperate in the presentation and 
clearance of invading pathogens (16). Necroptotic and 
ferroptotic cell deaths are induced by the ligands of TNF 
receptor superfamily and toll-like receptor (TLR) (17), 
while apoptosis is triggered by cytokine TNF-α-mediated 
intrinsic pathway after interacted with specific membrane 
receptors and Caspase-3/-7/-8/-9 (17). The secretion of 
TNF-α is regulated by NF-κB activation (18). At both early 
and late times of infection, cell death is correlated with an 
increased TNF-α production, which subsequently bind 
to its receptor, such as TNFR, leading to an activation of 
caspase-8, and thereby triggering cell apoptosis pathway.  

In resting cells, NF-κB complex is maintained in the 
cytoplasm as a dimer consisting of NF-κB, NF-κB1 
(p50), Rel-A (p65) and NF-κB2 (p52) subunits. After 
being bound to inhibitory IκB protein family (e.g., IκBα, 
IκBβ, IκBγ, IκBδ, IκBε, IκBζ, IκB-R, Bcl-3, p100 and 
p105), IkappaB kinase complex (IKK) is formed, keeping  
NF-κB pool mainly in the cytoplasm by inhibiting its nuclear 
localization, accumulation, transactivation and association 
with DNA (19,20). IκBα, encoded by NF-κB inhibitor-
alpha (NFKBIA), is the most abundant and critical inhibitor 
of NF-κB (21). The priming phase of apoptosis is triggered 
by the first signals, including lipopolysaccharides (LPS) and 
damage-associated molecular patterns (DAMP). IκBα is 

Table 2 The significant affected pathways in hydrogen-treated 
endometrial cancer cells

Pathway
P value

HEC1A AN3CA

TNF 4.35E−09 0.001093492

NF-κB 2.90E−05 0.021789819

Apoptosis 0.032489587 0.003746339

Necroptosis 0.021919497 –

Ferroptosis – 0.01172137

Genes in the signaling pathways of TNF, NF-κB, apoptosis, 
necroptosis and ferroptosis were significantly upregulated. Both 
TNF and NF-κB signaling pathways in HEC1A and AN3CA cells 
were regulated by hydrogen treatment.

Table 3 The significant affected genes in hydrogen-treated endometrial cancer cells

Gene
HEC1A AN3CA

H-CM CM Log2(FC) H-CM CM Log2(FC)

