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Introduction

Colorectal cancer (CRC) is currently the fourth most 
common cancer (1). Five-year survival for stages I and 
II is 90%, which drops to 14% for stage IV disease (2). 
Therefore, early detection and treatment are significant for 
the management of CRC. Many diagnostic methods have 
been used to detect cancer, such as protein tumor markers, 
imaging techniques, and tissue biopsy (3). Serum protein 

biomarkers such as carcinoembryonic antigen (CEA) and 
carbohydrate antigen 19-9 (CA19-9) have limited sensitivity 
and specificity (4,5). Imaging techniques are challenged 
by small lesions and may be influenced by structures. 
Tissue biopsy, a gold standard for diagnosing cancer, has 
disadvantages from invasion and medical complications.

Liquid biopsy has advantages such as easy accessibility, 
minimal invasiveness, and repeatability (6). Cell-free 
DNA (cfDNA), one of the markers of liquid biopsies, has 
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been applied in all phases of cancer patient management, 
including predictive and early detection, monitoring disease 
progression, and survival recurrence and minimal residual 
disease (7). The cfDNA is released by viable and necrosis 
cancer cells and may reflect the entire tumor genome. 
Molecular characteristics of cfDNA have been extensively 
studied, including concentration, genomic alterations, 
copy number mutations, methylation changes, single-
nucleotide mutations, cancer-derived viral sequences, and 
microsatellite alterations (8,9).

The concentration of cfDNA has been identified as a 
potential prognostic biomarkers in CRC. The concentration 
of cfDNA based on different primers has been found to 
be significantly higher in CRC than in healthy volunteers 
and intestinal polyp patients (10-13). However, different 
primers in CRC have not yet been compared. We presented 
a comparison study in plasma samples to monitor the 
variation and efficiency of cfDNA primers.

Methods

Sample collection 

Seventy-one patients with CRC and 20 patients with 
proliferative intestinal polyps at Yongchuan Hospital 
of Chongqing Medical University from May 2018 to 
February 2019 were enrolled. The CRC group consisted 
of 45 non-metastatic colorectal cancer (non-mCRC) 
patients, 13 patients with metastatic colorectal cancer 
(mCRC), and 13 patients with recurrent colorectal cancer 
(rCRC). The diagnosis of all patients was confirmed by 
biopsy, computed tomography (CT), magnetic resonance 
imaging (MRI), and positron emission tomography 
(PET) scans. All peripheral venous blood samples were 
collected in EDTA-K2-coated tubes and separated by 
centrifugation at 1,600 g for 10 min at 4 ℃ (Neofuge 15R, 
Heal Force). The supernatant was transferred to a new 
tube and centrifuged again at 16,000 g for 10 min at 4 ℃ 
(Neofuge 13R, Heal Force). Purified plasma was carefully 
removed without disturbing the lower residual layer and 
stored at −80 ℃ for further analyses (14). Plasma cfDNA 
was extracted from 400 μL blood plasma using the plasma 
cfDNA extraction kit (GO-MXCF-100, Changchun 
China, http://www.geneonbio.com/) according to the 
manufacturer’s protocol. The total eluted cfDNA (~40 μL) 
was transferred into 0.2 mL Eppendorf tubes and then 
stored at −20 ℃.

Quatitative polymerase chain reaction (q-PCR)

Three primer sequences were used to compare the 
efficiency of different genes: ALU elements (ALU), Beta-
actin (ACTB), glyceraldehyde-3-phosphate dehydrogenase 
(GAPDH) were previously published and used to quantify 
the level of cfDNA. Three fragments of 108 bp of the 
GAPDH gene, 115 bp of the ALU gene, and 100 bp of the 
ACTB gene were amplified with the following primers to 
quantify the yield of cfDNA. The ALU primer forward: 
5'-CCTGAGGTCAGGAGTTCGAG-3' and reverse: 
5'-CCCGAGTAGCTGGGATTACA-3' (11); The ACTB 
primer forward: 5'-GCACCACACCTTCTACAATGA-3' 
and reverse: 5'-GTCATCTTCTCGCGGTTGGC-3' (15).  
The GAPDH primer forward: 5'-ATGTTCGTCATGGG 
TGTGAA-3' and reverse: 5'-GGTGCTAAGCAGTTG 
GTGGT-3' (13). The total q-PCR reaction volume of  
25 μL contained 0.4 μM of forward and reversed primers, 
12.5 μL of TB Green® Premix Ex Taq™ II (Tli RNaseH 
Plus) (Takara, Japan), 8.5 μL double-distilled water and 2 μL  
of cfDNA. The subsequent progress involved incubation 
at 95 ℃ for 30 s, 39 cycles of denaturation at 95 ℃ for 5 s, 
annealing at 55 ℃ for 30 s, extension at 72 ℃ for 30 s, and 
ended with a melt curve from 65 to 95 ℃ for 5 s in Real-
time Quantitative PCR Detecting System (Bio-Rad CFX96, 
USA). The absolute equivalent amount of cfDNA in each 
sample was determined using a standard curve with serial 
dilutions (from 9.813 to 98,130 ng/mL) of human genomic 
DNA. Standard curves were created for ALU, ACTB, and 
GAPDH primer sets by PCR amplifying 10-fold serially 
diluted DNA samples. The concentration of cfDNA for 
different primers was represented by the concentration of 
ALU, ACTB, and GAPDH, respectively. The results were 
presented as the median and interquartile range. 