NFKBIA 103.5338 20.9748 2.3034 11.5170 4.2156 1.4500

NFKBID 13.9361 1.1728 3.5708 – – –

NFKBIE 16.0616 5.5589 1.5307 – – –

NFKBIZ 19.8233 5.2468 1.9177 – – –

TNF 83.2268 4.4283 4.2322 – – –

TNFFRSF12A – – – 72.5851 32.6434 1.1529

TNFAIP2 89.2708 30.6025 1.5445 – – –

TNFAIP3 8.7570 1.1613 2.9147 – – –

TNFRSF21 17.6954 7.5398 1.2308 – – –

JUN 75.7223 12.9895 2.5434 22.3262 7.0776 1.4264

JUNB 210.8038 64.9215 1.6991 69.6526 31.2481 1.1564

JUND 24.9834 12.4495 1.0049 – – –

Genes in the signaling pathways of TNF, NF-κB, apoptosis, necroptosis and ferroptosis were significantly upregulated. Both TNF and NF-
κB signaling pathways in HEC1A and AN3CA cells were regulated by hydrogen treatment. H-CM, hydrogen culture medium; CM, culture 
medium; FC, fold change.
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Figure 4 Top 30 enriched pathways of hydrogen-treated endometrial cancer cells. The top 30 pathways enriched by rich factor in the 
abscissa between H-CM and CM groups in Ishikawa, HEC1A and AN3CA cell line. The color of the point indicates the significance level 
(q-value) of GO. The shape point indicates major categories of GO database the corresponding GO entry belongs to the size of the point 
represented the number of genes mapped into the GO entry. GO, Gene Ontology; H-CM, hydrogen culture medium; CM, culture medium.
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Figure 5 Expression patterns of genes involved in TNF and NF-κB signaling pathways. (A) Heat map of the genes involved in TNF, NF-
κB, apoptosis, necroptosis and ferroptosis signaling pathways between H-CM and CM groups in Ishikawa, HEC1A and AN3CA cell 
line (P≤0.05). Each small box represents a gene, and its FPKM values is indicated by different colors. (B) NF-κB, p-NFKBIA, NFKBIA, 
p-NFKBIA/NF-κB and cleaved caspase-1 were significantly increased in hydrogen-treated Ishikawa, HEC1A and AN3CA cells compared 
to non-treated group, as determined by Western blot analysis. GAPDH was used as a loading control. Data are presented as mean ± SD. *, 
P≤0.05. H-CM, hydrogen culture medium; CM, culture medium; SD, standard deviation.
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Figure 6 Apoptotic rates of hydrogen-treated endometrial cancer cells. (A) The percentages of apoptosis were significantly increased in 
hydrogen-treated Ishikawa (H-CM vs. CM; 4.60%±0.53% vs. 2.60%±0.16%; P=0.0221) and HEC1A (H-CM vs. CM; 6.53%±0.12% vs. 
4.60%±0.06%; P<0.0001) cells compared to non-treated cells. Three hours after radiation of a 60Co source, at a dose of 7 Gy, the apoptotic 
rates of the three endometrial cancer cells were evaluated by FITC Annexin V apoptosis method. Hydrogen-treated Ishikawa (H-CM 
vs. CM; 4.83%±0.0086% vs. 2.83%±0.0047%; P=0.1115) and HEC1A (H-CM vs. CM 5.10%±0.0026% vs. 3.07%±0.0082%; P=0.0079) 
cells exhibited higher apoptotic rates compared to CM-treated cells. (B) Increased percentages of apoptotic cells were found in hydrogen-
treated Ishikawa (H-CM vs. CM; 3.50%±0.1732% vs. 2.33%±0.0882%; P=0.0039) and AN3CA (H-CM vs. CM; 3.50%±0.1155% vs. 
0.10%±0.0577%; P≤0.0001) cells. ROS generation blocker NAC (5 mM) inversely decreased the apoptotic rates of hydrogen-treated 
Ishikawa (H-CM vs. H-CM+NAC 4.83%±0.0086% vs. 2.1%±0.1155%; P=0.0025) and AN3CA (H-CM vs. H-CM+NAC 3.50%±0.1155% 
vs. 2.1%±0.0577%; P=0.0004) cells. Data are presented as mean ± SD. *, P≤0.05 compared with non-treated group. H-CM, hydrogen 
culture medium; CM, culture medium; NAC, N-acetylcysteine; FITC, fluorescein isothiocyanate. 
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Figure 7 Apoptosis markers for hydrogen-treated endometrial cancer cells. (A) The apoptotic rates of hydrogen-treated HEC-1A (H-CM 
vs. CM; 5.19%±0.1355% vs. 3.83%±0.1999%; P=0.000613) cells were significantly increased compared to non-treated cells, as demonstrated 
by Annexin V-APC/PT method. (B) The levels of caspase-3, cleaved caspase-3 and cleaved caspase-9 in HEC1A cells with 24 h of hydrogen 
treatment were significantly higher than those in non-treated group, as revealed by relative optical density image analysis. Data are presented 
as mean ± SD. *, P≤0.05 compared with non-treated group. APC, allophycocyanin; FITC, fluorescein isothiocyanate; H-CM, hydrogen 
culture medium; CM, culture medium.

ubiquitinated and degraded, resulting in NF-κB activation 
through phosphorylation of TLRs in the stimulated 
cells, which rapidly localized to the nucleus to allow the 
transcription of proinflammatory cytokines, such as TNF-α,  
IL-1β and IL-6 (5,22,23), thus ultimately contributing to 

tumor cell apoptosis. The second delayed priming phase 
activates several signaling pathways, such as TNF-α that 
suppresses phosphor-NF-κB/p65 expression, and further 
induces a wide spectrum of inflammatory reactions by 
producing adenosine triphosphate (ATP), and eventually 
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lead to cell injury caused by the release of proinflammatory 
cytokines (24,25). 