CEA analysis

Venous blood (5 mL) was collected from the patients 
simultaneously. The concentrations of CEA were measured 
at the Clinic Pathology Laboratory of Yongchuan Hospital 
affiliated to Chongqing Medical University by Elecsys. 
COBAS (e601 Germany) was adopted to calculate their 
quantity.

Receiver-operating characteristic (ROC) curve analysis

The ROC curve was used to assess the diagnostic value 
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of ALU, ACTB, GAPDH, CEA and the combination 
diagnostic for non-mCRC.

Statistical analysis

The Mann-Whiney U-test and Kruskal-Wallis H-test were 
used to compare the ALU, ACTB, and GAPDH between 
the groups. Statistical analyses were performed using SPSS 
22.0 software (SPSS Inc., Chicago, IL, USA). The results 
were considered statistically significant at P<0.05. The 
corresponding figures were drawn in GraphPad Prism v 8.01 
software (Graphpad Software Inc.).

Results 

Patient characteristics

A total of 91 individuals were enrolled. The data obtained 
from plasma samples of 71 CRC patients (male/female: 
35/36) were compared to 20 patients with intestinal polyps 
(male/female: 11/9) as controls. For controls and CRC 
patients, the median of age was 55.00 (range, 44.75–64.00) 
and 66.00 (range, 61.00–71.00) years, respectively. The 
patients did not differ statistically by age and gender, as 
verified by independent χ2 and t-tests (P>0.05 for both). 
The abnormal value was excluded in further analysis. 

The cfDNA concentration in intestinal polyp and CRC 
patients 

The concentration of ALU and GAPDH in the CRC group 

was significantly higher than in the intestinal polyp group 
(P=0.003 and P=0.000, respectively). However, there was 
no difference in ACTB (P=0.806) (Table 1; Figure 1A,B,C). 
Compared with the control group, the concentration of 
ALU and GAPDH in non-mCRC patients and mCRC 
patients was significantly higher (P<0.05), while there was 
no significant difference in the concentration of ACTB. 
The rCRC group also had higher concentration than the 
control group, expect for ACTB. Compared with the non-
mCRC and mCRC groups, the concentration of the rCRC 
group was decreased, although there was no statistical 
difference (Table 2; Figure 1D,E,F).

ROC curve analysis between the non-mCRC and intestinal 
polyp groups 

The area under curves (AUCs) of ALU, GAPDH, and 
ACTB were 0.734, 0.800, and 0.503, respectively. The AUC 
of ALU, GAPDH, and CEA combined was 0.974 (Table 3; 
Figure 2A,B).

Clinical variables of CRC patients 

The analysis showed that the concentration of ALU was 
correlated with size (P=0.004), histological differentiation 
(P=0.001), and lymphatic metastasis (P=0.004). The 
concentration of ACTB was correlated with histological 
differentiation (P=0.018), local invasion (P=0.003), and 
lymphatic metastasis (P=0.011). The concentration of 
GAPDH was correlated with histological differentiation 
(P=0.017) (Table 4).

Table 1 The concentration of cfDNA in intestinal polyp and CRC

Groups Intestinal polyp CRC Z P

ALU −2.983 0.003

n 18 65

C (ng/mL) 13.03 (0.01, 120.43) 97.51 (20.48, 412.70)

ACTB −0.246 0.806

n 12 67

C (ng/mL) 364.49 (143.97, 2,749.28) 484.33 (162.79, 2,390.97)

GAPDH −3.757 0.000

n 20 71

C (ng/mL) 79.54 (27.83, 115.15) 168.63 (113.68, 270.76)

cfDNA, cell-free DNA; CRC, colorectal cancer.
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Figure 1 Scatter diagrams for ALU, GAPDH, and ACTB genes in intestinal polyp and colorectal cancer (CRC) patients. (A,B,C) The 
comparison in intestinal polyp and CRC patients; (D,E,F) the comparison in non-mCRC, mCRC, rCRC, and intestinal polyp. mCRC, 
metastatic colorectal cancer; rCRC, recurrent colorectal cancer.

Table 2 The concentration of cfDNA in non-mCRC, mCRC, rCRC, and intestinal polyp

Groups Non-mCRC mCRC rCRC Intestinal polyp F P

ALU 11.084 0.011

n 41 13 11 18

C (ng/mL) 124.57 (21.92, 341.42)# 143.84 (39.04, 1,048.16)# 47.23 (6.42, 369.34) 13.03 (0.01, 120.43)

ACTB 0.769 0.857

n 43 13 11 12

C (ng/mL) 486.34 (134.86, 1,761.76) 593.29 (331.68, 2,152.72) 351.97 (112.49, 13,097.78) 364.49 (143.97, 2,749.28)

GAPDH 15.832 0.001

n 45 13 13 20

C (ng/mL) 171.44 (123.34, 287.50)# 194.78 (113.43, 235.29)# 117.68 (72.74, 1,102.51) 79.54 (27.83, 115.15)
#, compared with intestinal polyp, there were statistical differences (P<0.05). cfDNA, cell-free DNA; CRC, colorectal cancer; mCRC,  
metastatic colorectal cancer; rCRC, recurrent colorectal cancer.

Discussion

CfDNA consists of three constituents: circulating tumor 
DNA (ctDNA), non-malignant tumor cell-derived DNA, 
and normal cell germline DNA (16). The DNA half-life 
is short in the circulation, ranging from 15 min to several 
hours, which can present the real-time status of a tumor 
(17,18). It has been estimated that from a tumor weighing 

100 g, corresponding to 3×1010 tumor cells, up to 3.3% of 
tumor DNA may enter the blood every day (19). CtDNA 
holds a lot of information, but the information is highly 
fragmented, of a low amount, and is costly to extract, which 
limits its usage (20,21). However, quantification of cfDNA 
by qPCR is simple, inexpensive, and reproducible (22). The 
concentration of cfDNA in plasma has been widely studied 
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Figure 2 The ROC of ALU, GAPDH, ACTB genes, and CEA. (A) The diagnostic value of genes and CEA alone; (B) the diagnostic value of 
genes combined with CEA. ROC, receiver-operating characteristic; CEA, carcinoembryonic antigen.

Table 3 The diagnostic value of primers, CEA, and the combination diagnostic

Primers AUC Cut-off Sensitivity (%) Specificity (%) 95% CI P value PPV (%) NPV (%)

ALU 0.734 0.17 100 44 0.579–0.889 0.004 80.39 100

GAPDH 0.800 122.09 77.8 85 0.660–0.939 <0.001 92.1 62.96

ACTB 0.503 451.79 51.2 66.7 0.315–0.692 0.967 84.61 27.58

CEA 0.843 3.19 73.3 86.7 0.727–0.959 <0.001 94.28 52

CEA + GAPDH 0.834 0.69 71.1 86.7 0.718–0.951 <0.001 94.12 50

CEA + ACTB 0.848 0.72 74.4 90.9 0.711–0.985 <0.001 96.96 47.62

CEA + ALU 0.882 0.76 73.2 92.3 0.789–0.974 <0.001 96.77 52.17

ALU + GAPDH + CEA 0.974 0.63 92.7 100 0.973–1.000 <0.001 100 81.25

CEA, carcinoembryonic antigen.

in patients with various neoplasms, including hepatocellular 
carcinoma (HCC), breast cancer, renal cell carcinoma 
(RCC), gastric cancer, and CRC (10-13,23-27). The 
concentration of ALU and GAPDH in CRC was found 
to be significantly higher than in standard control groups  
(10-13). A higher concentration of ACTB has been 
observed in HCC and RCC than in healthy groups (23,26). 
To date, many genes have been reported for diagnosing 
cfDNA but are still technically challenging.

In our study, three genes served as the models to facilitate 
the comparison of the yields of cfDNA by q-PCR. The 
cfDNA concentration of ALU and GAPDH in the CRC 
group was higher than in the intestinal polyp group, and 
there was no significant difference in ACTB. Meanwhile, 
the yields of cfDNA with ALU and GAPDH were higher 
in malignancy. The results implied that ALU and GAPDH 
would be more suitable for detecting cfDNA.