Obesity and insulin resistance have been considered as 
risk factors for endometrial cancer. Additionally, TNF-α, 
IL-1β, NF-κB have been shown to induce endometrial 
cancer cell apoptosis in a dose- and time-dependent 
manner. Studies on excised human tissue demonstrate that 
NF-κB family members are highly expressed in proliferative 
endometrium, endometrial hyperplasia and endometrial 
carcinoma (26,27). Besides, TNF-α-induced apoptosis are 
observed in Ishikawa and AN3CA endometrial cancer cell 
lines. These proinflammatory cells can then feed back into 
NF-κB pathway, further enhancing the proinflammatory 
and apoptotic processes (28,29). 

Considering that hydrogen can easily dissipate across 
cells throughout the body, hydrogen water or hydrogen-rich 
saline is increasingly accepted as a promising therapeutic 
approach, due to lack of adverse effects (8). Hydrogen might 

exert a biphasic effect of activating inflammatory pathway in 
tumor cell and inhibiting inflammatory pathway in normal 
cells. Hydrogen can be applied to treat inflammatory 
diseases, as hydrogen treatment reduces the expression 
levels of pro-inflammatory factors such as TNF-α, IL-6 
and IL-1β in non-cancerous cells (30,31). Hydrogen water 
not only inhibits the clonal growth of human tongue 
carcinoma cells, but also suppresses the invasion of human 
fibrosarcoma cells concurrently with intracellular oxidant 
repression, as well as scavenged intracellular oxidants (e.g., 
hydrogen peroxides) (32). Inhalation of 1% hydrogen gas 
or drinking hydrogen water can alleviate the nephrotoxicity, 
mortality and body-weight loss caused by cisplatin, and does 
not compromise the anti-tumor effects of cisplatin against 
cancer cell lines in vitro and tumor-bearing mice in vivo 
(9,33). Nevertheless, whether hydrogen can be used to treat 
endometrial cancer has not yet been reported. 

Our results demonstrated that hydrogen treatment 
activated TNF/NF-κB, apoptosis, necroptosis and ferroptosis 
signaling pathways in endometrial cancer cells (P≤0.05), 
as revealed by RNA sequencing analysis. In addition to 
the GO analysis, KEGG pathway enrichment analysis 
was used to further elucidate the functional mechanisms 
underlying hydrogen treatment. Correlation analysis 
between transcriptome and proteome demonstrated that 
the enrichment of proteins in different GO terms was 
consistent with the transcriptomic results. However, the 
enriched pathways at protein level were specifically grouped 
as genetic information processing, while various metabolic 
processes were dominated at transcriptomic level. The 
molecular pathways underlying cancer inflammation involve 
NF-κB transcription factor and its inhibitory IKK complex. 
In this study, NFKBIA, NFKBID, NFKBIE, NFKBIZ, 
TNF, TNFAIP2, TNFAIP3, TNFRSF21, TNFFRSF12A, 
JUN, JUNB, JUND were found to be upregulated in 
hydrogen-treated endometrial cancer cells. These results, 
taken together, suggest that these upregulated genes play 
pivotal roles in hydrogen-induced apoptosis in endometrial 
cancer (Figure 8). To further explore the effects of post-
transcriptional regulation on hydrogen-induced apoptosis, 
the proteins that went against the overall trend of concordant 
gene regulation were investigated at protein level. 

However, there was limitations in our study since the 
research was only an RNA sequencing analysis of signaling 
pathways and functional gene groups in hydrogen-treated 
endometrial cancer cells. How hydrogen induces TNF/NF-
κB and thereafter causes apoptosis pathways in endometrial 
cancer cells should be explained on further research. Taken 

Figure 8 A proposed model depicting the potential mechanisms 
of hydrogen-mediated cell apoptosis via a positive feedback 
regulation of TNF/NF-κB inflammasome pathway. TLRs induces 
the activation of NF-κB pathway, and promotes the expression 
levels of inflammatory genes such as TNF-α and IL-1β. Hydrogen 
penetrates across biomembranes and diffuses into the cytosol, 
mitochondria and nucleus, leading to the increased expression 
levels of TNF-α, NF-κB and IL-1β, and eventually triggers cell 
apoptosis. TLR, toll-like receptor; LPS, lipopolysaccharides; 
TNFR, tumor necrosis factor receptor.
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altogether, our data indicate that hydrogen treatment 
can induce endometrial cancer cell apoptosis via TNF/
NF-κB pathway activated by proinflammatory cytokines. 
Therefore, hydrogen may be a promising therapeutic target 
for endometrial cancer.
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