The diagnostic value of the concentration of cfDNA 

in ALU, ACTB, and GAPDH was compared between the 
non-mCRC and intestinal polyp groups. The GAPDH 
gene showed the best diagnostic value (AUC =0.800) 
compared with ALU (AUC =0.734) and ACTB (AUC 
=0.503). The AUC for distinguishing non-mCRC from 
normal controls by ALU has been reported as 0.85 (11).  
In comparing HCC and chronic hepatitis B virus (HBV)-
infected groups, the AUC value of ACTB was found 
to be 0.56 (23). Consequently, the concentration of 
cfDNA in GAPDH and ALU is superior to ACTB in 
distinguishing between non-mCRC and intestinal polyp 
groups. The diagnostic value of ALU and GAPDH could 
be improved significantly by combining them with CEA. 
The concentration of cfDNA was correlated with clinical 
variables, as reported (11,13). The results showed that 
the yield of cfDNA was strictly related to tumor size, 
histologic differentiation, local invasion, and lymphatic 
metastasis.
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Table 4 The correlation analysis of ALU, ACTB, GAPDH with clinical variables

Clinical variables
ALU ACTB GAPDH

n C (ng/mL) P n C (ng/mL) P n C (ng/mL) P

Age (years) 0.334 0.647 0.215

≥60 50 111.50 (22.57, 463.21) 55 593.29 (149.98, 2,573.03) 56 175.62 (115.12, 276.54)

<60 15 50.78 (10.90, 287.92) 12 355.24 (170.89, 845.99) 15 147.97 (89.14, 222.16)

Gender 0.401 0.164 0.872

Male 33 143.84 (19.40, 532.62) 32 790.05 (214.93, 3,277.28) 35 165.56 (113.71, 270.76)

Female 32 54.75 (21.27, 312.84) 35 364.77 (134.86, 860.94) 36 170.03 (112.60, 262.89)

Location 0.955 0.682 0.296

Rectum 44 97.11 (21.27, 347.12) 44 422.55 (153.19, 2,233.67) 47 160.23 (113.19, 235.87)

Colon 21 98.44 (19.28, 514.86) 23 677.44 (195.18, 3,105.92) 24 194.58 (115.12, 447.09)

Tumor sizes (cm) 0.004 0.455 0.643

≥4 37 166.64 (49.07, 522.05) 38 744.93 (184.56, 2,675.31) 40 182.30 (122.94, 275.15)

<4 28 30.59 (10.27, 235.21) 29 304.84 (156.39, 2,020.54) 31 151.21 (113.19, 268.83)

Histologic differentiation 0.001 0.018 0.017

Low 17 456.06 (113.49, 1,113.15) 19 1,058.66 (769.23, 4,606.17) 20 209.79 (172.21, 447.09)

Middle 37 97.50 (22.88, 341.42) 38 354.88 (121.19, 1,678.02) 40 154.44 (113.85, 276.54)

High 11 20.33 (6.27, 41.64) 10 238.36 (140.61, 360.27) 11 113.19 (87.00, 160.23)

Local invasion 0.749 0.003 0.711

Muscularis propria 10 48.85 (14.07, 401.77) 10 235.17 (8.20, 1,880.84) 11 268.83 (108.37, 328.22)

Subserosa 14 121.57 (22.57, 796.18) 13 805.77 (218.45, 1,542.53) 14 165.83 (106.99, 272.22)

Visceral peritoneum 41 98.44 (22.89, 392.74) 44 441.76 (172.38, 3,240.72) 46 167.09 (113.56, 238.90)

Lymphatic metastasis 0.004 0.011 0.486

0 33 29.05 (10.36, 341.42) 32 331.81 (156.86, 1,066.39) 35 157.67 (108.37, 276.32)

≤3 24 134.20 (41.89, 327.35) 27 486.33 (162.79, 3,334.40) 28 175.62 (113.69, 265.18)

≥4 8 949.39 (146.90, 1,621.20) 8 1,893.96 (284.70, 7,585.63) 8 218.80 (144.06, 306.58)

Distant metastasis 0.738 0.364 0.559

Yes 39 97.50 (20.62, 352.81) 40 441.76 (138.64, 1,587.98) 42 170.03 (123.61, 276.39)

No 26 97.12 (19.66, 483.58) 27 593.29 (188.60, 3,334.40) 29 165.56 (108.27, 261.53)

Tumor stage (TNM) 0.971 0.524 0.807

I 7 50.86 (18.47, 499.07) 8 235.17 (41.06, 2,096.51) 8 216.99 (112.51, 321.76)

II 17 47.36 (19.43, 514.86) 17 774.32 (249.34, 2,076.36) 18 170.03 (120.67, 282.06)

III 15 130.27 (25.44, 201.93) 15 357.79 (121.50, 1,058.66) 16 161.25 (124.70, 213.93)

IV 26 97.12 (19.66, 483.58) 27 593.29 (188.60, 3,334.40) 29 165.56 (108.27, 261.53)

Italic P values are statistic value in clinical variable (P<0.05).
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Conclusions

In conclusion, the yields of cfDNA from the GAPDH 
and ALU genes are expected to be sensitive indicators 
for the diagnosis of CRC. The GAPDH and ALU genes 
are superior to ACTB. The diagnostic value of ALU and 
GAPDH could be significantly improved by combining 
them with CEA.
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